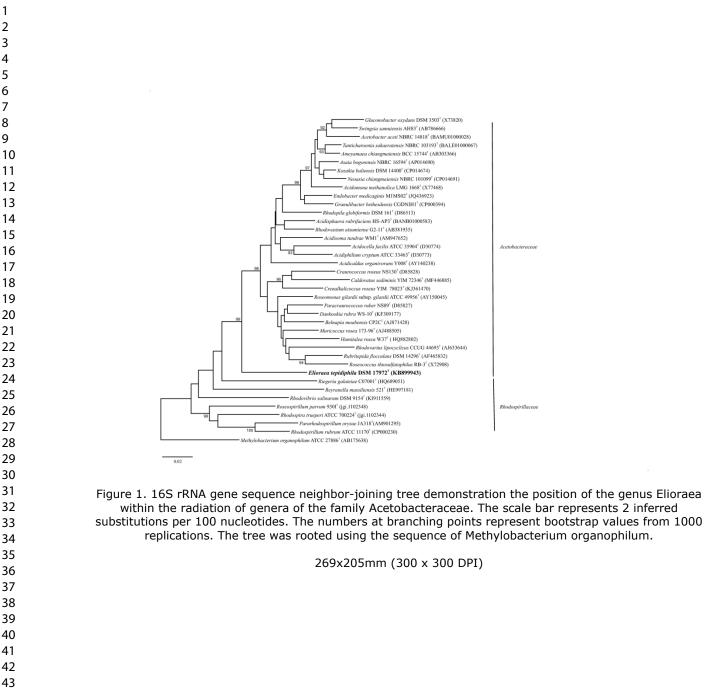
WILEY

BERGEY'S MANUAL OF SYSTEMATICS OF ARCHAEA AND BACTERIA


Elioraea

Journal:	Bergey's Manual of Systematics of Archaea and Bacteria
Manuscript ID	gbm01458.R1
Wiley - Manuscript type:	Genus Paper
Date Submitted by the Author:	n/a
Complete List of Authors:	da Costa, Milton; Center for Neuroscience and Cell Biology, University of Coimbra, Biotechnology Albuquerque, Luciana; Center for Neuroscience and Cell Biology, University of Coimbra, Biotechnology Rainey, Fred; University of Alaska Anchorage, Biological Sciences Froufe, Hugo; Biocant, Next Generation Sequencing Unit Roxo, Inês; Center for Neuroscience and Cell Biology, University of Coimbra, Biotechnology Raposo, Pedro; Center for Neuroscience and Cell Biology, University of Coimbra, Biotechnology Egas, Conceição; Center for Neuroscience and Cell Biology, University of Coimbra, Biotechnology
Keywords:	Alphaproteobacteria, Rhodospirillales, Acetobacteraceae, Slightly thermophilic, Slightly alkaliphilic

hilus RB-3T (X72908)

Acetobacteraceae

1	Proteobacteria / Alphaproteobacteria / Rhodospirillales / Acetobacteraceae
2	
3	Elioraea
4	
5	Albuquerque, Rainey, Nobre and da Costa 2008, 776 ^{VP}
6	
7	Milton S. da Costa, Center for Neuroscience and Cell Biology, University of Coimbra,
8	Coimbra, Portugal
9	Luciana Albuquerque, Center for Neuroscience and Cell Biology, University of Coimbra,
10	Coimbra, Portugal
11	Fred A. Rainey, Department of Biological Sciences, University of Alaska Anchorage,
12	Anchorage, AK, USA
13	Hugo J. C. Froufe, Next Generation Sequencing Unit, Biocant, BiocantPark, Cantanhede,
14	Portugal
15	Inês Roxo, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra,
16	Portugal
17	Pedro Raposo, Center for Neuroscience and Cell Biology, University of Coimbra,
18	Coimbra, Portugal
19	Conceição Egas, Center for Neuroscience and Cell Biology, University of Coimbra,
20	Coimbra, Portugal and Next Generation Sequencing Unit, Biocant, BiocantPark,
21	Cantanhede, Portugal
22	
23	E.li.o'ra.e.a. N.L. fem. n. <i>Elioraea</i> , named in honour of Israeli microbiologist Eliora Z.
24	Ron.
25	

26 Abstract:

Rod-shaped cells, 0.5–1.0 µm in width and 1.0–1.5 µm in length. Motile by one polar flagellum. Endospores are not observed. Stain Gram-negative. Colonies are non-pigmented. Slightly thermophilic and slightly alkaliphilic. Strictly aerobic. Cytochrome c oxidase and catalase positive. Facultatively mixotrophic. Thiosulfate is oxidized to sulfate with the enhancement of growth. Organic acids, proline and glutamine are used as carbon and energy sources; sugars and polyols are not used for growth. Bacteriochlorophyll a and puf genes are not present. Major respiratory quinone is ubiquinone 10. Major polar lipids are phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and two unidentified aminolipids. Major fatty acids are straight chain saturated and unsaturated fatty acids including hydroxy derivatives. 16S rRNA gene sequence affiliates this genus to family Acetobacteraceae. Isolated from a hydrothermal area.

DNA G+C content (mol %): 70.9 (HPLC).

Type species: *Elioraea tepidiphila* Albuquerque, Rainey, Nobre and da Costa 2008,
 776^{VP}

43 Keywords: Alphaproteobacteria, Rhodospirillales, Acetobacteraceae, slightly
44 thermophilic, slightly alkaliphilic.

Rod-shaped cells, 0.5–1.0 µm in width and 1.0–1.5 µm in length. Motile by one polar
flagellum. Endospores are not observed. Stain Gram-negative. Colonies are
nonpigmented. Slightly thermophilic and slightly alkaliphilic. Strictly aerobic.
Cytochrome c oxidase and catalase positive. Facultatively mixotrophic. Thiosulfate is
oxidized to sulfate with the enhancement of growth. Organic acids, proline and

51	glutamine are used as carbon and energy sources; sugars and polyols are not used for
52	growth. Bacteriochlorophyll a and puf genes are not present. Major respiratory quinone
53	is ubiquinone 10 . Major polar lipids are phosphatidylcholine,
54	phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and two
55	unidentified aminolipids. Major fatty acids are straight chain saturated and
56	unsaturated fatty acids including hydroxy derivatives. 16S rRNA gene sequence
57	affiliates this genus to family Acetobacteraceae. Isolated from a hydrothermal area.
58	<i>DNA G+C content (mol %)</i> : 70.9 (HPLC).
59	Type species: Elioraea tepidiphila Albuquerque, Rainey, Nobre and da Costa 2008,
60	776 ^{VP}
61	Number of species with validated names: 1.
62	Family classification: Acetobacteraceae (fbm00174).
63	
64	Further descriptive information
65	
66	Phylogeny
67	16S rRNA gene sequence analysis shows the genus <i>Elioraea</i> to fall within the radiation
68	of the order <i>Rhodospirillales</i> (obm00073) and results of bootstrap analysis demonstrate a
69	strong affiliation with the cluster of taxa comprising the family Acetobacteraceae (Fig 1).
70	Pairwise similarity values to the type species of genera of the family <i>Acetobacteraceae</i>
71	are in the range 90-91% supporting the distinct lineage status of the species <i>Elioraea</i>
72	tepidiphila.
73	
74	Cell morphology and colony characteristics

Elioraea tepidiphila forms rod-shaped cells 0.5–1.0 µm in width by 1.0–1.5 µm in length
that are motile by one polar flagellum. The organism produces translucent non-pigmented
colonies. Carotenoid pigments were not detected in extracts under any experimental
conditions.

80 Nutrition and growth conditions

This slightly thermophilic species has an optimum growth temperature of about 45–50°C and the temperature range for growth is between 30°C and 52.5°C. With the exception of Rubritepida flocullans (Alarico et al., 2002), Caldovatus sediminis (Habib et al., 2017) and Acidicaldus organivorus (Johnson et al., 2006), other closely related genera have lower optimum growth temperatures. The optimum pH for growth of the type strain of E. *tepidiphila* is in the range of pH 8.0–8.5, but does not grow below pH 6.0 or above pH 9.5 making the organism also slightly alkaliphilic. Growth occurs in *Thermus* medium, Degryse medium 162 and R3A medium, however, the growth rate increases in R3A medium to which starch and glucose have not been added. Yeast extract is necessary for growth in minimal medium (Albuquerque et al., 2008).

Elioraea tepidiphila was unable to grow on any of the carbohydrates and polyols
examined, but this organism assimilates the majority of the organic acids tested, proline
and glutamine.

95 Metabolism and metabolic pathways

96 Cytochrome c oxidase and catalase are present. The organism reduces nitrate to nitrite
97 but anaerobic growth with nitrate as the electron acceptor was not observed. The addition
98 of thiosulfate to modified medium 27 lacking magnesium sulfate, vitamin B12 solution,
99 L-cysteinium chloride and resazurin, and containing yeast extract, succinate and acetate

(http://www.dsmz.de/microorganisms/medium/pdf/DSMZ Medium27.pdf) led to an increase in the biomass of *E. tepidiphila* indicating that thiosulfate was used as an energy source in the presence of organic substrates. The determination of the levels of sulfate and thiosulfate in the medium during growth indicated that thiosulfate was completely oxidized to sulfate. Autotrophic growth with H₂ thiosulfate, tetrathionate, sulfite, sulfide as well as photoautotrophic growth with thiosulfate and sulfite was not observed. E. tepidiphila appears to be mixotrophic in the presence thiosulfate and organic carbon sources. Bacteriochlorophyll a is not detected in E. tepidiphila under aerobic or anaerobic growth conditions and the presence of *pufL* and *pufM* genes were are not observed. The genome sequence indicates that E. tepidiphila has genes for the metabolism of glucose through the Embden-Meyerhof-Parnas pathway, namely a putative hexokinase (EC 2.7.1.2) as well as phosphofructokinase (EC 2.7.1.11). However, this organism does not grow on sugars as single carbon sources, but the organism degrades starch assessed by iodine clearing on starch plates. Starch degradation was also predicted by the identification of a 1,4- α -glucan branching enzyme (EC 2.4.1.18) and α -amylase (EC 3.2.1.1) that can convert starch to maltose. However, ABC or PTS transport systems for sugars, including maltose, could not found in the genome. The organism possesses all genes for gluconeogenesis. One of the core enzymes of the Entner-Doudoroff pathway, namely 6-phosphogluconolactonase (EC 3.1.1.31) leading to the synthesis of 6-phosphogluconate is not encountered in the genome, thus precluding the use of this pathway for the catabolism of hexoses. The tricarboxylic acid cycle (Krebs cycle) is complete. Oxidative phosphorylation proceeds via NADH dehydrogenase, succinate dehydrogenase, cytochrome c oxidase cbb3 and an F-type ATPase. This organism lacks soxA and soxX, so that the oxidation of thiosulfate to sulfate proceeds via thiosulfate sulfurtransferase (EC 2.8.1.1) to sulfite and then to sulfate via sulfite oxidase (EC 1.8.3.1)

 or sulfite dehydrogenase (EC 1.8.2.1) to sulfate corroborating the phenotypic results
which indicate that the organism is mixotrophic. Nitrate reduction to nitrite is confirmed
by genome parameters that predict a nitrate transporter (NRT) as well as the nitrate
reductase NarGHI (EC 1.7.5.1).

130 Polar lipids, respiratory lipoquinones and fatty acids

Phosphatidylcholine, phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and two unidentified aminolipids dominate among the polar lipids of *E. tepidiphila* on thin-layer chromatography. Ubiquinone 10 is the major respiratory quinone, which along with ubiquinone 9 is the most common quinone in the family Acetobacteraceae. The fatty acid composition of E. tepidiphila was dominated by $C_{18:1}$ $\omega 7c$, C_{18:0}, C_{19:0} cyclo $\omega 8c$ and a rare fatty acid with an equivalent chain length (ECL) of 20.195, tentatively identified as $C_{19:0}$ 2-OH cyclo $\omega 8$ ($\Delta 11:12$) (Table 1) (Alarico et al.,

138 2002; Albuquerque et al., 2008).

140 Ecology and habitats

This bacterium has only been isolated from a geothermal spring in the Furnas area of the Island of S. Miguel in the Azores with a temperature of 70°C and a pH of 7.5. An isolate of *Truepera radiovictrix*, strain TU-8, that is also slightly thermophilic and alkaliphilic was recovered from the same hot spring, but belongs to the phylum "Deinococcus-Thermus" (pbm00012) (Albuquerque et al., 2005), Two isolates of Tepidicella xavieri, TU-16^T and TU-18 that are also slightly thermophilic but belong to the class Betaproteobacteria (cbm00042) (França et al., 2006) were also recovered from the same site. Uncultured environmental clones closely related to the type strain of E. tepidiphila and showing 99% pairwise similarity have been recovered from a drilling fluid in China

(AY820713) (Zhang et al., 2005), activated sludge (EF648061) and soil contaminated with chromium in Mexico (KR779695). There are two additional sequences showing 97% 16S RNA gene sequence similarity and representing sequences recovered from thermal environments in China (KM221313) and USA (MH555907). The clone MH555907 was proposed as a *Candidatus* species of the genus *Elioraea* (Tank et al., 2017). **Genome features** A draft genome under the accession number NZ ARKI01000000 has been produced by DOE Joint Genome Institute that clarifies and extends many of the phenotypic characteristics of *E. tepidiphila*. The genome is 4,304 kb with a G+C of 71.3% (70.9% by HPLC). The organism possesses one 5S, one 16S and one 23S rRNA gene. **Enrichment and isolation procedures** Water samples were filtered through membrane filters (Gelman type GN-6; pore size 0.45 um; diameter 47 mm). These filters were placed on the surface of *Thermus* medium agar

until colonies appeared on the filters. Later it was observed that the organism had a highergrowth rate in R3A medium to which starch and glucose were not added.

plates (Albuquerque and da Costa 2014), wrapped in plastic bags and incubated at 50°C

168Thermusmedium169(https://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium1033.pdf)contains170(per liter of water) 1 g yeast extract (Difco), 1 g tryptone (Difco), 100 ml of a171macroelements solution (10x concentrated), 10 ml of a trace elements solution (100x172concentrated) and 10 ml of 0.17 mM FeCl₃.6H₂O, pH adjusted to 8.2 before autoclaving.173The 10x concentrated macroelements solution contains per liter of water: 1 g174nitrilotriacetic acid, 0.6 g CaSO4 2H2O, 1 g MgSO4.7H2O, 0.08 g NaCl, 1.03 g KNO3

John Wiley & Sons

6.89 g NaNO₃, 1.11 g Na₂HPO₄. The 100x concentrated trace elements solution contains per liter of water: 0.22 g MnSO₄.H₂O, 0.05 g ZnSO₄7H₂O, 0.05 g H₃BO₃, 0.0025 g CuSO₄5H₂O, 0.0025 g Na₂MoO₄2H₂O, 0.0046 g CoCl₂6H₂O (Albuquerque and da Costa 2014; Castenholz 1969; Williams and da Costa, 1992). Degryse medium 162 contains (per liter of water) 2.5 g yeast extract (Difco), 2.5 g tryptone (Difco), 100 ml of a macroelements solution (10x concentrated), 5 ml of a trace elements solution (100x concentrated) (identical to the trace elements of Thermus medium), 15 ml of 0.2 M Na₂HPO₄.12H₂O, 10 ml of 0.2 M KH₂PO₄ and 0.5 ml of 0.01 M ferric citrate, pH adjusted to 7.5 before autoclaving. The 10x concentrated macroelements solution contained per liter of water: 1 g nitrilotriacetic acid, 0.4 g CaSO₄.2H₂O and 2 g MgCl₂.6H₂O (Degryse et al., 1978, Kristjánsson et al., 1986; Williams and da Costa, 1992). The concentration of Na₂HPO₄.12H₂O and KH₂PO₄ has been reduced in this medium because the growth of some isolates was inhibited by the level of phosphate described in the original composition (Degryse et al., 1978). All

concentrated solutions of the both media can be stored at 4°C. A minimal medium derived
from Degryse medium 162 can be used to assess assimilation of organic compounds by
replacing tryptone by ammonium sulfate (0.5 g/l) and decreasing the amount of yeast
extract to 0.1 g/l.

Modified R3A medium contains (per liter of water) 1.0 g yeast extract (Difco), 1.0 g
protease peptone No.3 (Difco), 1.0 g casamino acids (Difco), 0.6 g sodium pyruvate, 0.6
g KH₂PO₄ and 0.1 g MgSO₄.7H₂O (Reasoner and Geldreich, 1985).

197 Maintenance procedures

Strains of *E. tepidiphila* do not require special procedures for maintenance and long-term
storage. Generally, the organisms are maintained on R3A medium without starch and

glucose at 4°C for a few days and can be stored frozen at -70°C in R3A medium without
starch and glucose, in *Thermus* or Degryse medium 162 containing 15% glycerol without
loss of viability for several years. Long-term preservation is by freeze drying or storage
in liquid nitrogen.

- **Taxonomic comments**

The species *E. tepidiphila* is not closely related to any other known alphaproteobacterium, The closest relatives show less than 91% 16S rRNA gene sequence similarity placing this organism at the base of the family Acetobacteraceae, a position supported by a 99% bootstrap value. As a new strain and species of this genus are isolated a novel family designation for the genus *Elioraea* may be appropriate. The very rare fatty acid C_{19:0} 2-OH cyclo $\omega 8$ ($\Delta 11$:12) could also indicate that this organism belongs to a novel family, nevertheless the species *Rubritepida* flocculans, which belongs to the family Acetobacteraceae also possesses this fatty acid and thus, it cannot be used as a diagnostic characteristic of a putative new family (Alarico et al., 2002). Elioraea tepidiphila has been assigned to the family Acetobacteraceae that comprises a very large number of species with diverse phenotypic characteristics. A few species, such as *Caldovatus* sediminis (Habib et al., 2017), Acidicaldus organivorus (Johnson et al., 2006) and Rubritepida flocculans (Alarico et al., 2002) are slightly thermophilic like E. tepidiphila, but all other species in this family are mesophilic. Moreover, these slightly thermophilic organisms utilize sugars for growth. Many species of this family possess bacteriochlorophyll a and puf genes, but many other species such as E. tepidiphila do not. Elioreae tepidiphila can be distinguished from all other closely related species by the inability to grow on sugars, the limited ability to grow on amino acids (glutamine and proline) and the ability to grow at elevated temperatures.

2 3 4	225	
5 6 7	226	Characteristics of the species of the genus <i>Elioraea</i>
7 8 9	227	
10 11	228	Elioraea tepidiphila
12 13	229	Albuquerque, Rainey, Nobre and da Costa 2008, 776 ^{VP}
14 15 16	230	te.pi.di.phi'la. L. adj. tepidus, warm; G. adj. philos, loving; N. L. fem. adj. tepidiphila, an
17 18	231	organism loving warmth.
19 20	232	Forms short rod-shaped cells about 0.5–1.0 μ m in width and 1.0–1.5 μ m in length.
21 22 23	233	The cells stain Gram-negative and are motile by one polar flagellum. Endospores are not
23 24 25	234	formed. Colonies on Thermus medium, Degryse medium 162 and R3A medium are
26 27	235	nonpigmented. Carotenoid pigments were not detected. The optimum growth temperature
28 29	236	is about 45–50°C; growth occurred in the range of 30–50°C; the optimum pH is between
30 31 32	237	8.0 and 8.5; the pH range for growth is 6.0–9.5. Optimum growth occurs without added
33 34	238	NaCl; growth occurs in media with NaCl up to 1.5% (w/v). Aerobic with a strictly
35 36	239	respiratory type of metabolism. Facultatively mixotrophic. Autotrophic growth with H ₂ ,
37 38 39	240	thiosulfate, tetrathionate, sulfite and sulfide were not observed. Phototrophic growth
40 41	241	growth with thiosulfate and sulfide were not observed. Bacteriochlorophyll a is not
42 43	242	present; <i>pufL</i> and <i>pufM</i> genes are not detected. Thiosulfate is oxidized to sulfate. Nitrate
44 45 46	243	is reduced to nitrite. Cytochrome c oxidase and catalase positive. DNAse positive.
47 48	244	Alkaline phosphatase, esterase (C 4), esterase lipase (C 8), leucine arylamidase, valine
49 50	245	arylamidase, acid phosphatase and naphthol-AS-BI-phosphohydrolase test positive in
51 52	246	API ZYM; other activities are negative. Starch, xylan and hippurate are hydrolyzed.
53 54 55	247	Gelatin, casein, aesculin, arbutin and elastin are not hydrolyzed. Yeast extract is necessary
56 57	248	for growth. DL-lactate, α -ketoglutarate, pyruvate, succinate, malate, citrate, fumarate, L-
58 59 60	249	glutamate, D-gluconate, L-proline and L-glutamine are assimilated; D-glucose, D-

250	fructose, D-galactose, D-mannose, L-rhamnose, L-fucose, L-sorbose, D-ribose, D-
251	xylose, D-arabinose, L-arabinose, sucrose, maltose, lactose, D-cellobiose, D-trehalose,
252	D-raffinose, D-melibiose, D-melezitose, glycerol, ribitol, xylitol, sorbitol, D-mannitol,
253	myo-inositol, L-erythritol, acetate, formate, D-glucoronate, aspartate, L-alanine, L-
254	asparagine, glycine, L-histidine, L-lysine, L-arginine, L-serine, L-valine, L-
255	phenylalanine, L-leucine, L-isoleucine, L-ornithine, L-methionine, L-threonine and L-
256	cysteine are not used as carbon and energy sources. Acid is produced from the following
257	substrates using the API 50CH system: D-ribose, D-fructose, L-sorbose, D-tagatose and
258	potassium 5-ketogluconate. Major respiratory quinone is ubiquinone 10 (U-10). Major
259	polar lipids are phosphatidylcholine (PC), phosphatidylethanolamine (PE),
260	diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and two unidentified
261	aminolipids. The major fatty acids are $C_{18:0}$, $C_{18:1}$, $\omega7c$, $C_{19:0}$ 2-OH cyclo $\omega8$ ($\Delta11:12$) and
262	$C_{19:0}$ cyclo $\omega 8c$. This bacterium was isolated from a hot spring in the Furnas geothermal
263	area in the Island of São Miguel, Portugal.
264	Source: Hydrothermal water.
265	DNA G+G content (mol %): 70.9 (HPLC).
266	DNA G+G content (mol %): 71.3 (Genome).
267	<i>Type strain</i> : TU-7, DSM 17972, CIP 109115.
268	GenBank/EMBL/DDBJ/SILVA SSU accession number (16S rRNA gene): EF519867.
269	GenBank/EMBL/DDBJ/SILVA SSU accession number (genome):
270	NZ_ARKI01000000.
271	
272	Acknowledgements
273	This research was supported by the European Union's Horizon 2020 Research and
274	Innovation programme under Metafluidics Grant Agreement No 685474. This work was

•

2		
3	275	also supported by FEDER funds through the Operational Programme Competitiveness
4 5		
6	276	Factors - COMPETE 2020 and national funds by FCT - Foundation for Science and
7 8	277	Technology under the strategic project UID/NEU/04539/2013.
9		
10 11	278	
12	270	Deferences
13	279	References
14 15	280	
16	200	
17 18	281	Alarico S, Rainey FA, Empadinhas N, Schumann P, Nobre MF, & da Costa MS (2002)
19	202	De buiter i de fla condense com nove en nove el chette theme en bilie member of the set
20 21	282	<i>Rubritepida flocculans</i> gen. nov., sp. nov., a new slightly thermophilic member of the α -1
21	283	subclass of the Proteobacteria. Syst Appl Microbiol 25: 198–206.
23	205	Suberuss of the Proteobucier M. Syst Appl Microbiol 20. 196 200.
24 25	284	
26		
27	285	Albuquerque L & da Costa MS (2014) Family Thermaceae In The Prokaryotes-Other
28	200	Main Linearen of Brotonia and The Andrea Ath ed. E Desembers EE Del ens S Lema
29 30	286	Major Lineages of Bacteria and The Archaea, 4th ed., E Rosenberg, EF DeLong, S Lory,
31	287	E Stackebrandt, & F Thompson (eds). Springer-Verlag Berlin Heidelberg; pp 955–987.
32 33		
33 34	288	
35		
36	289	Albuquerque L, Rainey FA, Nobre MF, & da Costa MS (2008) Elioraea tepidiphila gen.
37 38	200	now on now a dightly thermanhilis member of the Unhamister hastoria but I Sust Fuel
39	290	nov., sp. nov., a slightly thermophilic member of the Alphaproteobacteria. Int J Syst Evol
40	291	<i>Microbiol</i> 58 : 773–778.
41 42	201	
43	292	
44		
45	293	Albuquerque L, Simões C, Nobre MF, Pino NM, Battista JR, Silva MT et al. (2005)
46 47	204	Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the
48	294	Truepera radioviciria gen. nov., sp. nov., a new radiation resistant species and the
49	295	proposal of <i>Trueperaceae</i> fam. nov. <i>FEMS Microbiol Lett</i> 247 : 161–169.
50 51		
52	296	
53	•••	
54 55	297	Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment.
56	298	<i>Bacteriol Rev</i> 33 : 476–504.
57	200	
58 59	299	
60		

Degryse E, Glansdorff N, & Pierard A (1978) A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch Microbiol 117: 189-196. França L, Rainey FR, Nobre MF, & da Costa MS (2006) Tepidicella xavieri gen. nov., sp. nov., a betaproteobacterium isolated from a hot spring runoff. Int J Syst Evol *Microbiol* **56**: 907–912. Habib N, Khan IU, Hussain F, Zhou EM, Xiao M, Ahmed I, Zhi XY, & Li WJ (2017) Caldovatus sediminis gen. nov., sp. nov., a moderately thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 67: 4716–4721. Johnson DB, Stallwood B, Kimura S, Hallberg KB (2006) Isolation and characterization of Acidicaldus organivorus, gen. nov., sp. nov.: a novel sulfur-oxidizing, ferric iron-

313 reducing thermo-acidophilic heterotrophic Proteobacterium. *Arch Microbiol* **185**: 212–

314 221.

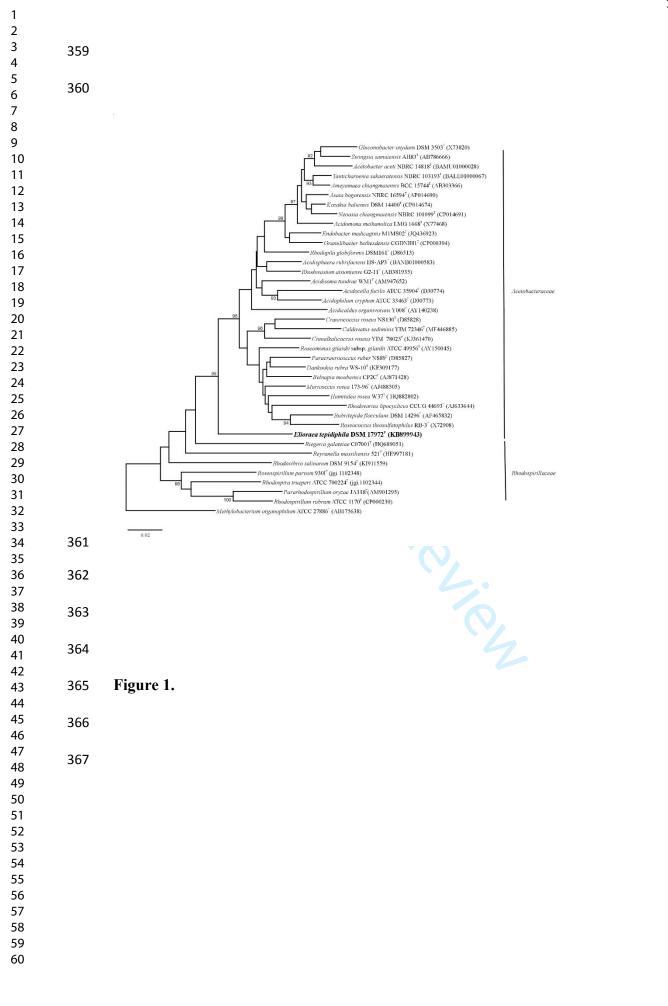
Kristjánsson JK, Hreggvidsson GO, & Alfredsson GA (1986) Isolation of halotolerant *Thermus scotoductus* spp. from submarine hot springs in Iceland. *Appl Environ Microbiol*52: 1313–1316.

Reasoner DJ & Geldreich EE (1985) A new medium for the enumeration and subculture
of bacteria from potable water. *Appl Environ Microbiol* 49: 1–7.

1		
2 3 4	323	Tank M, Thiel V, Ward DM & Bryant DA (2017) Panoply of phototrophs: An overview
5 6	324	of the thermophilic chlorophototrophs of the microbial mats of alkaline siliceous hot
7 8	325	springs in Yellowstone National Park, WY, USA. In Modern Topics in The Phototrophic
9 10 11	326	Prokaryotes. P Hallenbeck (ed.), Springer, Cham; pp 87-137.
12 13	327	
14 15	328	Williams RAD & da Costa MS (1992) The genus Thermus and related microorganisms.
16 17	329	In The Prokaryotes, 2nd ed., A Balows, HG Trüper, M Dworkin, W Harder, & KH
18 19 20	330	Schleifer (eds). Springer, New York; pp 3745–3753.
21 22	331	
23 24 25 26 27	332	Zhang G, Dong H, Xu Z, Zhao D, & Zhang C (2005) Microbial diversity in ultra-high-
	333	pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in
28 29	334	China. Appl Environ Microbiol 71: 3213–3227.
30 31		
32 33		
34 35		
36 37		
38 39		
40		
41 42		
43		
44 45		
46		
47		
48 49		
50		
51		

TABLE 1. Fatty acid composition of *Elioraea tepidiphila*, strain TU-7^T, grown on modified R3A medium agar plates at 50°C for 48 h

Fatty acids	ECL	Elioraea tepidiphilaª	
		TU-7 ^T	
Unknown 14.960	14.960	0.8 ± 0.1	
C _{16:0}	16.000	5.4 ± 0.2	
C _{16:0} 2-OH	17.048	1.9 ± 0.1	
$C_{18:1} \omega 7c$	17.823	19.0 ± 0.5	
Unknown 17.893	17.893	2.5 ± 0.1	
C _{18:0}	18.000	24.8 ± 0.2	
$C_{18:1} \omega 7c$ 11-methyl	18.081	8.0 ± 0.1	
$C_{19:0}$ cyclo $\omega 8c$	18.902	12.4 ± 0.6	
С _{18:0} 2-ОН	19.089	0.6 ± 0.1	
Unknown 19.343	19.343	1.2 ± 0.1	
C _{18:0} 3-OH	19.550	3.8 ± 0.1	
C _{19:0} 2-OH cyclo ω8 (Δ11:12)	20.195	18.6 ± 0.1	


Results are the percentage of the total fatty acids; \pm , results are the mean plus the standard

deviation of two to four analyses; values for fatty acids present at less than 0.5% are not shown.

ECL, equivalent chain length.

342 ^aAlbuquerque et al. (2008).

1		
2 3 4	347	
5 6	348	
7 8	349	Figure 1. 16S rRNA gene sequence neighbor-joining tree demonstration the position of
9 10 11	350	the genus Elioraea within the radiation of genera of the family Acetobacteraceae. The
12 13	351	scale bar represents 2 inferred substitutions per 100 nucleotides. The numbers at
14 15 16	352	branching points represent bootstrap values from 1000 replications. The tree was rooted
16 17 18	353	using the sequence of Methylobacterium organophilum.
19 20	354	
21 22	355	
23 24 25	356	
26 27	357	
28 29	358	
30 31 32		
33 34		
35 36		
37 38		
39 40 41		
41 42 43		
44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58		
59 60		

