
Non-determinism in Byzantine Fault-Tolerant
Replication
Christian Cachin, Simon Schubert, and Marko Vukolić

IBM Research - Zurich, (cca|sis|mvu)@zurich.ibm.com

Abstract
Service replication distributes an application over many processes for tolerating faults, attacks,
and misbehavior among a subset of the processes. With the recent interest in blockchain tech-
nologies, distributed execution of one logical application has become a prominent topic. The
established state-machine replication paradigm inherently requires the application to be determ-
inistic. This paper distinguishes three models for dealing with non-determinism in replicated
services, where some processes are subject to faults and arbitrary behavior (so-called Byzantine
faults): first, the modular case that does not require any changes to the potentially non-determin-
istic application (and neither access to its internal data); second, master-slave solutions, where
ties are broken by a leader and the other processes validate the choices of the leader; and finally,
applications that use cryptography and secret keys. Cryptographic operations and secrets must
be treated specially because they require strong randomness to satisfy their goals.

The paper also introduces two new protocols. First, Protocol Sieve uses the modular approach
and filters out non-deterministic operations in an application. It ensures that all correct processes
produce the same outputs and that their internal states do not diverge. A second protocol, called
Mastercrypt, implements cryptographically secure randomness generation with a verifiable ran-
dom function and is appropriate for most situations in which cryptographic secrets are involved.
All protocols are described in a generic way and do not assume a particular implementation of
the underlying consensus primitive.

1998 ACM Subject Classification C.2.4 Distributed Systems; D.1.3 Concurrent Programming.

Keywords and phrases Blockchain, atomic broadcast, consensus, distributed cryptography, veri-
fiable random functions

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

State-machine replication is an established way to enhance the resilience of a client-server
application [33]. It works by executing the service on multiple independent components that
will not exhibit correlated failures. We consider the approach of Byzantine fault-tolerance
(BFT), where a group of processes connected only by an unreliable network executes an
application [31]. The processes use a protocol for consensus or atomic broadcast to agree
on a common sequence of operations to execute. If all processes start from the same initial
state, if all operations that modify the state are deterministic, and if all processes execute the
same sequence of operations, then the states of the correct processes will remain the same.
(This is also called active replication [13].) A client executes an operation on the service by
sending the operation to all processes; it obtains the correct outcome based on comparing
the responses that it receives, for example, by a relative majority among the answers or from
a sufficiently large set of equal responses. Tolerating Byzantine faults means that the clients
obtain correct outputs as long as a qualified majority of the processes is correct, even if the
faulty processes behave in arbitrary and adversarial ways.

© Christian Cachin, Simon Schubert, and Marko Vukolić;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

(cca|sis|mvu)@zurich.ibm.com
http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Non-determinism in BFT Replication

Traditionally state-machine replication requires the application to be deterministic. But
many applications contain implicit or explicit non-determinism: in multi-threaded applic-
ations, the scheduler may influence the execution, input/output operations might yield
different results across the processes, probabilistic algorithms may access a random-number
generator, and some cryptographic operations are inherently not deterministic.

Recently BFT replication has gained prominence because it may implement distributed
consensus for building blockchains [1, 15, 35, 5]. A blockchain provides a distributed, append-
only ledger with cryptographic verifiability and is governed by decentralized control. It can
be used to record events, trades, or transactions immutably and permanently and forms the
basis for cryptocurrencies, such as Bitcoin or Ripple, or for running “smart contracts,” as in
Ethereum. With the focus on active replication, this work aims at permissioned blockchains,
which run among known entities [34]. In contrast, permissionless blockchains (including
Ethereum) do not rely on identities and use other approaches for reaching consensus, such as
proof-of-work protocols. For practical use of blockchains, ensuring deterministic operations
is crucial since even the smallest divergence among the outputs of different participants lets
the blockchain diverge (or “fork”).

This work presents a general treatment of non-determinism in the context of BFT
replication and introduces a distinction among different models to tackle the problem of
non-determinism. For example, applications involving cryptography and secret encryption
keys should be treated differently from those that access randomness for other goals. We
also distinguish whether the replication mechanism has access to the application’s source
code and may modify it.

We also introduce two novel protocols. The first, called Sieve, replicates non-deterministic
programs using in a modular way, where we treat the application as a black box and cannot
change it. We target workloads that are usually deterministic, but which may occasionally
yield diverging outputs. The protocol initially executes all operations speculatively and then
compares the outputs across the processes. If the protocol detects a minor divergence among
a small number of processes, then we sieve out the diverging values; if a divergence among
too many processes occurs, we sieve out the operation from sequence. Furthermore, the
protocol can use any underlying consensus primitive to agree on an ordering. The second new
protocol, Mastercrypt, provides master-slave replication with cryptographic security from
verifiable random functions. It addresses situations that require strong, cryptographically
secure randomness, but where the faulty processes may leak their secrets.

1.1 Contributions

We introduce three different models and discuss corresponding protocols for replicating
non-deterministic applications.

Modular: When the application itself is fixed and cannot be changed, then we need modular
replicated execution. In practice this is often the case. We distinguish two approaches for
integrating a consensus protocol for ordering operations with the replicated execution
of operations. One can either use order-then-execute, where the operations are ordered
first, executed independently, and the results are communicated to the other processes
through atomic broadcast. This involves only deterministic steps and can be viewed as
“agreement on the input.” Alternatively, with execute-then-order, the processes execute
all operations speculatively first and then “agree on the output” (of the operation). In
this case operations with diverging results may have to be rolled back.

Christian Cachin, Simon Schubert, and Marko Vukolić 23:3

We introduce Protocol Sieve that uses speculative execution and follows the execute-then-
order approach. As described before, Sieve is intended for applications with occasional
non-determinism. It represents the first modular solution to replicating non-deterministic
applications in a BFT system.

Master-slave: In the master-slave model, one process is designated as the master or “leader,”
makes all non-deterministic choices that come up, and imposes these on the others which
act as slaves or “followers.” Because a faulty (Byzantine) master may misbehave, the
slaves must be able to validate the selections of the master before the operation can be
executed as determined by the master. The master-slave model is related to passive
replication; it works for most applications including probabilistic algorithms, but cannot
be applied directly for cryptographic operations. As a further complication, this model
requires that the developer has access to the internals of the application and can modify
it.
For the master-slave model we give a detailed description of the well-known replication
protocol, which has been used in earlier systems.

Cryptographically secure: Traditionally, randomized applications can be made deterministic
by deriving pseudorandom bits from a secret seed, which is initially chosen truly randomly.
Outsiders, such as clients of the application, cannot distinguish this from an application
that uses true randomness. This approach does not work for BFT replication, where faulty
processes might expose and leak the seed. To solve this problem, we introduce a novel
protocol for master-slave replication with cryptographic randomness, abbreviated Mas-
tercrypt. It lets the master select random bits with a verifiable random function. The
protocol is aimed at applications that need strong, cryptographically secure randomness;
however it does not protect against a faulty master that leaks the secret. We also review
the established approach of threshold (public-key) cryptography, where private keys are
secret-shared among the processes and cryptographic operations are distributed in a
fault-tolerant way over the whole group.

The modular Protocol Sieve has been developed for running potentially non-determin-
istic smart contracts as applications on top of a permissioned blockchain platform, built
using BFT replication. An implementation has been made available as open source in
“Hyperledger fabric” (https://github.com/hyperledger/fabric), which is part of the
Linux Foundation’s Hyperledger Project. As of November 2016, the project has decided to
adopt a different architecture (https://github.com/hyperledger/fabric/blob/master/
docs/); the platform has been redesigned to use a master-slave approach for addressing
non-deterministic execution.

1.2 Related work
The problem of ensuring deterministic operations for replicated services is well-known. When
considering only crash faults, many authors have investigated methods for making services
deterministic, especially for multi-threaded, high-performance services [2]. Practical systems
routinely solve this problem today using master-slave replication, where the master removes
the ambiguity and sends deterministic updates to the slaves. In recent research on this topic,
for instance, Kapitza et al. [24] present an optimistic solution for making multithreaded
applications deterministic. Their solution requires a predictor for non-deterministic choices
and may invoke additional communication via the consensus module.

In the BFT model, most works consider only sequential execution of deterministic
commands, including PBFT [10] and UpRight [14]. BASE [11] and CBASE [26] address

CVIT 2016

https://github.com/hyperledger/fabric
https://github.com/hyperledger/fabric/blob/master/docs/
https://github.com/hyperledger/fabric/blob/master/docs/

23:4 Non-determinism in BFT Replication

Byzantine faults and adopt the master-slave model for handling non-determinism, focusing
on being generic (BASE) and on achieving high throughput (CBASE), respectively. These
systems involve changes to the application code and sometimes also need preprocessing steps
for operations.

Fault-tolerant execution on multi-core servers poses a new challenge, even for deterministic
applications, because thread-level parallelism may introduce unpredictable differences between
processes. Eve [25] heuristically identifies groups of non-interfering operations and executes
each group in parallel. Afterwards it compares the outputs, may roll back operations that
lead to diverging states, or could transfer an agreed-on result state to diverging processes.
Eve resembles Protocol Sieve in this sense, but lacks modularity.

For the same domain of scalable services running on multi-cores, Rex [21] uses the master-
slave model, where the master executes the operations first and records its non-deterministic
choices. The slaves replay these operations and use a consensus primitive to agree on a
consistent outcome. Rex only tolerates crashes, but does not address the BFT model.

Fault-tolerant replication involving cryptographic secrets and distributed cryptography
has been pioneered by Reiter and Birman [32]. Many other works followed, especially
protocols using threshold cryptography; an early overview of solutions in this space was given
by Cachin [4].

In current work Duan and Zhang [18] discuss how the master-slave approach can handle
randomized operations in BFT replication, where execution is separated from agreement in
order to protect the privacy of the data and computation.

1.3 Organization
The remainder of this paper starts with Section 2, containing background information and
formal definitions of broadcast, replication, and atomic broadcast (i.e., consensus). The
following sections contain the discussion and protocols for the three models: the modular
solution (Section 3), the master-slave protocol (Section 4), and replication methods for
applications demanding cryptographic security (Section 5). Due to lack of space in this
extended abstract, many details, definitions, protocol optimizations, and discussions are only
available in the full version [9].

2 Definitions

2.1 System model
We consider a distributed system of processes that communicate with each other and provide
a common service in a fault-tolerant way. Using the paradigm of service replication [33],
requests to the service are broadcast among the processes, such that the processes execute
all requests in the same order. The clients accessing the service are not modeled here. We
denote the set of processes by P and let n = |P|. A process may be faulty, by crashing
or by exhibiting Byzantine faults; the latter means they may deviate arbitrarily from their
specification. Non-faulty processes are called correct. Up to f processes may be faulty and
we assume that n > 3f . The setup is also called a Byzantine fault-tolerant (BFT) service
replication system or simply a BFT system.

We present protocols in a modular way using an event-based notation [6]. A process
is specified through its interface, consumes input events, and generates output events.
Every two processes can send messages to each other using an authenticated point-to-point
communication primitive. When a message arrives, the receiver learns also which process

Christian Cachin, Simon Schubert, and Marko Vukolić 23:5

has sent the message. The primitive guarantees message integrity, i.e., when a message m is
received by a correct process with indicated sender ps, and ps is correct, then ps previously
sent m.

The system is partially synchronous [19] in the sense that there is no a priori bound on
message delays and the processes have no synchronized clocks, as in an asynchronous system.
However, there is a time (not known to the processes) after which the system is stable in the
sense that message delays and processing times are bounded. In other words, the system is
eventually synchronous. This model represents a broadly accepted network model and covers
a wide range of real-world situations.

2.2 Broadcast and state-machine replication
Atomic broadcast. Suppose n processes participate in a broadcast primitive. Every process
may broadcast a request or message m to the others. When a request has been agreed, it is
delivered. Atomic broadcast also solves the consensus problem [22, 6]. We use a variant that
delivers only messages satisfying a given external validity condition [7].

More precisely, Byzantine atomic broadcast with external validity (abv) is defined with a
validation predicate V () and uses two events: abv-broadcast(m), to broadcast a message m
to all processes, and abv-deliver(p,m), which delivers a message m broadcast by process p.

Predicate V () validates messages. It can be computed locally by every process and ensures
that a correct process only delivers messages that satisfy V (). More precisely, V () must
guarantee that when two correct processes p and q have both delivered the same sequence
of messages up to some point, then p obtains V (m) = True for any message m if and
only if q also determines that V (m) = True. The standard properties of Byzantine atomic
broadcast [6] (validity, no duplication, integrity, agreement, and total order) are extended by:

External validity: When a correct process delivers some message m, then V (m) = True.

In practice it may occur that not all processes agree in the above sense on the validity of a
message. For instance, some correct process may conclude V (m) = True while others find
that V (m) = False. For this case it is useful to reason with the following relaxation:

Weak external validity: When a correct process delivers some message m, then at least one
correct process has determined that V (m) = True at some time between when m was
broadcast and when it was delivered.

Every protocol for Byzantine atomic broadcast with external validity of which we are aware
either ensures this weaker notion or can easily be changed to satisfy it.

State machine replication. Atomic broadcast is the main tool to implement state-machine
replication (SMR), which executes a service on multiple processes for tolerating process faults.
Throughout this work we assume that many operation requests are generated concurrently
by all processes; in other words, there is request contention.

A state machine consists of variables and operations that transform its state and may
produce some output. Traditionally, operations are deterministic. The state machine
functionality is defined by execute(), a function that takes a state s ∈ S, initially s0, and
operation o ∈ O as input, and outputs a successor state s′ and a response or output value r,
such that execute(s, o) → (s′, r).

A replicated state-machine is defined by two events: an input event rsm-execute(operation)
that a process uses to invoke the execution of an operation o of the state machine; and
an output event rsm-output(o, s, r), which is produced by the state machine. The output

CVIT 2016

23:6 Non-determinism in BFT Replication

indicates the operation has been executed and carries the resulting state s and response r.
We assume here that an operation o includes both the name of the operation to be executed
and any relevant parameters.

More formally, a replicated state machine (rsm) receives requests that the state machine
executes the operation o, in the form of rsm-execute(o) events; it produces rsm-output(o, s, r)
events, to indicate that the state machine has executed an operation o, resulting in new state s,
and producing response r. It is defined using standard properties [6], ensuring agreement on
the executed sequence of operations among all correct processes; correctness in the sense that
when a correct process has executed a sequence of operations o1, . . . , ok, then the sequences
of output states s1, . . . , sk and responses r1, . . . , rk satisfies (si, ri) = execute(si−1, oi) for
i = 1, . . . , k; and finally, termination.

The standard implementation of a replicated state machine relies on an atomic broadcast
protocol to disseminate the requests to all processes [33, 22].

2.3 Leader election
Implementations of atomic broadcast need to make some synchrony assumptions or employ
randomization [20]. A very weak timing assumption that is also available in many practical
implementations is an eventual leader-detector oracle [12, 22].

We define an eventual leader-detector primitive, denoted Ω, for a system with Byzantine
processes. It informs the processes about one correct process that can serve as a leader, so
that the protocol can progress. When faults are limited to crashes, such a leader detector can
be implemented from a failure detector [12], a primitive that, in practice, exploits timeouts
and low-level point-to-point messages to determine whether a remote process is alive or has
crashed.

With processes acting in arbitrary ways, though, one cannot rely on the timeliness of
simple responses for detecting Byzantine faults. One needs another way to determine remotely
whether a process is faulty or performs correctly as a leader. Detecting misbehavior in this
model depends inherently on the specific protocol being executed [17]. We use the approach
of “trust, but verify,” where the processes monitor the leader for correct behavior. More
precisely, a leader is chosen arbitrarily, but ensuring a fair distribution among all processes
(in fact, it is only needed that a correct process is chosen at least with constant probability
on average, over all leader changes). Once elected, the chosen leader process gets a chance to
perform well. The other processes monitor its actions. Should the leader not have achieved
the desired goal after some time, they complain against it, and initiate a switch to a new
leader.

This notion of “performance” depends on the specific algorithm executed by the processes,
which relies on the output from the leader-detection module. Therefore, eventual leader
election with Byzantine processes is not an isolated low-level abstraction, as with crash-stop
processes, but requires some input from the higher-level algorithm. The Ω-complain(p) event
allows to express this. Every process may complain against the current leader p by triggering
this event.

Formally, a Byzantine leader detector (Ω) is defined with an output Ω-trust(p), designating
process p to be trusted as leader, and an input event Ω-complain(p) that receives a complaint
about the performance of leader process p. Its formal properties [6] ensure that eventually,
every correct process trusts some correct process; that when more than f correct processes
that trust some process p complain about p, then every correct process eventually trusts a
different process than p. Moreover, a correct process q does not trust a new leader unless at
least one correct process has complained against the leader which q trusted before, and that

Christian Cachin, Simon Schubert, and Marko Vukolić 23:7

eventually no two correct processes trust different processes.
It is possible to lift the output from the Byzantine leader detector to an epoch-change

primitive, which outputs not only the identity of a leader but also an increasing epoch number.
This abstraction divides time into a series of epochs at every participating process, where
epochs are identified by numbers. The numbers of the epochs started by one particular
process increase monotonically (but they do not have to form a complete sequence). Moreover,
the primitive also assigns a leader to every epoch, such that any two correct processes in the
same epoch receive the same leader. The mechanism for processes to complain about the
leader is the same as for Ω.

More precisely, Byzantine epoch-change (Ψ) outputs events of the form Ψ-start-epoch(e, p),
which indicate that epoch with number e and leader p starts; it also receives Ψ-complain(e, p)
events similar to Ω. Its formal properties appears in the literature [6].

When an epoch-change abstraction is initialized, it is assumed that a default epoch with
number 0 and a leader p0 has been started at all correct processes. All “practical” BFT
systems in the eventual-synchrony model starting from PBFT [10] implicitly contain an
implementation of Byzantine epoch-change; this notion was described explicitly by Cachin et
al. [6, Chap. 5].

3 Modular protocol

In this section we discuss the modular execution of replicated non-deterministic programs.
Here the program is given as a black box, it cannot be changed, and the BFT system cannot
access its internal data structures. Very informally speaking, if some processes arrive at a
different output during execution than “most” others, then the output of the disagreeing
processes is discarded. Instead they should “adopt” the output of the others, e.g., by asking
them for the agreed-on state and response. When the outputs of “too many” processes
disagree, the correct output may not be clear; the operation is then ignored (or, as an
optimization, quarantined as non-deterministic) and the state rolled back. In this modular
solution any application can be replicated without change; the application developers may
not even be aware of potential non-determinism. On the other hand, the modular protocol
requires that most operations are deterministic and produce almost always the same outputs
at all processes; it would not work for replicating probabilistic functions.

More precisely, a non-deterministic state machine may output different states and re-
sponses for the same operation, which are due to probabilistic choices or other non-repeatable
effects. Hence we assume that execute is a relation and not a deterministic function, that is,
repeated invocations of the same operation with the same input may yield different outputs
and responses. This means that the standard approach of state-machine replication based
directly on atomic broadcast fails.

There are two ways for modular black-box replication of non-deterministic applications
in a BFT system:

Order-then-execute: Applying the SMR principle directly, the operations are first ordered
by atomic broadcast. Whenever a process delivers an operation according to the total
order, it executes the operation. It does not output the response, however, before checking
with enough others that they all arrive at the same outputs. To this end, every process
atomically broadcasts its outputs (or a hash of the outputs) and waits for receiving a given
number (up to n− f) of outputs from distinct processes. Then the process applies a fixed
decision function to the atomically delivered outputs, and it determines the successor
state and the response.

CVIT 2016

23:8 Non-determinism in BFT Replication

This approach ensures consistency due to its conceptual simplicity but is not very efficient
in typical situations, where atomic broadcast forms the bottleneck. In particular, in
atomic broadcast with external validity, a process can only participate in the ordering
of the next operation when it has determined the outputs of the previous one. This
eliminates potential gains from pipelining and increases the overall latency.

Execute-then-order: Here the steps are inverted and the operations are executed speculatively
before the system commits their order. As in other practical protocols, this solution uses
the heuristic assumption that there is a designated leader which is usually correct. Thus,
every process sends its operations to the leader and the leader orders them. It asks all
processes to execute the operations speculatively in this order, the processes send (a hash
of) their outputs to the leader, and the leader determines a unique output. Note that this
value is still speculative because the leader might fail or there might be multiple leaders
acting concurrently. The leader then tries to obtain a confirmation of its speculative order
by atomically broadcasting the chosen output. Once every process obtains this output
from atomic broadcast, it commits the speculative state and outputs the response.
In rare cases when a leader is replaced, some processes may have speculated wrongly
and executed other operations than those determined through atomic broadcast. Due to
non-determinism in the execution a process may also have obtained a different speculative
state and response than what the leader has obtained and broadcast. This implies that
the leader must either send the state (or state delta) and the response resulting from the
operation though atomic broadcast, or that a process has a different way to recover the
decided state from other processes.

In the following we describe Protocol Sieve, which adopts the approach of execute-then-
order with speculative execution.

Protocol Sieve. Protocol Sieve runs a Byzantine atomic broadcast with weak external
validity (abv) and uses a sieve-leader to coordinate the execution of non-deterministic
operations. The leader is elected through a Byzantine epoch-change abstraction, as defined in
Section 2.3, which outputs epoch/leader tuples with monotonically increasing epoch numbers.
For the Sieve protocol these epochs are called configurations, and Sieve progresses through a
series of them, each with its own sieve-leader.

The processes send all operations to the service through the leader of the current
configuration, using an invoke message. The current leader then initiates that all processes
execute the operation speculatively; subsequently the processes agree on an output from
the operation and thereby commit the operation. As described here, Sieve executes one
operation at a time, although it is possible to greatly increase the throughput using the
standard method of batching multiple operations together.

The leader sends an execute message to all processes with the operation o. In turn,
every process executes o speculatively on its current state s, obtains the speculative next
state t and the speculative response r, signs those values, and sends a hash and the signature
back to the leader in an approve message.

The leader receives 2f + 1 approve messages from distinct processes. If the leader
observes at least f + 1 approvals for the same speculative output, then it confirms the
operation and proceeds to committing and executing it. Otherwise, the leader concludes that
the operation is aborted because of diverging outputs. There must be f + 1 equal outputs for
confirming o, in order to ensure that every process will eventually learn the correct output,
see below.

Christian Cachin, Simon Schubert, and Marko Vukolić 23:9

The leader then abv-broadcasts an order message, containing the operation, the spec-
ulative output (t, r) for a confirmed operation or an indication that it aborted, and for
validation the set of approve messages that justify the decision whether to confirm or
abort. During atomic broadcast, the external validity check by the processes will verify this
justification.

As soon as an order message with operation o is abv-delivered to a process in Sieve, o is
committed. If o is confirmed, the process adopts the output decided by the leader. Note this
may differ from the speculative output computed by the process. Protocol Sieve therefore
includes the next state t and the response r in the order message. In practice, however,
one might not send t, but state deltas, or even only the hash value of t while relying on a
different way to recover the confirmed state. Indeed, since f + 1 processes have approved
any confirmed output, a process with a wrong speculative output is sure to reach at least
one of them for obtaining the confirmed output later.

In case the leader abv-broadcasted an order message with the decision to abort the
current operation because of the diverging outputs (i.e., no f + 1 identical hashes in 2f + 1
approve messages), the process simply ignores the current request and speculative state. As
an optimization, processes may quarantine the current request and flag it as non-deterministic.

As described so far, the protocol is open to a denial-of-service attack by multiple faulty
processes disguising as sieve-leaders and executing different operations. Note that the epoch-
change abstraction, in periods of asynchrony, will not ensure that any two correct processes
agree on the leader, as some processes might skip configurations. Therefore Sieve also orders
the configuration and leader changes using consensus (with the abv primitive).

To this effect, whenever a process receives a start-epoch event with itself as leader,
the process abv-broadcasts a new-sieve-config message, announcing itself as the leader.
The validation predicate for broadcast verifies that the leader announcement concerns a
configuration that is not newer than the most recently started epoch at the validating process,
and that the process itself endorses the same next leader. Every process then starts the
new configuration when the new-sieve-config message is abv-delivered. If there was a
speculatively executed operation, it is aborted and its output discarded.

The design of Sieve prevents uncoordinated speculative request execution, which may
cause contention among requests from different self-proclaimed leaders and can prevent
liveness easily. Naturally, a faulty leader may also violate liveness, but this is not different
from other leader-based BFT protocols.

The details of Protocol Sieve are shown in Algorithms 1–2. The pseudocode assumes
that all point-to-point messages among correct processes are authenticated, cannot be forged
or altered, and respect FIFO order. The invoked operations are unique across all processes
and self denotes the identifier of the executing process. Not shown in the pseudocode is a
periodic concurrent check for leader progress. The process determines the age of every o ∈ I
since it has been invoked and added to I; if there are “old” operations in I, then the process
invokes Ψ-complain(leader).

The following two optimizations for Sieve are described in the full version [9]: First,
when run in practice, every process directly executes operations and does not include the
potentially large state in order messages. If a rollback operation exists to complement
execute, a process that has computed a diverging state can roll the operation back and obtain
the state from other processes. Second, when the well-known PBFT protocol [10] implements
abv-broadcast, then the leader information and Byzantine epoch-change mechanism can be
directly obtained from PBFT. This simplifies the description of Sieve but breaks modularity.

CVIT 2016

23:10 Non-determinism in BFT Replication

Algorithm 1 Protocol Sieve
State

I: set of invoked operations at every process B[p], for p ∈ P: buffer at sieve-leader
config: sieve-config number leader: sieve-leader, initially p0

next-epoch: next sieve-config, initially ⊥ next-leader: next sieve-leader, initially ⊥
s: current state, initially s0 cur: current operation, initially ⊥
t: speculative state, initially ⊥ r: speculative response, initially ⊥

upon invocation rsm-execute(o) do
I ← I ∪ {o}
send msg. [invoke, config, o] over point-to-point link to leader

upon recv. msg. [invoke, c, o] from p such that B[p] = ⊥ and c = config and leader = self do
B[p]← o // buffer only the latest operation from each process

upon exists p that B[p] 6= ⊥ such that cur = ⊥ and leader = self do
cur← B[p]
send [execute, config, cur] over point-to-point links to all processes

upon recv. msg. [execute, c, o] from p such that p = leader and c = config and t = ⊥ do
(t, r)← execute(s, o)
σ ← signself(speculate‖config‖hash(t‖r))
send msg. [approve, config, o, hash(t‖r), σ] to leader

upon recv. 2f + 1 msgs. [approve, cp, op, hp, σp], each from a distinct process p, such that
cp = config and opp = cur and verifyp(σp, speculate‖config‖hp) and leader = self do

if there is a set E of f + 1 received approve msgs. whose hp value is equal to hash(t‖r) then
abv-broadcast([order,confirm, config, cur, t, r, E])

else
let U be the set of 2f + 1 received approve msgs.
abv-broadcast([order,abort, config, cur,⊥,⊥,U])

upon abv-deliver(p, [order, decision, c, o, tc, rc, ·]) such that c = config do // commit o
if leader = self then

B[p]← ⊥
cur← ⊥

if o ∈ I then
I ← I \ {o}

if decision = confirm then
s← tc // adopt the agreed-on state and response, needed if (tc, rc) 6= (t, r)
rsm-output(o, s, rc)

t← ⊥

upon Ψ-start-epoch(e, p) do
(next-epoch,next-leader)← (e, p)
if p = self ∧ e > config then

abv-broadcast([new-sieve-config, e, self])

upon abv-deliver(p, [new-sieve-config, c, p]) do
(config, leader)← (c, p)
t← ⊥

Christian Cachin, Simon Schubert, and Marko Vukolić 23:11

Algorithm 2 Validation predicate V () for Byzantine atomic broadcast used inside Al-
gorithm Sieve
upon invocation V (m) do

if m = [order,decision, c, o,M] then
if M is a set of f + 1 msgs. of the form [approve, cp, op, hp, σp] such that

cp = config and op = o and verifyp(σp, speculate‖cp‖hp) = True and
all hp values inM are equal then

return True
else if m = [order,abort, c, o,M] then

if M is a set of 2f + 1 msgs. of the form [approve, cp, op, hp, σp] such that
cp = config and op = o and verifyp(σp, speculate‖cp‖hp) = True and
no f + 1 of the hp values inM are equal then

return True
else if m = [new-sieve-config, c, p] then

if c ≤ next-epoch and p = next-leader then
return True

return False

I Theorem 1. Protocol Sieve implements a replicated state machine allowing a non-deter-
ministic functionality execute(), except that demonstrably non-deterministic operations may
be filtered out and not executed.

To see why this holds, we consider first the agreement condition of a replicated state machine:
this follows directly from the protocol and from the abv primitive. Every rsm-output event is
immediately preceded by an abv-delivered order message, which is the same for all correct
processes due to agreement of abv. Since all correct processes react to it deterministically,
their outputs are the same.

For the correctness property, note that the outputs (si, ri) (state and response) resulting
from an operation o must have been confirmed by the protocol and therefore the values were
included in an approve message from at least one correct process. This process computed
the values such that they satisfy (si, ri) = execute(si−1, o) according to the protocol for
handling an execute message. On the other hand, no correct process outputs anything for
committed operations that were aborted, this is permitted by the exception in the theorem
statement. Moreover, only operations are filtered out for which distinct correct processes
computed diverging outputs, as ensured by the sieve-leader when it determines whether the
operation is confirmed or aborted. In order to abort, no set of f + 1 processes must have
computed the same outputs among the 2f + 1 processes sending the approve messages.
Hence, at least two among every set of f + 1 correct processes arrived at diverging outputs.

Termination is only required for deterministic operations, they must terminate despite
faulty processes that approve wrong outputs. The protocol ensures this through the condition
that at least f + 1 among the 2f + 1 approve messages received by the sieve-leader are
equal. The faulty processes, of which there are at most f , cannot cause an abort through
this. But every order message is eventually abv-delivered and every confirmed operation is
eventually executed and generates an output.

Discussion. Non-deterministic operations have not often been discussed in the context of
BFT systems. The literature commonly assumes that deterministic behavior can be imposed
on an application or postulates to change the application code for isolating non-determinism.
In practice, however, it is often not possible.

CVIT 2016

23:12 Non-determinism in BFT Replication

Liskov [27] sketches an approach to deal with non-determinism in PBFT which is similar
to Sieve in the sense that it treats the application code modularly and uses execute-then-
order. This proposal is restricted to the particular structure of PBFT, however, and does
not consider the notion of external validity for abv broadcast.

For applications on multi-core servers, the Eve system [25] also executes operation groups
speculatively across processes and detects diverging states during a subsequent verification
stage. In case of divergence, the processes must roll back the operations. The approach taken
in Eve resembles that of Sieve, but there are notable differences. Specifically, the primary
application of Eve continues to assume deterministic operations, and non-determinism may
only result from concurrency during parallel execution of requests. Furthermore, this work
uses a particular agreement protocol based on PBFT and not a generic abv broadcast
primitive.

It should be noted that Sieve not only works with Byzantine atomic broadcast in the
model of eventual synchrony, but can equally well be run over randomized Byzantine
consensus [7, 30].

4 Master-slave protocol

By adopting the master-slave model one can support a broader range of non-deterministic
application behavior compared to the modular protocol. This design generally requires
source-code access and modifications to the program implementing the functionality. In a
master-slave protocol for non-deterministic execution, one process is designated as master.
The master executes every operation first and records all non-deterministic choices. All other
processes act as slaves and follow the same choices. To cope with a potentially Byzantine
master, the slaves must be given means to verify that the choices made by the master are
plausible. The master-slave solution presented here follows primary-backup replication [3],
which is well-known to handle non-deterministic operations. For instance, if the application
accesses a pseudorandom number generator, only the master obtains the random bits from
the generator and the slaves adopt the bits chosen by the master. This protocol does not work
for functionalities involving cryptography, however, where master-slave replication typically
falls short of achieving the desired goals. Instead a cryptographically secure protocol should
be used; they are the subject of Section 5.

Non-deterministic execution with evidence. As introduced in Section 3, the execute
operation of a non-deterministic state machine is a relation. Different output values are
possible and represent acceptable outcomes. We augment the output of an operation execution
by adding evidence for justifying the resulting state and response. The slave processes may
then replay the choices of the master and accept its output.

More formally, we now extend execute to nondet-execute as follows:

nondet-execute(s, o) → (s′, r, ρ).

Its parameters s, o, s′, and r are the same as for execute; additionally, the function also
outputs evidence ρ. Evidence enables the slave processes to execute the operation by
themselves and obtain the same output as the master, or perhaps only to validate the output
generated by another execution. For this task there is a function

verify-execution(s, o, s′, r, ρ) → {False,True}

Christian Cachin, Simon Schubert, and Marko Vukolić 23:13

that outputs True if and only if the set of possible outputs from nondet-execute(s, o)
contains (s′, r, ρ). For completeness we require that for every s and o, when (s′, r, ρ) ←
nondet-execute(s, o), it always holds verify-execute(s, o, s′, r, ρ) = True.

As a basic verification method, a slave could rerun the computation of the master.
Extensions to use cryptographic verifiable computation [36] are possible. Note that we
consider randomized algorithms to be a special case of non-deterministic ones. The evidence
for executing a randomized algorithm might simply consist of the random coin flips made
during the execution.

Replication protocol. Implementing a replicated state machine with non-deterministic
operations using master-slave replication does not require an extra round of messages to
be exchanged, as in Protocol Sieve. It suffices that the master is chosen by a Byzantine
epoch-change abstraction and that the master broadcasts every operation together with the
corresponding evidence.

More precisely, the processes operate on top of an underlying broadcast primitive abv
and a Byzantine epoch-change abstraction Ψ. Whenever a process receives a start-epoch
event with itself as leader from Ψ, the process considers itself to be the master for the epoch
and abv-broadcasts a message that announces itself as the master for the epoch. The epochs
evolve analogously to the configurations in Sieve, with the same mechanism to approve
changes of the master in the validation predicate of atomic broadcast. Similarly, non-master
processes send their operations to the master of the current epoch for ordering and execution.

For every invoked operation o, the master computes (s′, r, ρ)← nondet-execute(s, o) and
abv-broadcasts an order message containing the current epoch c and parameters o, s′, r,
and ρ. The validation predicate of atomic broadcast for order messages verifies that the
message concerns the current epoch and that verify-execution(s, o, s′, r, ρ) = True using the
current state s of the process. Once an order message is abv-delivered, a process adopts
the response and output state from the message as its own.

Discussion. The master-slave protocol is inspired by primary-backup replication [3], and
for the concrete scenario of a BFT system, it was first described by Castro, Rodrigues,
and Liskov in BASE [11]. The protocol of BASE addresses only the particular context of
PBFT, however, and not a generic atomic broadcast primitive. As mentioned before, the
master-slave protocol requires changes to the application for extracting the evidence that
will convince the slave processes that choices made by the master are valid.

5 Cryptographically secure protocols

Security functions implemented with cryptography are more important today than ever.
Replicating an application that involves a cryptographic secret, however, requires a careful
consideration of the attack model. If the BFT system should tolerate that f processes become
faulty in arbitrary ways, it must be assumed that their secrets leak to the adversary against
whom the cryptographic scheme is employed.

Service-level secret keys must be protected and should never leak to an individual process.
Two solutions have been explored to address this issue. One could delegate this responsibility
to a third party, such as a centralized service or a secure hardware module at every process.
However, this contradicts the main motivation behind replication: to eliminate central control
points. Alternatively one may use distributed cryptography [16], share the keys among the
processes so that no coalition of up to f among them learns anything, and perform the

CVIT 2016

23:14 Non-determinism in BFT Replication

cryptographic operations under distributed control. This model was pioneered by Reiter and
Birman [32] and exploited, for instance, by SINTRA [4, 8] or COCA [37].

In this section we introduce a novel protocol, called Mastercrypt, for integrating non-de-
terministic cryptographic operations in a BFT system, based on the master-slave paradigm
and using verifiable random functions to generate pseudorandom bits. This randomness
is unpredictable and cannot be biased by a Byzantine process. In the full version [9] we
furthermore review a protocol based on the well-known idea of using distributed cryptography,
as discussed above. Both schemes adopt the master-slave replication protocol from the
previous section.

Randomness from verifiable random functions. A verifiable random function (VRF) [29]
resembles a pseudorandom function but additionally permits anyone to verify non-interactively
that the choice of random bits occurred correctly. The function therefore guarantees correct-
ness for its output without disclosing anything about the secret seed, in a way similar to
non-interactive zero-knowledge proofs of correctness.

Efficient implementations of VRFs have not been easy to find, but the literature nowadays
contains a number of reasonable constructions under broadly accepted hardness assump-
tions [28, 23]. In practice, when adopting the random-oracle model, VRFs can immediately
be obtained from unique signatures such as ordinary RSA signatures [28].

Protocol Mastercrypt: Replication with cryptographic randomness from a VRF. With
master-slave replication, cryptographically strong randomness secure against faulty non-
leader processes can be obtained from a VRF as follows. Initially every process generates
a VRF-seed and a verification key. Then it passes the verification key to a trusted entity,
which distributes the n verification keys to all processes consistently, ensuring that all correct
processes use the same list of verification keys. At every place where the application needs
to generate (pseudo-)randomness, the VRF is used by the master to produce the random
bits and all processes verify that the bits are unique. Details of this protocol can be found in
the full version [9].

6 Conclusion

This paper has introduced a distinction between three models for dealing with non-de-
terministic operations in BFT replication: modular where the application is a black box;
master-slave that needs internal access to the application; and cryptographically secure
handling of non-deterministic randomness generation. In the past, dedicated BFT replication
systems have often argued for using the master-slave model, but we have learned in the
context of blockchain applications that changes of the code and understanding an application’s
logic can be difficult. Hence, our novel Protocol Sieve provides a modular solution that does
not require any manual intervention. For a BFT-based blockchain platform, Sieve can simply
be run without incurring large overhead as a defense against non-determinism, which may
be hidden in smart contracts.

Acknowledgments

We thank our colleagues and the members of the IBM Blockchain development team for
interesting discussions and valuable comments, in particular Elli Androulaki, Konstantinos
Christidis, Angelo De Caro, Chet Murthy, Binh Nguyen, and Michael Osborne.

Christian Cachin, Simon Schubert, and Marko Vukolić 23:15

This work was supported in part by the European Union’s Horizon 2020 Framework
Programme under grant agreement number 643964 (SUPERCLOUD) and in part by the
Swiss State Secretariat for Education, Research and Innovation (SERI) under contract
number 15.0091.

References
1 J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. SoK:

Research perspectives and challenges for Bitcoin and cryptocurrencies. In Proc. 36th IEEE
Symposium on Security & Privacy, pages 104–121, 2015.

2 T. C. Bressoud and F. B. Schneider. Hypervisor-based fault-tolerance. ACM Transactions
on Computer Systems, 14(1):80–107, Feb. 1996.

3 N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The primary-backup approach.
In Distributed Systems (2nd Ed.). ACM Press & Addison-Wesley, New York, 1993.

4 C. Cachin. Distributing trust on the Internet. In Proc. International Conference on De-
pendable Systems and Networks (DSN-DCCS), pages 183–192, 2001.

5 C. Cachin, editor. Distributed Cryptocurrencies and Consensus Ledgers (DCCL 2016),
Online proceedings of workshop co-located with PODC, 2016. https://www.zurich.ibm.
com/dccl/.

6 C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Distributed
Programming (Second Edition). Springer, 2011.

7 C. Cachin, K. Kursawe, F. Petzold, and V. Shoup. Secure and efficient asynchronous broad-
cast protocols (extended abstract). In Advances in Cryptology: CRYPTO 2001, volume 2139
of Lecture Notes in Computer Science, pages 524–541. Springer, 2001.

8 C. Cachin and J. A. Poritz. Secure intrusion-tolerant replication on the Internet. In Proc.
International Conference on Dependable Systems and Networks (DSN-DCCS), pages 167–
176, June 2002.

9 C. Cachin, S. Schubert, and M. Vukolić. Non-determinism in Byzantine fault-tolerant
replication. e-print, arXiv:1603.07351 [cs.DC], 2016. URL: http://arxiv.org/abs/1603.
07351.

10 M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems, 20(4):398–461, Nov. 2002.

11 M. Castro, R. Rodrigues, and B. Liskov. BASE: Using abstraction to improve fault toler-
ance. ACM Transactions on Computer Systems, 21(3):236–269, 2003.

12 T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.

13 B. Charron-Bost, F. Pedone, and A. Schiper, editors. Replication: Theory and Practice,
volume 5959 of Lecture Notes in Computer Science. Springer, 2010.

14 A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche. UpRight
cluster services. In Proc. 22nd ACM Symposium on Operating Systems Principles (SOSP),
pages 277–290, 2009.

15 K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena,
E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer. On scaling decentralized blockchains. In
Proc. 3rd Workshop on Bitcoin and Blockchain Research, 2016.

16 Y. Desmedt. Threshold cryptography. European Transactions on Telecommunications,
5(4):449–457, 1994.

17 A. Doudou, B. Garbinato, R. Guerraoui, and A. Schiper. Muteness failure detectors: Spe-
cification and implementation. In Proc. 3rd European Dependable Computing Conference
(EDCC-3), volume 1667 of Lecture Notes in Computer Science, pages 71–87. Springer, 1999.

CVIT 2016

https://www.zurich.ibm.com/dccl/
https://www.zurich.ibm.com/dccl/
http://arxiv.org/abs/1603.07351
http://arxiv.org/abs/1603.07351

23:16 Non-determinism in BFT Replication

18 S. Duan and H. Zhang. Practical confidential state machine replication: How to process
data privately in the cloud. In Proc. 35th Symposium on Reliable Distributed Systems
(SRDS), 2016.

19 C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM, 35(2):288–323, 1988.

20 M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, Apr. 1985.

21 Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang. Rex: Replication at the
speed of multi-core. In Proc. 9th European Conference on Computer Systems (EuroSys),
2014.

22 V. Hadzilacos and S. Toueg. Fault-tolerant broadcasts and related problems. In Distributed
Systems. ACM Press & Addison-Wesley, New York, 1993.

23 T. Jager. Verifiable random functions from weaker assumptions. In Proc. 12th Theory of
Cryptography Conference (TCC 2015), volume 9015 of Lecture Notes in Computer Science,
pages 121–143. Springer, 2015.

24 R. Kapitza, M. Schunter, C. Cachin, K. Stengel, and T. Distler. Storyboard: Optimistic de-
terministic multithreading. In Proc. 6th Workshop on Hot Topics in System Dependability,
2010.

25 M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin. All about Eve:
Execute-verify replication for multi-core servers. In Proc. 10th Symp. Operating Systems
Design and Implementation (OSDI), 2012.

26 R. Kotla and M. Dahlin. High throughput Byzantine fault tolerance. In Proc. International
Conference on Dependable Systems and Networks (DSN-DCCS), pages 575–584, June 2004.

27 B. Liskov. From viewstamped replication to Byzantine fault tolerance. In Replication:
Theory and Practice, volume 5959 of Lecture Notes in Computer Science, pages 121–149.
Springer, 2010.

28 A. Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH
separation. In Advances in Cryptology: CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 597–612. Springer, 2002.

29 S. Micali, M. Rabin, and S. Vadhan. Verifiable random functions. In Proc. 40th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 120–130, 1999.

30 A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song. The honey badger of BFT protocols.
In Proc. ACM Conference on Computer and Communications Security (CCS), 2016.

31 M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.
Journal of the ACM, 27(2):228–234, Apr. 1980.

32 M. K. Reiter and K. P. Birman. How to securely replicate services. ACM Transactions on
Programming Languages and Systems, 16(3):986–1009, May 1994.

33 F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A
tutorial. ACM Computing Surveys, 22(4):299–319, Dec. 1990.

34 T. Swanson. Consensus-as-a-service: A brief report on the emergence of permissioned,
distributed ledger systems. Report, Apr. 2015. URL: http://www.ofnumbers.com/
wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf.

35 M. Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication.
In Open Problems in Network Security, Proc. IFIP WG 11.4 Workshop (iNetSec 2015),
volume 9591 of Lecture Notes in Computer Science, pages 112–125. Springer, 2016.

36 M. Walfish and A. J. Blumberg. Verifying computations without reexecuting them. Com-
munications of the ACM, 58(2), Feb. 2015.

37 L. Zhou, F. B. Schneider, and R. van Renesse. COCA: A secure distributed online certific-
ation authority. ACM Transactions on Computer Systems, 20(4):329–368, 2002.

http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf
http://www.ofnumbers.com/wp-content/uploads/2015/04/Permissioned-distributed-ledgers.pdf

	Introduction
	Contributions
	Related work
	Organization

	Definitions
	System model
	Broadcast and state-machine replication
	Leader election

	Modular protocol
	Master-slave protocol
	Cryptographically secure protocols
	Conclusion

