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Supporting Information Text11

Control experiments and fit parameters. As expected for dilute systems, the curves for all determined correlation functions can12

be superimposed for volume fractions φ below the glass transition. This requires that the density correlators Fs(q, t) for several13

values of q are plotted versus log(∆tq2) and the orientational correlators Ln(t) are plotted against log(∆tn2)) (Fig. S1).14
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Fig. S1. Superposition of the correlation functions. For packing densities below the glass transition, the values obtained
for the density correlator Fs(q, t) at different values of q can be superimposed if they are plotted versus log(∆tq2) (A). The
four depicted wavevectors lie in the range 5.18 < q · 2b < 7.90. Superposition is also possible when the orientational correlators
Ln(t) are plotted against log(∆tn2) (B) for φ < φc. Here, correlators for n = 2 and 4 are shown.

The data on the systems’s dynamics shown in the main text were measured several times for each volume fraction. A15

combination of all the measured data is shown in Fig. S2A,B, where we plotted the mean squared displacement (MSD) 〈∆r2〉16

and the mean squared angular displacement (MSAD) 〈∆θ2〉 for all measurements. Since the data nicely collapse onto one17

curve for each φ, for clarity plots containing just single curves are shown in the main text. To evaluate the homogeneity of18

the particle movements along the axes parallel 〈∆r2〉|| and perpendicular 〈∆r2〉⊥ to the orientation axis of an ellipsoid, we19

separately analyzed the respective MSDs (Fig. S2C,D). From fits to the data, we obtained short time diffusion coefficients D||20

and D⊥. As expected, particles tend to move faster along the orientation axis than perpendicular to it as is shown in the plot21

D||/D⊥. While these ratios slightly increase with φ and have a maximum in the liquid glass state at φ = 0.55, they hardly22

deviate from the values expected for a freely diffusing ellipsoidal particle indicated by the dashed line in Fig. S2E ((1)).23

As described in the main text, we fitted the obtained correlation functions to the Kohlrausch-function (Eq. 4). Only curves24

which showed a clear decay within the measured time window were fitted; representative examples are shown in Fig. 3C,D. Fit25

parameters are collected in Table 1.26

27

φ 0.05 0.2 0.4 0.46 0.55

translation (q = 3.2µm−1) 0.95774 0.88347 0.81916 0.62496 0.39930
rotation (n = 4) 0.77396 0.74768 0.53068 0.33530

Kohlrausch β parameter for the fits shown in Fig. 3 B and D. The amplitudes fΦ were set to unity to reduce the number of fit parameters.
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Fig. S2. Experimental data showing the mean squared displacement (MSD) 〈∆r2〉 (A) and mean squared
angular displacement (MSAD) 〈∆θ2〉 (B) for all measured samples (grey lines). Very good coincidence is found
for subsequent measurements at the same φ. Therefore only one measurement for each φ is shown in the main text which
appears to be a good representative (colored lines). The dotted line indicates the slope m = 1 which shows the free diffusive
behaviour. Additional calculation of the mean squared displacement perpendicular 〈∆r2〉⊥ (C) and parallel 〈∆r2〉|| (D) to the
orientation axis of an ellipsoid from the experiments. (E) The ratio of the obtained diffusion coefficients, the vertical dashed
line illustrates the value for a free particle derived in Ref. (1).

Details on the simulation results. Fig. S3 shows the correlation functions, Fs(q, t), L2(t), L4(t) and the order parameter S for28

the systems with periodic boundary conditions. Similar to De Michele et al. (2), the isotropic-nematic threshold was set to29

S = 0.3, hence the nematic transition is at φ ≈ 0.49. For nematic systems, Fs(q, t) monotonically decreases to 0 without30

significant stretching, while L2(t) tends to form a plateau that corresponds to the orientational ordering. We verified the31

formation of a nematic state in these systems by calculating the plateau height of L2(t) and the final value of S2 (3),32

lim
t→∞

L2(t) = S2 [S1]33

For the nematic systems obtained in the simulations, the final values of L2(t) are close to the S2 values despite the finite34

time and finite size of the box.35

Fig. S4 shows Fs(q, t), L2(t), L4(t) and S for the systems with rough walls. In this figure, the characteristic plateau36

formation for glasses can be observed. Unlike the systems with periodic boundary conditions (Fig. S3), the corresponding |S|37

values for the systems with rough walls are all below 0.3. Plateaus are clearly observed starting at φ = 0.55. The L2(t) plateau38

value is ≈ 0.8 and Eq. (S1) is no longer obeyed. Instead, the plateau values are used for the von Schweidler fits for glassy39

systems as discussed in the main text.40

Slm(q) is an orientation-dependent structure factor that can be used to analyze the correlation of the orientations of the41

ellipsoids. It is defined as42

Slm(q) = 1
N
〈ρ∗lm(q)ρlm(q)〉, [S2]43
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Fig. S3. Data from BD simulations with periodic boundary conditions for Fs(q, t) (A), L2(t) (B) and S (C)
where the plateau formation is attributed to nematic ordering starting at φ = 0.49. Figure legend of part A also
applies to B,C. Additional data for Fs(q, t) (D) and L4(t) (E)
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Fig. S4. Data from MD simulations with rough walls for Fs(q, t) (A), L2(t) (B), L4(t) (C) and S (D). The
plateau formation for high packing fractions is attributed to glass formation at φ ≈ 0.56. Figure legend of part
B also applies to C and D.
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with the microscopic density defined as44

ρlm(q) =
√

4πil
N∑

j=1

eiq·rjYlm(Ωj), [S3]45

where Ylm(Ω) is the spherical harmonic function for Euler angles Ω(θ, φ). Note that we only consider the diagonal terms of the46

orientation-dependent structure factor. The results for l = 2,m = 0 in the simulations (using periodic boundary conditions)47

are shown in Fig. S5. The transition to a nematic phase in the simulations is reflected in S20 in two ways. First, for small48

q-vectors, S20 increases as φ increases, signaling the formation of long-range order that is limited to the size of the simulation49

box. Second, the neighbor peak of S20 starts to become more visible and shifts to the right as φ increases. That is, the favored50

alignment of neighboring ellipsoids is such that their axes of symmetry (a) are parallel to each other.51
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Fig. S5. Simulation counterpart of Fig. 5F of the main text. Calculated S20(q) shows the nematic transition for
φ > 0.46, indicated by the right shift of the first peak.

Mode coupling theory. We argue that the region of liquid glass in phase space is bounded by two glass transitions at fixed52

aspect ratio, providing the basis for our MCT glass stability analysis in the main text and extending the previous MCT53

calculations (4); there the possibility of a glass-to-glass transition was not explored.54

The transition of a fluid of hard ellipsoids to a liquid glass was found by MCT in a fully microscopic calculation. It was55

shown to be driven by long-range nematic correlations which arise close to the equilibrium isotropic-nematic transition (see56

Fig. 5F recording these correlations in the samples). The transition line meets another line of fluid to glass transitions, which57

extends to the MCT hard sphere transition for aspect ratio approaching unity. It is driven by an increase of liquid short range58

structure seen in S(q) (’cage effect’; see Fig. 1D). As MCT glass transitions are fold bifurcations in a nonlinear algebraic59

system, transition lines do not stop when they meet but rather intersect generically. A schematic model shows that the latter60

transition line extends into the glassy region above the transition to the liquid glass. There it gives a line of liquid glass to61

glass transitions which is in agreement with the experimental observations.62

Starting point is the model by Bosse and Krieger (5) (BK). It describes the generic coupling of two degrees of freedom63

in the case of a single (discontinuous or generic (6)) glass transition. Their correlators Φ1(t) and Φ2(t) shall correspond to64

Ln(t) and Fs(q, t), respectively. The Φi(t) obey Zwanzig-Mori equations with memory kernels mi(t) (for i = 1, 2) given as a65

general quadratic form. The slowing-down of the correlators’ relaxation arises from the feedback in the retarded friction kernels66

modeled by m1(t) = v1Φ1(t)2 + v2Φ2(t)2 and mBK
2 (t) = v3Φ1(t)Φ2(t). We generalize the model by including a parameter w67

modeling the coupling of the second dynamical mode to itself; viz. m2(t) = v3Φ1(t)Φ2(t) + wΦ2(t)2. This allows for a second68

generic glass transition. The two glass transitions of the model will correspond to the B and B′ transitions introduced by69

Letz et al. (4). The parameters v1 and v2 encode the increasing orientational friction arising due to slow orientational and70

translational motion, respectively. Thus v1 should correlate with the aspect ratio and v2 with the density. The cross-coupling71

term v3 parametrizes the translational friction arising from rotation-translation coupling, while w captures the feedback within72

the translational motion only. The glass parameters fi = Φi(t→∞) obey the equations fi/(1− fi) = mi(t→∞), where glass73

transitions appear as bifurcations. Since the model lacks a quadratic coupling of the first mode into the second kernel, it74

contains a type B′ transition at v1 = 4 and v2 small enough, where f1 jumps from zero to a finite value, while Φ2(t) remains75

fluid like. For parameter sets with a second transition from fluid to glass, which is continuous in the BK-model (w = 0) and76

discontinuous for w > 1, the schematic model shows that this B line cannot terminate at the intersection with the B′-line.77

Rather, it continues into the glass region, so that there exist two different glass states separated by a line of glass-to-glass78

transitions. Fig. S6 gives the pertinent states diagram of the model. Choosing an overdamped dynamics with initial time-scale79

τ0 in both correlators (see Eq. (4.34), p. 203 of Ref. (6)), typical correlation functions for the fluid (blue), liquid glass (orange),80

and glass (green) state are depicted in Fig. S6 as well. In liquid glass states, Φ1(t) arrests at a finite plateau while Φ2(t) decays81

to zero.82
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Fig. S6 Schematic MCT model capturing the generic glass transition scenario of two modes: The left panel
shows the states diagram at fixed v3 = 0.7 and w = 3, where two discontinuous bifurcations exist. They separate fluid (f1 = 0,
f2 = 0, blue) from liquid glass (f1 > 0, f2 = 0, orange) and glass (f1 > 0, f2 > 0, green) states. Parameters v1 and v2 mimick
aspect ratio and density. The other panels show the correlators: The middle panels shows Φ1(t) modeling orientational motion
(viz. Ln(t)), and the right panel Φ2(t) modeling translational motion (viz. Fs(q, t)); the overdamped MCT equations of motion
are solved for the points marked by stars in the states diagram (precise values are v1 = 3.7, 4.1, 4.5 at v2 = 0.5).
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