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400MHz nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis techniques were used in the context of
food surveillance to measure 328 honey samples with 1H and 13C NMR. Using principal component analysis (PCA), clusters of
honeys from the same botanical origin were observed.The chemical shifts of the principal monosaccharides (glucose and fructose)
were found to be mostly responsible for this differentiation. Furthermore, soft independent modeling of class analogy (SIMCA)
and partial least squares discriminant analysis (PLS-DA) could be used to automatically classify spectra according to their botanical
origin with 95–100% accuracy. Direct quantification of 13 compounds (carbohydrates, aldehydes, aliphatic and aromatic acids) was
additionally possible using external calibration curves and applying TSP as internal standard. Hence, NMR spectroscopy combined
with chemometrics is an efficient tool for simultaneous identification of botanical origin and quantification of selected constituents
of honeys.

1. Introduction

Honey is a natural, sweet, and syrupy fluid collected by bees
from nectar of flowers [1]. The taste and aroma of this liquid
vary according to its floral origin, geographical and seasonal
conditions [1]. The large number of melliferous sources gives
therefore the opportunity to produce many characteristical
unifloral and a high number of polyfloral nectar honeys.

Each honey is unique on the basis of chemistry, amount,
and combination of the various components that give each
honey a unique and individual organoleptic character. The
control and characterization of quality and botanical origin of
unifloral honeys are of great importance and interest in api-
culture. Today the most important techniques to determine
or certify the unifloral origin of honeys are the melissopa-
lynological analysis and the evaluation of organoleptic char-
acteristics [2]. Current quality assessment of honey by these

methods are time-consuming and often operator dependent.
Moreover, some types of adulterations (e.g., the addition of
sugar concentrate to honey) can hardly be detected with such
methods [3].

Various novel, fast, and accurate chromatographic meth-
ods such as high-performance liquid chromatography
(HPLC) [4–7], gas chromatography (GC) [8–10], liquid chro-
matography with electrochemical detector [11], and matrix-
assisted-laser-desorption/ionization-time-of-flight-mass-spec-
trometry (MALDI TOFMS) [12, 13] have been used to obtain
the chemical composition and detect possible adulteration of
honey. Vibration spectroscopic methods such as FT-Raman
[14, 15], NIR [16–18], and FT-IR [19–21] could be additionally
used as a screening technique for checking the honey au-
thenticity and for quantifying its major compounds.

Apart from these analytical methods, the application
of multivariate data analysis and, in particular, principal
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Figure 1: 1H NMR spectra of Tilia (a), Robinia pseudoacacia (b), and fir (c) honeys. The inserts show expansions of the spectral regions 𝛿
2.5–1.0 ppm and 𝛿 9.0–5.5 ppm.

component analysis (PCA) [9, 22], canonical variate analysis
(CLA) [8, 23], partial least squares (PLS) regression [17,
24, 25], principal component regression (PCR) [17], linear
discriminant analysis (LDA) [22], and soft independent
modeling class analogy (SIMCA) [25] proved to be extremely
useful for grouping and detecting honey from different
origins. Besides these multivariate methods, modern sensor
techniques such as electronic nose (e-nose) and electronic
tongue (e-tongue) were successfully applied to classify honey
samples according to their floral origin [3].

Nuclear magnetic resonance (NMR) spectroscopy has
been also used to assess the botanical origin of honey and
quantify some major compounds in it [26–30]. It was shown
that NMR has a good potential to become a useful quality
control tool in the analysis of honey samples. However, the
number of floral honey types and the total number of inves-
tigated samples have been insufficient to construct a good
discrimination model for routine analysis. Targeted quanti-
tative NMR analysis was limited to major carbohydrates and
amino acids [27, 31]. Therefore, this paper further advances

the investigation of a combined NMR spectroscopy (1H and
13C NMR) and chemometric data analysis approach to dis-
tinguish the botanical origin of honey. We also explored the
potential of high-resolution 1H NMR to allow the identifi-
cation and the quantification of 13 selected components in
honeys.

2. Experimental

2.1. Samples and Chemicals. A total of 328 samples from
different botanical origins were analyzed using NMR. The
samples were randomly selected by governmental food
inspectors from Baden-Württemberg, Germany, from honey
bottling plants, supermarkets and directly by bee keepers.
The following reference standards were used in proanalysis
quality: hydroxymethylfurfural (HMF), fumaric acid, citric
acid, malic acid, erlose, melibiose, xylitol, oxalic acid (anhy-
drous), D-glucuronic acid, DL-lactic acid (Sigma Aldrich,
Steinheim,Germany); formic acid, phthalic acid, and glucose,
L(+)-tartaric acid, fructose, D(+)-galactose, maltose, and
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Figure 2: Scatter plot of the PCA scores of floral and honeydew honeys obtained from 1H NMR (9–0.25 ppm; no scaling (a)) and 13C NMR
(200–0.25 ppm; scaling to unit variance (b)).
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Figure 3: Scatter plot of the PCA scores of different types of unifloral honeys obtained from 1H NMR (9–0.25 ppm; Pareto scaling (a)) and
13C NMR (200–0.25 ppm; no scaling (b)).

saccharose, barbituric acid (Merck, Darmstadt, Germany);
L(+)-rhamnose, arabinose, maltotriose, D(+)-turanose,
D(+)-mannose, D(+)-xylose, D(+)-trehalosedihydrate,
D(+)-melezitose monohydrate, D(+)-raffinosepentahydrate,
malonic acid, pyruvic acid, and DL-proline (Fluka, Buchs,
Switzerland); gluconic acid (calcium salt), and succinic acid
(Carl Roth, Karlsruhe, Germany). The NMR buffer was
prepared by dissolving 10.21 g of KH

2
PO
4
and 9.75mg of

sodiumazide in 50mLof purewater and then by adjusting the
pH to 4.5 with H

3
PO
4
or KOH.

2.2. Sample Preparation and Calibration. The water content
was obtained for each honey before NMR measurement
using the German reference refractometric method [32].
The equivalent of 200mg water-free honey (about 240mg)
was weighted and combined with 300𝜇L of NMR buffer



4 ISRN Analytical Chemistry

Maltose

25000

Sucrose
D(+)-galactose
D(+)-xylose

20000

15000

10000

5000

0

4 3.9 3.8 3.7 3.6 3.5 3.4
(ppm)

In
te

ns
ity

 (a
.u

.)

Figure 4: NMR spectra of maltose, sucrose, D(+)-galactose, and
D(+)-xylose standards in the mid-field region.

(see above), 700𝜇L of distilled water and 100 𝜇L of an internal
standard (D

2
O containing 0.1% of TSP (sodium salt of

3(trimethylsilyl)-propionate acid-d4)). Stock solutions were
prepared by mixing of about 20mg of a pure substance in
300 𝜇L of NMR buffer, 700𝜇L of distilled water, and 100 𝜇L
of an internal standard. For neutralization of organic acids, 1-
2𝜇L of 1MNaOHwere added to solutions because the buffer
capacity of our NMR buffer was not otherwise sufficient to
maintain a constant pH of 4.5 for these standard solutions.
By diluting the stock solutions, several calibration standards
were further prepared. 600 𝜇L of the final solution were
poured into an NMR tube for direct measurement. For quan-
tification, linear calibration curves were constructed from
the standards by integrating the specific resonances for each
compound against TSP as an intensity reference.

2.3. 1H and 13C NMR Measurements at 400MHz. All NMR
measurements were performed on a Bruker Avance 400
Ultrashield spectrometer (Bruker BioSpin, Rheinstetten,Ger-
many) equipped with a 5mm SEI probe with Z-gradient
coils, using a Bruker Automatic Sample Changer (B-ACS
120). 1H NMR spectra were acquired at 300.0 K without
sample rotation. 64 scans and 4 prior dummy scans of 65 k
points were acquired with a spectral width of 19.9914 ppm, a
receiver gain of 22.6, and an acquisition time of 4.096 s.Water
suppression was achieved using the NOESY-presaturation
pulse sequence (Bruker 1D noesygppr1d pulse sequence)
with irradiation at the water frequency (1890.60Hz) during
the recycle and mixing time delays. 13C NMR spectra were
acquired using a Bruker zgpg30 pulse sequence with 1024
scans and 4 prior dummy scans. The sweep width was
238.9 ppm, the time domain of the FID was 66 k, receiver
gain of 2050, and an acquisition time of 1.38 s. The data were
acquired automatically under the control of ICON-NMR
(Bruker BioSpin, Rheinstetten, Germany), requiring about
91min per sample (for both 1H and 13C NMR). All NMR

spectrawere phased, baseline-corrected, and calibrated by the
TSP signal at 0.0 ppm.

2.4. NMR Spectra Preprocessing and Chemometrics. Mul-
tivariate data analysis was performed using Unscrambler
X version 10.0.1 (CAMO Software AS, Oslo, Norway) and
Amix version 3.9.4 (Bruker BioSpin, Rheinstetten, Germany).
First, to cope with small variations in pH or other sample
conditions such as ionic strength or temperature, simple
rectangular bucket tables were obtained from the complete
sets of 1Hand 13CNMR spectra. In both cases, scaling to total
intensity was used. Further details on the bucketing process
of NMR spectra formultivariate data analysis were previously
described [33]. Before multivariate analysis, all data were
mean centered. In the context of this study, principal compo-
nent analysis (PCA) was used for visualization and as a tool
for a differentiation between different honey types. During
PCA, several new axes instead of old variables (buckets)
called principal components (PC) are calculated and each
NMR spectrum is projected on the selected PCs resulting in
the scatter plot.We tested several spectral regions for calcula-
tion: 𝛿 0–3 ppm, 𝛿 3–6 ppm, 𝛿 6–10 ppm, and 𝛿 0–10 ppm for
1HNMRand 𝛿 0–45 ppm, 𝛿 45–135 ppm, 𝛿 135–200 ppm, and
𝛿 0–200 ppm for 13C NMR. In cases when the whole spectral
range was used, two preprocessing methods (scaling to unit
variance and Pareto scaling) [34] as well as no scaling were
tested for each data set in order to eliminate the magnitude
effect of intensity variations in the 𝛿 0–3 ppm and 𝛿 6–
10 ppm regions. The bucket width was 0.01 ppm in all cases.
The technique of cross-validation was applied to determine
the optimal number of principal components (PCs) required
to obtain robust models. Kruskal-Wallis one-way analysis of
variance, Shapiro-Wilk test, and Welch’s t-test methods were
used to analyze loadings plots in order to find out the most
important buckets for differentiation. After the construction
of the models to evaluate the classification performance, soft
independent modeling of class analogy (SIMCA) and partial
least squares-discriminant analysis (PLS-DA) classification
methods were tested on randomly chosen test-set samples
that were not included in the classification models.

3. Results and Discussion

3.1. Nontargeted Multivariate Analysis. Figure 1 shows the
complete 1H NMR spectra of tilia (or linden), Robinia
pseudoacacia (or acacia), and fir honeys. It can be seen that
the mid-low-frequency region between 𝛿 4.2 and 3.0 ppm
is dominated with very intensive signals of the major
monosaccharides (glucose and fructose) and disaccharides
(maltose and sucrose). Other less intensive resonances are
also observed in the 𝛿 9.0–6.0 ppm and 𝛿 2.5–1.0 ppm regions
in 1HNMR spectra of honey.The 13CNMR spectra of honey
investigated in our study were similar to those obtained
previously in D

2
O [35]. Most of the 13C NMR signals were

related to anomeric carbons of reducing and nonreducing
sugars and were present in the 𝛿 105–60 ppm region in the
majority of samples. Due to the high spectral complexity,
differences between honey types cannot be obtained without
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Figure 5: 400MHz 1H NMR spectra of fructose (a) and formic acid (b) in standard solutions and honey samples.

multivariate techniques. In general, the NMR spectra of our
honey samples could be classified into two major groups:
polyfloral samples (with floral and honeydew (forest flower
honeys) as subgroups) and unifloral honeys (such as rape,
tilia, chestnut, and others).

ThePCA score plots generated using PC3-PC4 (1HNMR)
and PC1-PC3 (13C NMR) to visualize the separation of
the polyfloral honeys are shown in Figure 2, which clearly
suggests that the samples can be separated into two groups:
honeydew honeys clusters are in the region of positive PC3
(1H NMR) and negative PC1 (13C NMR), respectively; floral
honey samples are located in the negative values of PC3 (1H
NMR) and positive PC1 (13C NMR) values. Furthermore,
Figure 3 suggests that we could not only differentiate the two
main polyfloral classes of honey but clusters from several
unifloral honeys were also clearly separated from each other.
It should be noted that the 13CNMRspectra provided inferior
discrimination power as 1H NMR spectra. For example, the
PCA scores of rape and sunflower honeys or tilia, sunflower
and Robinia pseudoacacia honeys were mixed in the same
cluster (Figure 3(b)). With 1H NMR spectra even minor
differences in botanical composition can be traced (e.g., rape
and rape/clover honeys are occurring in two separate clus-
ters). On both scatter plots, honey samples from coniferous
(spruce, fir, and pine trees) were clearly distinguished from
the other honey types.

Loadings plots allow to specify the variables (chemical
shifts), which are responsible for the observed clustering
for both data sets (1H and 13C NMR). Table 1 lists the
most important buckets (signals) for different honey types
obtained from the loadings plots. It was found that the signals
of glucose and fructose play the key factor for differentiation,
and this finding is in accordance with another NMR study of

honeys [35]. However, resonances of minor compounds also
play a certain role such as quinoline alkaloids and kynurenic
acid for chestnut honey [36, 37] or unsaturated carboxylic
acids for tilia honey [37]. Therefore, the 1HNMR honey pro-
file can be used for the identification of chemical markers of
different botanical origin.

Next, it is interesting to show the predictive power of the
chemometricmethods by classifying new samples. To do this,
two data analysismethods (SIMCA and PLS-DA)were evalu-
ated for predicting class membership of honey samples from
the 1H NMR spectra. The independent test set for the flo-
ral/honeydew honey model (honeydew) consisted of 20 ran-
domly selected objects (10 floral, 10 honeydew honeys). For
the unifloral honey model, mountain (𝑛 = 2), rape (𝑛 = 3),
coniferous (𝑛 = 2), Robinia pseudoacacia (𝑛 = 3), and
chestnut (𝑛 = 1) honeys were selected for the test data
set. The rest of the available 1H NMR spectra were included
in the calibration data set. All samples from both test sets
were correctly recognized by SIMCA method at the 10%
significance level. A prediction ability of 95% was obtained
by PLS-DA for the honeydew/flower honey model. Thus, our
results have shown that 1H NMR coupled with multivariate
statistics is an efficient tool for the classification of the
different botanical origins of honey samples.

3.2. Quantification Studies. Besides the classification of bo-
tanical origin of honey samples, it would be advantageous to
establish a NMR method for the quantification of main con-
stituents in the honey matrix. As first evaluation, if a quan-
titative approach is at all possible from the NMR spectra, we
measured 34 commercially available compounds that may be
present in honey. Then, the spectra of standards were
compared to the spectra of honey samples. For most of
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Table 1: The most important variables (buckets) for the differentia-
tion of different botanical origins of honey (chemical shifts are given
in ppm).

Botanical origin of honey 1H NMR 13C NMR

Honeydew/floral

1.17–1.20
3.26

3.90–4.12
3.43–3.50
3.57–3.68

101.49
95.85

69.19–76.11
82.01

Coniferous

3.84–3.87
3.61–3.67
3.76–3.77
4.05–4.07
4.20–4.22

5.24

62.84
69.44–69.53
71.49–71.47

Rape

4.64–4.66
3.40–3.46
3.36–3.38
4.05–4.07

75.81–75.88
74.22

69.64–69.74
95.92Clover and rape

7.65–7.95
5.89
5.59

Sunflower 3.25–3.27

Robinia pseudoacacia
3.69
3.75

3.43–3.44 69.24–69.75
63.96–63.97

60.81
67.64
75.89

Tilia

1.38–1.41
1.58–1.60
2.34–2.35
6.10–6.20
7.65–7.66
7.21–7.28

Chestnut

4.32–4.34
5.09

7.68–7.71
7.45–7.49

71.45–71.49
60.58

Mountain honey 3.88–3.91
95.90

60.79–60.80
69.68

Orange tree 8.13
3.88–3.91

62.75
98.08
75.49

Fruit tree flowers 3.44–3.45 —a

aNodistinct cluster was obtained for fruit tree flowerswith 13CNMR spectra.

the substances studied, direct quantification with integration
is not possible due to extensive spectra overlap. As an exam-
ple, the spectra of four carbohydrates are shown in Figure 4.
Clearly, a large number of overlapped signals for all isomeric
forms of sugars exist. Thus, for such compounds more ad-
vanced techniques, such as multivariate regression or curve
deconvolution, are required for quantification. Moreover, the
two main carbohydrates—glucose and fructose—have much
higher peak intensities than other compounds and, therefore,
obscure the rest of the signals.

However, we were able to find 13 metabolites for which
at least one resolved unambiguous resonance could be iden-
tified. Selected 1H NMR peaks (i.e., signals not overlapped

Table 2: NMR integration regions and investigated linear concen-
tration ranges.

Compound NMR range Working range
(mg/kg)

HMF 9.43–9.47 ppm (singlet) 20–600
Formic acid 8.44–8.47 ppm (singlet) 40–1400
Phthalic acid 7.53–7.48 ppm (multiplet) 30–900
Fumaric acid 6.53–6.55 ppm (singlet) 20–670
Pyruvic acid 6.42–6.45 ppm (singlet) 180–5000
L(+)-rhamnose 5.13–5.09 ppm (doublet) 160–2500
Glucose 4.63–4.65 ppm (singlet) 13–43000
Arabinose 4.52–4.54 ppm (singlet) 40–1200
L(+)-tartaric acid 4.32–4.35 (singlet) 90–2600
Fructose 4.14–4.08 (doublet) 11–46000
Malic acid 2.73–2.70 (two singlets) 30–1000
Citric acid 2.69–2.68 (singlet) 40–1300
Succinic acid 2.50–2.52 (singlet) 10–800

or interfered by matrix) corresponding to each substance
are shown in Table 2. The high correlation coefficients (𝑅 >
0.99) obtained for each calibration graph indicate a good
linear response within the concentration range studied for
each compound. As an example, Figure 5 shows the NMR
peaks of the main carbohydrate fructose and formic acid in
authentic honey samples in comparison with two exemplary
reference spectra. We applied the aforementioned procedure
to the identification and direct quantification of the selected
substances in authentic honeys of different floral types (𝑛 =
20) (Table 3). Only in two cases direct quantification of malic
acid was not possible due to spectral interferences.

4. Conclusions

NMRspectroscopy has already been used in honey analysis to
determine its botanical and geographical origin. In the paper
of Lolli et al., 71 Italian honey samples (Robinia, chestnut,
citrus, eucalyptus, and polyfloral) were analyzed by 1H
NMR and heteronuclear multiple bond correlation (HMBC)
spectroscopy [35]. PCA and general discriminant analysis
(GDA) were not able to group samples according to their
botanical origin by using 1HNMR data. Only with the use of
2D 1H-13C HMBC acceptable clustering occurred [35]. In
another article by this research group, HMBC spectroscopy
in combination with GDA was used to detect 10%, 20%, and
40% adulteration of authentic honey by commercial sugar
syrups [38]. 1HNMR spectroscopy and multivariate analysis
techniques have also been used to classify honey into two
geographical groups (non-Corsican and Corsican samples)
[30]. 96.2% correct classification obtained by cross-validation
was obtained for partial least squares-genetic programming
(PLS-GP) algorithm. It should be also noted that the site-
specific natural isotopic fraction NMR (SNIF-NMR) was not
found to be successful for the characterization of geographi-
cal and botanical origins of honey [26]. However, to be used
in practice, it would be necessary to extend the domain of
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Table 3: Results of the quantitative determination of substances by NMR (values are given in g/kg honey).

Sample HMF Formic
acid

Phthalic
acid

Fumaric
acid

Pyruvic
acid

L(+)-
rhamnose Glucose Arabinose

L(+)-
tartaric
acid

Fructose Malic
acid

Citric
acid

Succinic
acid

Manuka honey 0.03 0.15 n.d. n.d. n.d. n.d. 218 0.41 0.31 284 n.d. 0.09 0.03
Flower honey n.d.a 0.05 n.d. n.d. n.d. n.d. 350 0.18 0.31 357 0.2 n.d. 0.01
Sunflower honey 0.05 0.06 n.d. 0.03 n.d. n.d. 348 0.26 0.38 379 0.4 0.49 0.01
Honeydew honey n.d. 0.08 n.d. 0.02 n.d. n.d. 219 0.41 0.58 314 n.d. 0.25 0.17
Chestnut honey 0.06 0.71 n.d. 0.05 n.d. n.d. 215 0.56 0.64 350 n.d. n.d. 0.08
Flower honey n.d. 0.15 n.d. 0.04 n.d. n.d. 271 0.49 0.59 312 0.9 n.d. 0.1
Robinia pseudoacacia
honey 0.06 0.04 n.d. n.d. n.d. 0.23 245 0.29 0.48 381 n.d. 0.17 0.01

Orange honey 0.09 0.06 n.d. n.d. n.d. n.d. 281 0.47 0.61 390 0.25 0.26 0.02
Flower honey n.d. 0.07 n.d. n.d. n.d. 2.6 337 0.26 0.35 358 —b n.d. 0.02
Flower honey
(mountain) 0.02 0.04 n.d. n.d. n.d. n.d. 318 0.17 0.38 366 n.d. 0.1 n.d.

Rape honey 0.01 0.07 n.d. n.d. n.d. n.d. 349 0.27 0.39 379 n.d. n.d. 0.03
Honey from fruit
trees n.d. 0.12 n.d. 0.03 n.d. n.d. 296 0.88 0.44 338 n.d. n.d. 0.04

Flower honey 0.06 0.08 n.d. 0.03 n.d. n.d. 297 0.24 0.46 366 n.d. n.d. 0.03
Flower honey 0.06 0.09 n.d. 0.03 n.d. n.d. 316 0.32 0.47 382 n.d. n.d. 0.07
Chestnut honey n.d. 0.8 n.d. 0.04 n.d. n.d. 241 0.65 0.74 395 n.d. 0.19 0.18
Honeydew honey 0.03 0.11 n.d. 0.04 n.d. n.d. 259 0.52 0.66 352 n.d. 0.28 0.28
Flower honey 0.03 0.11 n.d. n.d. n.d. n.d. 260 0.34 0.54 406 n.d. n.d. 0.03
Eucalyptus honey 0.06 0.1 n.d. n.d. n.d. n.d. 302 1.72 0.45 346 0.28 n.d. 0.06
Flower honey n.d. 0.63 n.d. n.d. 1.45 n.d. 215 0.65 0.59 380 n.d. n.d. 0.05
Flower honey with
jelly Royal 0.03 0.05 n.d. n.d. n.d. n.d. 315 0.4 0.46 368 —b 0.17 0.02
aNot detectable (0.03 g/kg (phthalic acid and malic acid), 0.02 g/kg (HMF and fumaric acid), 0.18 g/kg (pyruvic acid), 0.16 g/kg (L(+)-rhamnose), 0.04 (citric
acid), and 0.01 g/kg (succinic acid)).
bOverlapped signal, direct quantification is not possible.

application of the method for other unifloral honeys and to
expand the database. Our study, which is the largest eval-
uation of honey samples by NMR so far, provides such an
opportunity. We can conclude that our models can be used
as a method to determine and monitor the botanical origin
of honey samples.

With regard to quantification, NMR was only used for
determining several saccharides with 13C NMR [27] or
methylglyoxal and amino acids with 1H NMR [39] in honey
matrices. Clearly, we expanded the range of substances that
can be analyzed with NMR spectroscopy without preceding
separation; 1H NMR is also suitable for quantification of
several aliphatic and aromatic acids as well as aldehydes.

In conclusion, it should be noted that honey is a very
complex matrix endowed with very specific physicochemical
properties. This complexity makes the analysis of honey
difficult in terms of its different properties. Often the deter-
mination of botanical origin is complicated because of the
incomplete correlation between analytical parameters: sen-
sory properties and botanical identity.

Our investigation has shown that 1H NMR spectra
of honeys in combination with appropriate multivariate

statistics can provide qualitative information about the
botanical origin and represent a good basis for the identi-
fication of marker compounds for the specific honey types.
Quantitative information about a number of major com-
ponents is also available from the same spectra without
need for chromatographic separation. In combination with
multivariate data analysis, NMR spectroscopy possesses the
speed, simplicity, and low cost per analysis required for a
screening technique.
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