
Exploring Key-Value Stores in Multi-Writer

Byzantine-Resilient Register Emulations∗

Tiago Oliveira, Ricardo Mendes, and Alysson Bessani
LaSIGE, Faculdade de Ciências, Universidade de Lisboa – Portugal

Abstract

Resilient register emulation is a fundamental technique to implement dependable storage and
distributed systems. In data-centric models, where servers are modeled as fail-prone base objects,
classical solutions achieve resilience by using fault-tolerant quorums of read-write registers or read-
modify-write objects. Recently, this model has attracted renewed interest due to the popularity of
cloud storage providers (e.g., Amazon S3, Google Storage, Microsoft Azure Storage), that can be
modeled as key-value stores (KVSs) and combined for providing secure and dependable multi-cloud
storage services. In this paper we present three novel wait-free multi-writer multi-reader regular
register emulations on top of Byzantine-prone KVSs. We implemented and evaluated these construc-
tions using five existing cloud storage services and show that their performance matches or surpasses
existing data-centric register emulations.

Keywords: Byzantine fault tolerance, register emulation, multi-writer, key-value store, data-centric
algorithms

1 Introduction

Resilient register emulations on top of message passing systems are a cornerstone of fault-tolerant storage
services. These emulations consider the provision of shared objects supporting read and write operations
executed by a set of clients. In the traditional approach, these objects are implemented in a set of
fail-prone servers (or replicas) that run some specific code for the emulation [9, 14,18,21,22,28–30,34].

A less explored approach, dubbed data-centric, does not rely on servers that can run arbitrary code,
but on passive replicas modeled as base objects that provide a constrained interface. These base objects
can be as simple as a network-attached disk, a remote addressable memory, or a queue, or as complex
as a transactional database, or a full-fledged cloud storage service. By combining these fail-prone base
objects, one can build fault-tolerant services for storage, consensus, mutual exclusion, etc, using only
client-side code, leading to arguably simpler and more manageable solutions.

The data-centric model has been discussed since the 90s [24], but the area gained visibility and prac-
tical appeal only with the emergence of network-attached disks technology [20]. In particular, several
theoretical papers tried to establish lower bounds and impossibility results for implementing resilient
read-write registers and consensus objects considering different types of fail-prone base objects (read-
write registers [8, 19] vs. read-modify-write objects [16, 17]) under both crash and Byzantine fault mod-
els [7]. More recently, there has been a renewed interest in data-centric algorithms for the cloud-of-clouds
model [11,33]. In this model, the base objects are cloud services (e.g., Amazon S3, Microsoft Azure Blob
Storage) that offer interfaces similar to read-write registers or key-value stores (KVSs). This approach
ensures that the stored data is available even if a subset of cloud providers is unavailable or corrupts their
copy of the data (events that do occur in practice [27]).

To the best of our knowledge, there are only two existing works for register emulation in the cloud-of-
clouds model: DepSky [11], which tolerates Byzantine faults (e.g., data corruption or cloud misbehavior)
on the providers but supports only a single-writer per data object, and Basescu et al. [10], which genuinely
supports multiple writers, but tolerates only crash faults and does not support erasure codes.

In this paper we present new register emulations on top of cloud storage services that support multiple
concurrent writers (avoiding the need for expensive mutual exclusion algorithms [11]), tolerate Byzantine

∗This is an extended version of a paper with the same title that appeared on Proceedings of the 20th International
Conference On Principles Of DIstributed Systems - OPODIS’16, in December 2016. The main difference here are the
proofs that appear on the appendix.

1

failures in base objects (minimizing the trust assumptions on cloud providers), and integrate erasure
codes (decreasing the storage requirements significantly). In particular, we present three new multi-
writer multi-reader (MWMR) regular register constructions:

1. an optimally-resilient register using full replication;

2. a register construction requiring more base objects, but achieving better storage-efficiency through
the use of erasure codes;

3. another optimally-resilient register emulation that also supports erasure codes, but requires addi-
tional communication steps for writing.

These constructions are wait-free (operations terminate independently of other clients), uniform (they
work with any number of clients), and can be adapted to provide atomic (instead of regular) semantics.

We achieve these results by exploring an often overlooked operation offered by KVSs – list – which
returns the set of stored keys. The basic idea is that by embedding data integrity and authenticity proofs
in the key associated with a written value, it is possible to use the list operation in multiple KVSs to
detect concurrent writers and establish the current value of a register. Although KVSs are equivalent to
registers in terms of synchronization power [13], the existence of the list operation in the interface of the
former is crucial for our algorithms.

Besides the reduction on the storage requirements, an additional benefit of supporting erasure codes
when untrusted cloud providers are considered is that they can be substituted by a secret sharing primitive
(e.g., [25]) or any privacy-aware encoding (e.g., [14, 32]), ensuring confidentiality of the stored data.

The three constructions we propose are described, proved correct, implemented and evaluated using
real clouds (Amazon S3 [1], Microsoft Azure Storage [15], Rackspace Cloud Files [5], Google Storage [3]
and Softlayer Cloud Storage [6]). Our experimental results show that these novel constructions provide
advantages both in terms of latency and storage costs.

2 Related Work

Existing fault-tolerant register emulations can be divided in two main groups depending on the nature
of the fail-prone “storage blocks” that keep the stored data. The first group comprises the works that
rely on servers capable of running part of the protocols [9, 18, 22, 28, 34], i.e., constructions that have
both a client-side and a server-side of the protocol. Typically, in this kind of environment it is easier to
provide robust solutions as servers can execute specific steps of the protocol atomically, independently of
the number of clients accessing it.

In the second group we have the data-centric protocols [7,8,17,19,24]. This approach considers a set
of clients interacting with a set of passive servers with a constrained interface, modeled as shared memory
objects (called base objects). The first work in this area was due to Jayanti, Chandra and Toueg [24],
where the model was defined in terms of fail-prone shared memory objects. This work presented, among
other wait-free emulations [23], a Byzantine fault-tolerant single-writer single-reader (SWSR) safe-register
construction using 5f + 1 base objects to tolerate f faults. Further works tried to establish lower bounds
and impossibility results for emulating registers tolerating different kinds of faults considering different
types of base objects. For example, Aguilera and Gafni [8] and Gafni and Lamport [19] used regular
and/or atomic registers to implement crash-fault-tolerant MW and SW registers,1 respectively, while
Chockler and Malkhi [17] used read-modify-write objects to transform the SW register of Gafni and
Lamport [19] in a ranked register, a fundamental abstraction for implementing consensus. Abraham et
al. [7] provided a Byzantine fault-tolerant SW register, which was latter used as a basis to implement
consensus. The main limitation of these algorithms is that, although they are asymptotically efficient [8],
the number of communication steps is still very large, and the required base objects are sometimes
stronger than KVSs [17] or implement weak termination conditions [7].

More recently, there has been a renewed interest in data-centric algorithms for the cloud-of-clouds
model [10, 11]. Here the base objects are cloud services offering interfaces similar to key-value stores.
These solutions ensure that the stored data is available even if a subset of cloud providers is unavailable
or corrupts their copy of the data. DepSky [11] provided a regular SW register construction that tolerates
Byzantine faults by less than a third of the base objects, ensuring also the confidentiality of the stored
data by using a secret sharing scheme [25]. However, to support multiple writers an expensive lock

1From now on we avoid characterizing the constructions about the number of readers, as all constructions discussed in
the rest of the paper support multiple readers (MR).

2

Table 1: Data-centric resilient register emulations. * Can be extended to achieve atomic semantics.

Work Fault model Technique Base Objects Resilience Semantics

Jayanti et al. [24] Byzantine replication atomic registers 5f + 1 SW safe
Gafni and Lamport [19] crash replication atomic registers 2f + 1 SW regular
Chockler and Malkhi [17] crash replication rmw registers 2f + 1 MW ranked

Abraham et al. [7]
Byzantine replication regular registers 3f + 1 SW regular
Byzantine replication regular registers 3f + 1 SW safe

Aguilera and Gafni [8] crash replication atomic registers 2f + 1 MW atomic

Bessani et al. [11]
Byzantine replication regular registers 3f + 1 SW regular
Byzantine erasure code regular registers 3f + 1 SW regular

Basescu et al. [10] crash replication atomic KVSs 2f + 1 MW regular*

This paper
Byzantine replication atomic KVSs 3f + 1 MW regular*
Byzantine erasure code atomic KVSs 4f + 1 MW regular*
Byzantine erasure code atomic KVSs 3f + 1 MW regular*

protocol must be executed to coordinate concurrent accesses. Another work in this line [10] provided a
regular MW register that replicates the data by a majority of KVSs. Its main purpose was to reduce the
necessary storage requirements. To achieve that, writers remove obsolete data synchronously, creating
the need to store each version in two keys: a temporary key, that could be removed, and an eternal key,
common for all writers and versions, that is never erased. In the best case, the algorithm requires a
storage space of 2× S × n, where S is the size of the data and n is the number of KVSs.

Using registers or KVSs as base objects in the data-centric model makes it more challenging to
implement dependable register emulations, as general replicas have more synchronization power than
such objects [13]. The three new register constructions presented in this paper advance the state of the
art by supporting multiple writers and erasure-coded data in the data-centric Byzantine model, using a
rather weak base object – a KVS. Two of these constructions have optimal resilience, as they require
3f+1 base objects to tolerate f Byzantine faults in an asynchronous system (with confirmable writes) [30].
Table 1 summarizes the discussed data-centric constructions.

3 System Model

3.1 Register Emulation

We consider an asynchronous system composed of a finite set of clients and n cloud storage providers
that provide a KVS interface. We refer to clients as processes and to cloud storage providers as base
objects. Each process has a unique identifier from an infinite set named IDs, while the base objects are
numbered from 0 to n− 1.

We aim to provide MW-register abstractions on top of n base objects. Concretely, a register abstrac-
tion offers an interface specification composed of two operations: write(v) and read(). The sequential
specification of a register requires that a read operation returns the last value written, or ⊥ if no write
has ever been executed. Processes interacting with registers can be either writers or readers.

A process operation starts by an invoke action on the register, and ends with a response. An operation
completes when the process receives the response. An operation o1 precedes another operation o2 (and
o2 follows o1) if it completes before the invocation of o2. Operations with no precedence relation, are
called concurrent.

Unless stated otherwise, the register implementations should be wait-free [23], i.e., the operation
invocations should complete in a finite number of internal steps. Moreover, we provide uniform imple-
mentations, i.e., implementations that do not rely on the number of processes, allowing processes to not
know each other initially.

We provide two register abstraction semantics, regular and atomic, which differ mainly in the way
they deal with concurrent accesses [26]. A regular register guarantees only that different read operations
agree on the order of preceding write operations. Any read operation overlapping a write operation may
return the value being written or the preceding value. An atomic register employs a stronger consistency
notion than regular semantics. It stipulates that it should be possible to place each operation at a singular
point (linearization point) between its invocation and response. This mean that after a read operation
completes, a following read must return at least the version returned in the preceding read, even in the
presence of concurrent writes.

3

c
bo1
bo2
bo3
bo4

list k =	id-ts put	(id-ts+1,	val)
WRITE

(a) WRITE

c
bo1
bo2
bo3
bo4

list k =	id-ts val =	get	(id-ts)
READ

(b) READ

Figure 1: General structure of our MW-regular register emulations.

3.2 Threat Model

Up to f out-of n base objects can be subject to NR-arbitrary failures [24], which are also known as
Byzantine failures. The behavior of such objects can be unrestricted: they may not respond to an
invocation, and if they do, the content of the response may be arbitrary. Unless stated otherwise, readers
may also be subject to Byzantine failures. Writers can only fail by crashing, because even if the protocol
tolerates Byzantine writers, they may always store arbitrary values or overwrite data on the register.
Processes and base objects are said to be correct if they do not fail.

For cryptography, we assume that each writer has a private key Kr to sign some of the information
stored on the base objects. These signatures can be verified by any process in the system through the
corresponding public key Ku. Moreover, we also assume the existence of a collision-resistant cryptographic
hash function to ensure integrity. There might be multiple writer keys as long as readers can access their
public counterparts.

3.3 Key-Value Store Specification

Current cloud storage service providers offer a key-value store (KVS) interface, which act as a passive
server where it is impossible to run any code, forcing the implementations to be data-centric. Specifically,
KVSs allow customers to interact with associative arrays, i.e, with a collection of 〈key, value〉 pairs, where
any key can have only one value associated at a time and there can not be equal keys. Moreover, the
size of stored values are expected to be much larger than the size of the associated keys. We assume
the presence of four operations: (1) put(k, v), (2) get(k), (3) list(), and (4) remove(k). The first
operation associates a key k with the value v, returning ack if successful and ERROR otherwise; the
second retrieves the value associated with a key k, or ERROR if the key does not exist; the third returns
an array with all the keys in the collection, or [] if there are no keys in the collection; and the last
operation disassociates a key k from its value, releasing storage space and the key itself, returning an ack
if successful and ERROR otherwise. Finally, we assume that individual KVS’s operations are atomic and
wait-free.

4 Multi-Writer Constructions

In this section we describe the three MW-regular register implementations. Before discussing the algo-
rithms in detail (§4.3 to §4.6), we present an overview of the general structure of the protocols (§4.1)
and describe the main techniques employed in their construction (§4.2). The correctness proofs of the
protocols are presented in the appendix.

4.1 Overview

Our three MW-regular protocols differ mainly in the storage technique employed (replication or erasure
code), the number of base objects required (3f + 1 or 4f + 1), and the number of sequential base object
accesses (two or three steps). Excluding these differences, the general structure of all protocols is similar
to the one illustrated in Figure 1.

In the write operation, the client first lists a quorum of base objects (KVSs) in order to find the key
encoding the most recent version written in the system, and then puts the value being written associated
with a unique key encoding a new (incremented) version in a quorum. The read operation requires finding

4

the most recent version of the object (as in the first phase of the write operation), and then retrieving
the value associated with that key.

Notice that our approach considers that each written value requires a new key-value pair in the KVSs.
However, it is impossible to implement wait-free data-centric MW-regular register emulations without
using at least one “data element” per written version if the base objects do not provide conditional
update primitives (similar to Compare-and-Swap) [10, 16]. Therefore, any practical implementation of
these algorithms must consider some form of garbage collection, as discussed in §5.2.

4.2 Protocols Mechanisms

Our algorithms use a set of mechanisms that are crucial for achieving Byzantine fault tolerance, MW
semantics and storage efficiency. To simplify the exposition of the algorithms in the following sections
(§4.4 to §4.6), we first describe such mechanisms.

4.2.1 Byzantine Quorum Systems

Our protocols employ dissemination and masking Byzantine quorum systems to tolerate up to f Byzantine
faults [28]. Dissemination quorum systems consider quorums of q = dn+f+1

2 e base objects, requiring thus
a total of n > 3f base objects in the system. This ensures each two quorums intersect in at least f + 1
objects (one correct). Masking quorum systems require quorums of size q = dn+2f+1

2 e and a total of
n > 4f base objects, ensuring thus quorum intersections with at least 2f + 1 base objects (a majority of
correct ones).

4.2.2 Multi-Writer Semantics

We use the list operation of KVSs to design MW uniform implementations. This operation is very
important as it allows us to discover new versions written by unknown clients. With this, the key idea of
our protocols is making each writer to write in its own abstract register in a similar way to what is done
in traditional transformation of SW to MW registers [26]. We achieve this by putting the client unique id
on each key alongside with a timestamp ts, resulting in the pair 〈ts, id〉, which represents a version. This
approach ensures that clients writing new versions of the data never overwrite versions of each other.

4.2.3 Object integrity and authenticity

We call the pair 〈data key , data value〉 an object. In our algorithms, the data key2 is represented by
a tuple 〈ts, id , h〉s, where 〈ts, id〉 is the version, h is a cryptographic hash of the data value associated
with this key, and s is a signature of 〈ts, id , h〉 (there is a slight difference in the protocol of §4.6, as
will be discussed later). Having all this information on the data key allows us to validate the integrity
and authenticity of the version (obtained through the list operation) before reading the data associated
with it. Furthermore, if some version has a valid signature we call it valid. A data value is said to be
valid if its hash matches the hash present in a valid key (this can only be verified after reading the value
associated with the key). Consequently, an object is valid if both the version and the value are valid.

4.2.4 Erasure codes

Two of our protocols employ erasure codes [32] to decrease the storage overhead associated with full
replication. This technique generates n different coded blocks, one for each base object, from which any
m < q base objects blocks can reconstruct the data. Concretely, in our protocols we use m = f + 1.

Notice that this formulation of coded storage can also be used to ensure confidentiality of the stored
data, by combining the erasure code with a secret sharing scheme [25], in the same way it was done in
DepSky [11].

4.3 Pseudo Code Notation and Auxiliary Functions

We use the ‘+’ operator to represent the concatenation of strings and the ‘.’ operator to access data key
fields. We represent the parallelization of base object calls with the tag concurrently. Moreover, we as-
sume the existence of a set of functions: (1) H(v) generates the cryptographic hash of v; (2) encode(v, n,m)
encodes v into n blocks from which any m are sufficient to recover it; (3) decode(bks, n,m, h) recovers

2For the remaining of this paper we may refer to this only as key.

5

Algorithm 1: Auxiliary functions.

1 Function listQuorum() begin
2 L[0..n− 1]←⊥;
3 concurrently for 0 ≤ i ≤ n− 1 do
4 L[i]← listi;

5 wait until |{i : L[i] 6=⊥}| ≥ q;
6 return L;

7 Function writeQuorum(data key, value) begin
8 ACK [0..n− 1]←⊥;
9 concurrently for 0 ≤ i ≤ n− 1 do

10 ACK [i]← put(data key, value[i])i;

11 wait until |{i : ACK [i] = true}| ≥ q;

12 Function maxValidVersion(L) begin

13 return 〈vr , h〉s ∈
n−1
∪

i=0
L[i] : verify(s,Ku)∧ 6 ∃ 〈vr ′, h′〉s′ ∈

n−1
∪

i=0
L[i] : vr ′ > vr ∧ verify(s′,Ku)) ;

a value v by decoding any subset of m out-of n blocks from the array bks if H(v) = h, returning ⊥
otherwise; (4) sign(info,Kr) signs info with the private key Kr, returning the resulting signature s; (5)
verify(s,Ku) verifies the authenticity of signature s using a public key Ku.

Besides these cryptographic and coding functions, our algorithms employ three auxiliary functions,
described in Algorithm 1. The first function, listQuorum (Lines 1-6), is used to (concurrently) list the
keys available in a quorum of KVSs. It returns an array L with the result of the list operation in at least
q KVSs.

The writeQuorum(data key , value) function (Lines 7-11) is used for clients to write data in a quorum
of KVSs. The key data key is equal in all base objects, but the value value[i] may be different in each base
object, to accommodate erasure-coded storage. When at least q successful put operations are performed,
the loop is interrupted.

The last function, maxValidVersion(L) finds the maximum version number correctly signed on an
array L containing up to n KVS’ list results (possibly returned from listQuorum function), returning 0
(zero) if no valid version is found.

4.4 Two-Step Full Replication Construction

Our first Byzantine fault-tolerant MW-regular register construction employs full replication, storing thus
the entire value written in each base object. The algorithm is optimally resilient as it employs a dissem-
ination quorum system [28]. Algorithm 2 presents the write and read procedures for the construction.

Processes perform write operations using the procedure FR-write (Lines 1–7). The protocol starts
by listing a quorum of base objects (Line 2). Then, it finds the maximum version available with a valid
signature in the result using the function maxValidVersion(L) (Line 3), and creates the new data key by
concatenating a new unique version, and the hash of the value to be written together with the signature
of these fields (Lines 4–5). Lastly, it uses the writeQuorum function to write the data to the base objects
(Lines 7).

The read operation is represented in the FR-read procedure (Lines 8–22). As in the write operation,
it starts by listing a quorum of base objects. Then the reader enters in a loop until it reads a valid
value (Line 10–21). First, it gets the maximum valid version listed (Line 11), and then it triggers n
parallel threads to read that version from different KVSs. Next, it waits either for a valid value, which is
immediately returned, or for a quorum of q responses (Line 19). The only way the loop terminates due
to the second condition is if it is trying to read a version being written concurrently with the current
operation, i.e., a version that is not yet available in a quorum. This is possible if the first q base objects
to respond do not have the maximum version available yet. When this happens, the version is removed
from the result of the list operation (Line 20), and another iteration of the outer loop is executed to
fetch a smaller version. Notice that a version that belongs to a complete write can always be retrieved
from the inner loop due to the existence of at least one correct base object in the intersection between
Byzantine quorums.

Without concurrency, the protocol requires one round of list and one of put for writing, and one
round of list and one of get for reading. In fact, it is impossible to implement a MW register with
fewer object calls since for writing and reading we always need to use at least one round of put and
get operations, respectively, and to find the maximum version available we can only use list or get to

6

Algorithm 2: Regular Byzantine Full Replication (FR) MW register (n > 3f) for client c.

1 Procedure FR-write(value) begin
2 L← listQuorum();
3 max ← maxValidVersion(L);
4 new key ← 〈max .ts + 1, c,H (value)〉;
5 data key ← new key + sign(new key,Kr);
6 v[0..n− 1]← value;
7 writeQuorum(data key, v);

8 Procedure FR-read() begin
9 L← listQuorum();

10 repeat
11 data key ← maxValidVersion(L);
12 d[0..n− 1]←⊥;
13 concurrently for 0 ≤ i ≤ n− 1 do
14 valuei ← get(data key)i;
15 if H (valuei) = data key.hash then
16 d[i]← valuei ;
17 else
18 d[i]← ERROR;

19 wait until (∃i : d[i] 6=⊥ ∧d[i] 6= ERROR) ∨ (|{i : d[i] 6=⊥}| ≥ q);
20 ∀i ∈ {0, n− 1} : L[i]← L[i] \ {data key};
21 until ∃i : d[i] 6=⊥ ∧d[i] 6= ERROR;
22 return d[i];

retrieve that information from the base objects.

4.5 Two-Step Erasure Code Construction

Differently from the protocol described in the previous section, which employs full replication with a
storage requirement of q × S wherein S is the size of the object, in our second Byzantine fault-tolerant
MW-regular register emulation we use storage-optimal erasure codes. Since the erasure code we use [32]
generates n coded blocks, each with 1

f+1 of the size of the data, the storage requirement is reduced to

q × S
f+1 .

The main consequence of storing different blocks in different base objects for the same version, is
that the number of base objects accessed in dissemination quorum systems is not enough to construct a
wait-free Byzantine fault-tolerant MW-regular register. This happens because the intersection between
dissemination quorums contains only f+1 base objects, meaning that when reading the version associated
with the last complete write operation, the quorum accessed may contain only 1 valid response (f can
be faulty). This is fine for full replication as a single updated and correct value is enough to complete
a read operation. However, it may lead to a violation of the regular semantics when erasure codes are
employed since we now need at least f + 1 encoded blocks to reconstruct the last written value.

To overcome this issue, we use Byzantine masking quorum systems [28], where the quorums intersect
in at least 2f + 1 base objects. Despite the increase in the number of base objects (n > 4f), the storage
requirement is still significantly reduced when compared with the previous protocol. As an example, for
f = 1, this protocol has a storage overhead of 100% (a quorum of four objects with coded blocks of half
of the original data size) while in the previous protocol the overhead is 200% (a quorum of three objects
with a full copy of the data on each of them).

Algorithm 3 presents this protocol. The EC-write procedure is similar to the write procedure of
Algorithm 2. The only difference is the use of erasure codes to store the data. Instead of full replicating
the data, it uses the writeQuorum function to spread the generated erasure-coded blocks through the
base objects in such a way that each one of them will store a different block (Lines 6–7). Notice that the
hash on the data key is generated over the full copy of data and not over each of the coded blocks.

The read procedure EC-read is also similar to the read protocol described in §4.4, but with two
important differences. First, we remove from L the versions we consider impossible to read (Lines 10–
11), i.e., versions that appear in less than f+1 responses. Second, instead of waiting for one valid response
in the inner loop, we wait until we can reconstruct the data or for a quorum of responses. Again, the only
way the loop terminates through the second condition is if we are trying to read a concurrent version.
For reconstructing the original data, every time a new response arrives we try to decode the blocks and
verify the integrity of the obtained data (Line 18). Notice that the integrity is verified inside the decode
function. A version associated with a complete write can always be successfully decoded because any

7

Algorithm 3: Regular Byzantine Erasure-Coded (EC) MW register (n > 4f) for client c.

1 Procedure EC-write(value) begin
2 L← listQuorum();
3 max ← maxValidVersion(L);
4 new key ← 〈max .ts + 1, c,H (value)〉;
5 data key ← new key + sign(new key,Kr);
6 v[0..n− 1]← encode(value, n, f + 1);
7 writeQuorum(data key, v);

8 Procedure EC-read() begin
9 L← listQuorum();

10 foreach ver ∈ L : #L(ver) < f + 1 do
11 ∀i ∈ {0, n− 1} : L[i]← L[i] \ {ver};
12 repeat
13 data key ← maxValidVersion(L);
14 data ←⊥;
15 concurrently for 0 ≤ i ≤ n− 1 do
16 d[i]← get(data key)i;
17 if data =⊥ then
18 data ← decode(d, n, f + 1, data key.hash);

19 wait until data 6=⊥ ∨ |{i : d[i] 6=⊥}| ≥ q;
20 ∀i ∈ {0, n− 1} : L[i]← L[i] \ {data key};
21 until data 6=⊥ ∧ data 6= ERROR;
22 return data;

Algorithm 4: Regular Byzantine Erasure-Coded (EC) MW register (n > 4f) for client c.

1 Procedure 3S-write(value) begin
2 L← listQuorum();
3 max ← maxValidVersion(L);
4 data key ← 〈max .ts + 1, c〉;
5 proof info ←“PoW”+〈max .ts + 1, c,H (value)〉;
6 proof key ← proof info + sign(proof info,Kr) ;
7 v[0..n− 1]← encode(value, n, f + 1);
8 writeQuorum(data key, v);
9 v[0..n− 1]← ∅;

10 writeQuorum(proof key, v);

11 Procedure 3S-read() begin
12 L← listQuorum();
13 proof key ← maxValidVersion(L);
14 data key ← 〈proof key.ts, proof key.id〉;
15 data ←⊥;
16 concurrently for 0 ≤ i ≤ n− 1 do
17 d[i]← get(data key)i;
18 if data =⊥ then
19 data ← decode(d, n, f + 1, data key.hash);

20 wait until data 6=⊥;
21 return data;

accessed quorum will provide at least f + 1 valid blocks for decoding this version’s value. As soon as the
integrity is verified, the outer loop stops and the value is returned (Lines 21–22).

4.6 Three-Step Erasure Code Construction

Our last construction implements a Byzantine-resilient MW-regular register using erasure codes and
dissemination quorums, being thus both storage-efficient and optimally-resilient. We achieve this by
storing in each base object two objects per version instead of one. The first one, the data object, is used
to store the encoded data blocks. The second one, the proof object, is an object with a zero-byte value
used to prove that a given data object is already available in a quorum of base objects (similar to what
is done in previous works [11, 18]). The key of the data object is composed only by the version, i.e., the
tuple 〈ts, id〉. In turn, the key of the proof object is composed by the string 〈“PoW”, ts, id , h〉s, in which
h is the hash of the full copy of data and s is a signature of 〈“PoW”, ts, id, h〉.

Algorithm 4 presents the protocol. The write procedure, called 3S-write, starts by listing the proof

8

objects from a quorum of base objects (Line 2). Then, it finds the maximum valid version between the
proof objects. For simplicity, this algorithm uses the same function maxValidVersion(L) as the previous
protocols, but here we are only interested in proof objects. Next, it creates the new data key and the new
proof key to be written (Lines 4–6). Then it writes the data object in a quorum (ensuring that different
base objects will store different coded blocks) and, after that, it writes the proof object (Lines 7-10).
This sequence of actions ensures that when a valid proof object is found in at least one base object, the
corresponding data object is already available in a quorum of base objects.

The 3S-read procedure is used for reading. The idea is to list proof objects from a quorum, find the
maximum valid version among them, and read the data object associated with that proof object. Notice
that to read the data we do not need to wait for a quorum of responses as it is enough to have m = f + 1
valid blocks to decode the value (Lines 18–19). This holds because, differently from the two previous
algorithms, here we are sure that the data values with a version matching the maximum version found
in valid proof objects is already stored in a quorum of base objects.

As explained before, this protocol works with only 3f + 1 base objects. This is done without adding
any extra call to the base objects in the read operation, which still needs only two rounds of accesses, one
for list and one for get. However, for writing, one additional round of put is needed (to replicate the
proof object). This trade-off is actually profitable in a cloud-of-clouds environment since the monetary
costs of storing erasure-coded blocks in extra clouds is much larger than sending zero-byte objects to the
clouds we use.

5 Protocols Extensions

This section presents a discussion of how the protocols presented in this paper can be modified to offer
atomic semantics [26], and what are the possible solutions to garbage collect obsolete data versions.

5.1 Atomicity

There are many known techniques to transform regular registers in atomic ones. Most of them require
servers running part of the protocol [14, 30], which is impossible to implement with our base objects.
Fortunately, the simplest transformation can be used in data-centric algorithms. This technique consists
in forcing readers to write-back the data they read to ensure this data will be available in a quorum when
the read completes [10,21,29].

Our three read constructions could implement this technique by invoking writeQuorum to write the
read value before returning it. However, writing back read values in our first two protocols may carry
out performance issues as the stored data size might be non-negligible. In turn, employing the same
write-back technique in our last protocol (Algorithm 4) does not have such overhead, as a reader would
only need to write-back the small proof object (see §4.6). Hence, the performance effect of using this
technique in the read procedure is independent of the size of the data being read.

A final concern about using write-backs to achieve atomicity is that we would have to assume that
readers may only fail by crash, otherwise they may write bogus values in the base objects. In the regular
constructions this is not required as we do not need to give write permissions to readers.

5.2 Garbage Collection

Existing solutions. Register emulations that employ versioning must use a garbage collection protocol
to remove obsolete versions, otherwise an unbounded amount of storage is required. DepSky [11] provides
a garbage collection protocol that is triggered periodically to remove older versions from the system.
Although practical in many applications (e.g., cloud-backed file system [12]), this solution is vulnerable
to the garbage collection racing problem [10,34]. This problem happens when a client is reading a version
that had became obsolete due to a concurrent write, and removed by a concurrent execution of the
garbage collection protocol, making it impossible for a reader to obtain the value associated with it.

To the best of our knowledge, there are only two works that solve this problem. The solution of [34]
makes readers announce the version they are going to read, preventing the garbage collector from deleting
it. Unfortunately, this solution cannot be directly applied in the data-centric model since it requires
servers capable of running parts of the algorithm. Another solution was proposed in [10]. In this protocol
each writer stores the value in a temporary key, which can be garbage collected by other writers, and
also in an eternal key, that is never deleted. This approach allows readers to obtain the value from the
eternal key when the temporary key is erased by concurrent writers. A solution like this can be applied

9

to our first protocol (see §4.4), which employs full replication. Yet, it does not work with erasure-coded
data. This happens because the eternal key is overwritten whenever a write operation occurs, and since
several writers can operate simultaneously, the eternal key in different base objects may end up with
blocks belonging to different versions. Therefore, it might lead to the impossibility of getting f +1 blocks
of the same version to reconstruct the original value.

Adapting the solutions to our protocols. All existing solutions for garbage collection can be
adapted to the protocols discussed in §4. The approach of deleting obsolete versions asynchronously by a
thread running in background can be naturally integrated to our protocols. This thread can be triggered
by the clients at the end of the write operations, making each client responsible for removing its obsolete
data.

Since we do not rely on server-side code for our protocols, devising a solution where readers announce
the version they are about to read (by writing an object with that information to a quorum of base objects)
would require substantial changes in our system model. More specifically, to ensure wait-freedom for read
operations, only objects with versions lower than the ones announced can be garbage collected. This
solution may not tolerate the crash of the readers – if a reader crashes without removing its announcement,
larger versions than the one it announced will never be removed. It is possible to add an expiration time
to the announcement to avoid this. Yet, this would still require changes in the system model to add
synchrony assumptions for the expiration time to (eventually) hold, and not consider Byzantine readers
(that could block garbage collection by announcing the intention to read all versions).

Using the eternal key approach together with erasure codes significantly increases the storage re-
quirements of our algorithms. The idea is to make each writer not only to store the coded blocks into
temporary keys, but also to replicate full copies of the original data in eternal keys. This approach may
lead to a decrease in the write performance (related with an extra write of a full copy of the data per
base object) and an increase of n× S in each protocol storage requirements.

Discussion. The three proposed solutions explore different points in the design space of data-centric
storage protocols. In the first approach, we do not really solve the garbage collection racing problem.
The second solution requires a stronger system model and additional base object accesses in the read
operation. The third solution increases the storage requirements and reduces the write performance as
writers have to write not only the coded blocks, but also full copies of the data.

We argue that most applications would prefer to have better performance and a reduced storage
complexity, at the cost of eventually repeating failed reads. Therefore, we chose to support the asyn-
chronous garbage collection triggered periodically (for example hourly, daily or even when a given number
of versions has been written), as done in DepSky [11].

6 Evaluation

This section presents an evaluation of our three new protocols, comparing them with two previous con-
structions targeting the cloud-of-clouds model [10,11].

6.1 Setup and Methodology

The evaluation was done using a machine in Lisbon and a set of real cloud services. This machine is
a Dell Power Edge R410 equipped with two Intel Xeon E5520 (quad-core, HT, 2.27Ghz), and 32GB
of RAM. This machine was running an Ubuntu Server Precise Pangolin operative system (12.04 LTS,
64-bits, kernel 3.5.0-23-generic), and Java 1.8.0 67 (64-bits).

Furthermore, we compare our protocols with the MW-regular register of [10], which we call ICS,
and the SW-regular register of DepSky (the DepSky-CA algorithm) [11]. The protocols proposed in
this paper were implemented in Java using the APIs provided by real storage clouds. We used the
DepSky implementation available online [2]. However, since there is no available implementation of
ICS, we implemented it using the same framework we used for our protocols. All the code used in our
experiments is available on the web [4].

All experiments consider f = 1 and the presented results are an average of 1000 executions of the
same operation, employing garbage collection after every 100 measurements. The storage clouds used
were Amazon S3 [1], Google Storage [3], Microsoft Azure Storage [15], Rackspace Cloud Files [5], and
Softlayer Cloud Storage [6]. ICS was configured to use the first three of them (n = 3); the Two-Step Full

10

 0

 0.3

 0.6

 0.9

 1.2

 1.5

1 10 100 500 1000

L
a
te

n
cy

 (
se

co
n
d
s)

Number of writes

2S-FR
2S-EC
3S-EC

Figure 2: Average latency and std. deviation of listQuorum for different number of stored keys.

 0

 1

 2

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

p

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

pL
a

te
n
c
y
 (

s
e

c
o
n

d
s
)

50th
90th

WriteRead

(a) 64kB

 0

 1

 2

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

p

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

p

50th
90th

WriteRead

(b) 1MB

 0

 5

 10

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

p

2
S

-F
R

2
S

-E
C

3
S

-E
C

IC
S

D
e

p

50th
90th

WriteRead

(c) 16MB

Figure 3: Median and 90-percentile latencies for read and write operations of register emulations.

Replication (2S-FR), Three-Step Erasure Codes (3S-EC) and DepSky protocols used the first four clouds
mentioned (n = 4); and the Two-Step Erasure Codes (2S-EC) protocol used all of them (n = 5).

6.2 List Quorum Performance

One of the main differences between our protocols and the other MW-regular register of the literature
designed for KVSs, namely ICS [10], is that in our algorithms the garbage collection is decoupled from
the write operations. Since in ICS the garbage collection is included in the write procedure, the list
operation invoked in its base objects always return a small number of keys. However, as in our protocols
the garbage collection is executed in background, it is important to understand how the presence of
obsolete keys (not garbage collected) in the KVSs affects the latency of listing the available keys. Notice
this issue does not affect DepSky as it does not use the list operation [11].

Figure 2 shows the latency of executing the listQuorum function with different numbers of keys
stored in the KVSs, for our three protocols (which consider different quorum sizes). As can be seen,
2S-EC presents the worst performance, indicating that listing bigger quorums is more costly. We can
also observe that the performance degradation of the list operation when there are less than 100 obsolete
versions is very small (specially for 2S-FR and 3S-EC). However, the latency is roughly 2× and 4× worse
when listing 500 and 1000 versions, respectively. This suggests that triggering the garbage collection once
every 100 write operations will avoid any significant performance degradation.

6.3 Read and Write Latency

Figure 3 shows the write and read latency of our protocols, ICS [10] and DepSky [11], considering different
sizes of the stored data.

The results show that, when reading 64kB and 1MB, 2S-FR and 3S-EC present almost the same
performance, while 2S-EC is slightly slower, due to the use of larger quorums. This means that reading
only one data value with a full copy of the data is as fast as reading f + 1 blocks with half of the size of
the original data. This is not the case for 16MB data. The results show it is faster to read f + 1 data
blocks of 8MB in parallel from different clouds (2S-EC and 3S-EC) than reading a 16MB object from one
cloud (2S-FR).

For writing 64kB objects 3S-EC is slower than 2S-FR and 2S-EC. This happens due to the latency
of the third step of the protocol (write of the proof object). When writing 1MB objects, our protocols
present roughly the same latency, being the 3S-EC protocol a little bit slower (also due to the write of
the proof object). However, when clients write 16MB data objects, the additional latency associated with

11

 0

 0.5

 1

 1.5

1 2 5 10 1 2 5 10 1 2 5 10 1 2 5 10L
a
te

n
cy

 (
se

co
n
d
s)

50th
90th

ICS3S-EC2S-EC2S-FR

Figure 4: Median and 90-percentile read latencies in presence of contending writers.

this third step is negligible. Overall, these results can be explained by the fact that the proof object has
zero bytes. Thus, 3S-EC protocol presents the best performance due to its use of dissemination quorums
and erasure codes. For this data size, the 2S-FR protocol presents the worst performance of our protocols
as it stores a full copy of the data in all clouds.

The key takeaway here is that our protocols present a performance comparable with DepSky [11]
(Dep), which does not support multiple writers, and a performance up to 2× better than the crash fault-
tolerant MW register presented in [10] (ICS). On the other hand, ICS presents the worst latency among
the evaluated protocols. One of the main reasons for this to happen is because it does not use erasure
codes. Furthermore, for reading, this protocol always waits for a majority of data responses, which makes
it slower than, for example, the 2S-FR that only waits for one valid get response. In turn, for writing,
ICS writes the full copy of the data twice on each KVS to deal with the garbage collection racing problem,
removing also obsolete versions.

6.4 Read Under Write Contention

Figure 4 depicts the read latency of 1 MB objects in presence of multiple contending writers. This
experiment does not consider DepSky as it only offers SW semantics.

The results show that both 2S-FR and 2S-EC read latencies are affected by the number of contending
writers. This happens for two reasons: (1) under concurrent writes, these protocols typically try to read
incomplete versions from the KVSs before finding a complete one (i.e., the loop on read protocols is
executed more than once); (2) since we are not garbage collecting obsolete versions, more writers send
more versions to the clouds, negatively influencing the listQuorum function latency. Since 3S-EC is not
affected by the first factor, its read operation performs slightly better with contending writers.

ICS’s read presents a constant performance with the increase of contending writers, however, 2S-FR
and 2S-EC present competitive results and 3S-EC presents results always better than it, even without
garbage collecting obsolete versions.

7 Conclusion

This paper considers the study of fundamental storage abstractions resilient to Byzantine faults in the
data-centric model, with applications to cloud-of-clouds storage. In this context, we presented three new
register emulations: (1) one that uses dissemination quorums and replicates full copies of the data across
the clouds, (2) another that uses masking quorums and reduces the space complexity through the use
of erasure codes, and (3) a third one that increases the number of accesses made to the clouds to use
dissemination quorums together with erasure codes.

Our evaluation shows that the new protocols have similar or better performance and storage require-
ments than existing emulations that either support a single writer [10] or tolerate only crashes [11].

Acknowledgements. This work was supported by FCT through projects LaSIGE (UID/CEC/00408/
2013) and IRCoC (PTDC/EEI-SCR/6970/2014), and by EU through the H2020 SUPERCLOUD project
(643964).

References

[1] Amazon S3. http://aws.amazon.com/s3/.

[2] DepSky webpage. http://cloud-of-clouds.github.io/depsky/.

12

[3] Google storage. https://developers.google.com/storage/.

[4] MWMR-registers webpage. https://github.com/cloud-of-clouds/mwmr-registers/.

[5] Rackspace cloud files. http://www.rackspace.co.uk/cloud/files.

[6] Softlayer Cloud Storage. http://www.softlayer.com/Cloud-storage/.

[7] I. Abraham, G. Chockler, I. Keidar, and D. Malkhi. Byzantine disk Paxos: optimal resilience with
Byzantine shared memory. Distributed Computing, 18(5), 2006.

[8] M. Aguilera, B. Englert, and E. Gafni. On using network attached disks as shared memory. In Proc.
of the PODC, 2003.

[9] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems. Journal
of the ACM, 42(1), 1995.

[10] C. Basescu et al. Robust data sharing with key-value stores. In Proc. of the DSN, 2012.

[11] A. Bessani, M. Correia, B. Quaresma, F. Andre, and P. Sousa. DepSky: Dependable and secure
storage in cloud-of-clouds. ACM Transactions on Storage, 9(4), 2013.

[12] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia, M. Pasin, and P. Verissimo. SCFS: a
shared cloud-backed file system. In Proc. of the USENIX ATC, 2014.

[13] C. Cachin, B. Junker, and A. Sorniotti. On limitations of using cloud storage for data replication.
In Proc. of the WRAITS, 2012.

[14] C. Cachin and S. Tessaro. Optimal resilience for erasure-coded Byzantine distributed storage. In
Proc. of the DSN, 2006.

[15] B. Calder et al. Windows Azure storage: a highly available cloud storage service with strong
consistency. In Proc. of the SOSP, 2011.

[16] G. Chockler, D. Dobre, A. Shraer, and A. Spiegelman. Space bounds for reliable multi-writer data
store: Inherent cost of read/write primitives. In Proc. of the PODC, 2016.

[17] G. Chockler and D. Malkhi. Active disk paxos with infinitely many processes. Distributed Computing,
18(1), 2005.

[18] D. Dobre, G. O. Karame, W. Li, M. Majuntke, N. Suri, and M. Vukolic. Powerstore: Proofs of
writing for efficient and robust storage. In Proc. of the CCS, 2013.

[19] E. Gafni and L. Lamport. Disk paxos. Distributed Computing, 16(1), 2003.

[20] G. Gibson et al. A cost-effective, high-bandwidth storage architecture. In Proc. of the ASPLOS,
1998.

[21] G. Goodson, J. Wylie, G. Ganger, and M. Reiter. Efficient Byzantine-tolerant erasure-coded storage.
In Proc. of the DSN, 2004.

[22] J. Hendricks, G. R. Ganger, and M. K. Reiter. Low-overhead Byzantine fault-tolerant storage. In
Proc. of the SOSP, 2007.

[23] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems,
13(1), 1991.

[24] P. Jayanti, T. D. Chandra, and S. Toueg. Fault-tolerant wait-free shared objects. Journal of the
ACM, 45(3), 1998.

[25] Hugo Krawczyk. Secret sharing made short. In Proc. of the CRYPTO, 1993.

[26] L. Lamport. On interprocess communication (part II). Distributed Computing, 1(1), 1986.

[27] R. Los, D. Shacklenford, and B. Sullivan. The notorious nine: Cloud Computing Top Threats in
2013. Technical report, Cloud Security Alliance (CSA), February 2013.

13

[28] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4), 1998.

[29] D. Malkhi and M.K. Reiter. Secure and scalable replication in Phalanx. In Proc. of the SRDS, 1998.

[30] J.P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine storage. In Proc. of the DISC, 2002.

[31] T. Oliveira, R. Mendes, and A. Bessani. Exploring key-value stores in multi-writer Byzantine-resilient
register emulations. Technical Report DI-FCUL-2016-02, ULisboa, 2016.

[32] M. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. Journal
of the ACM, 36(2), 1989.

[33] P. Verissimo, A. Bessani, and M. Pasin. The TClouds architecture: Open and resilient cloud-of-
clouds computing. In Proc. of the DCDV, 2012.

[34] Y. Ye, L. Xiao, I-L. Yen, and F. Bastani. Secure, dependable, and high performance cloud storage.
In Proc. of the SRDS, 2010.

14

A Appendix: Correctness

This section presents the correctness proofs of the protocols of Algorithms 2, 3 and 4. We start by proving
that the auxiliary functions used by the protocols (presented in Algorithm 1) are wait-free.

Lemma 1. Every correct process completes the execution of listQuorum and writeQuorum in finite time.

Proof. Both algorithms are used by all protocols. This means that they use both dissemination and
masking quorums. Since they send n requests, one for each base object, and at most f base objects are
allowed to be faulty, a quorum of responses will always be received as q ≤ n − f . Consequently, both
algorithms return in finite time.

A.1 Two-Step Algorithms Proof

In the following we prove the correctness of Algorithms 2 and 3, as they follow the same rationale,
although employing different Byzantine quorum systems. For these proofs, we denote by L the output of
the listQuorum executed in the beginning of FR-read and EC-read procedures. Moreover we define m
as the number of required responses to obtain the requested value. Notice that m = 1 for full replication
and m = f + 1 for erasure-coded data. The next lemmas state that L contains a version that respects
MW-regular semantics.

Lemma 2. A value associated with a complete write operation is always found in L, and can be retrieved
from the base objects.

Proof. Since we do not consider malicious writers, we know that clients only write valid objects. Fur-
thermore, we know that when listing or reading a dissemination (resp. masking) Byzantine quorum of
base objects we will also access f + 1 (resp. 2f + 1) objects where the last complete write was executed,
as by definition quorums intersect by this amount of objects. Using this fact, the lemma can then be
reduced to prove that such intersection will contain m correct base objects, which will provide the last
version written. This is indeed the case as m = 1 in full replication (intersection of f + 1 – at least one
correct) and m = f + 1 with erasure coded data (intersection of 2f + 1 – at least f + 1 correct).

Lemma 3. The maximum version found on L corresponds to the last complete write operation, or to a
concurrent one.

Proof. L only contains valid versions that were already stored by a writer, otherwise it would be impossible
to find them. Since we do not consider malicious writers, we know they will follow the protocol, for
example, by incrementing the maximum ts found and has not lied about his id when creating the pair
〈ts + 1, c〉. Therefore, each writer always writes a version larger than the maximum version found,
respecting thus partial order.

According to Lemma 2, a version whose write is complete is always found in L. Consequently, we can
claim that, without concurrency, the maximum version in L belongs to the last complete write operation.
Furthermore, if there are any concurrent write operation being executed, it may appear as the maximum
version found in L, as its version is surely greater then the version of the last complete write.

These lemmas allow us to prove that both protocols (Algorithms 2 and 3) respect the specification of
a multi-writer multi-reader regular register and are wait-free.

Theorem 1. A FR-read (resp. EC-read) operation running concurrently with zero or more FR-write
(resp. EC-write) operations will return the value associated with the last complete write or one of the
values being written.

Proof. Both read procedures start by calling listQuorum. By Lemma 3 we know that the maximum
version found in L belongs to the last complete write operation or to a concurrent one. Independently
of the case, the procedures try to read it. If the version belongs to a concurrent write it may not be
retrieved. In this case the algorithms exclude it and fetch the new maximum valid version listed (see
loop in Lines 10–21 and 12–21, in Algorithms 2 and 3, respectively). However, according to Lemma 2, if
no concurrent version can be read, we know that the value associated with the last complete version is
always retrieved. This proves that both protocols respect regular semantics.

Theorem 2. The FR-write, EC-write, FR-read and EC-read procedures satisfy wait-freedom.

15

Proof. The FR-write and EC-write procedures, besides executing local computation steps, call the
functions of Algorithm 1. Since these functions are wait-free (Lemma 1), the write protocols are also
wait-free.

Both read operations start by calling the listQuorum, which is wait-free (Lemma 1). After that, the
algorithms enter in a loop that only terminates after finding a valid value to return. By Lemma 2 we
know that a value associated with a complete version is always found in L, and that this version can be
retrieved. Then the number of iterations of this loop is bounded by the number of writes being executed
concurrently that can be seen in L, but whose the value cannot be retrieved. Since after failing a read
we try a smaller version, the algorithms will eventually try to fetch the value written in the last complete
write. Consequently, the read procedures terminate in finite time.

A.2 Three-Step Algorithm Proof

We now sketch the correctness proof of Algorithm 4. The complete proofs are very similar to the ones
presented before for the Algorithms 2 and 3. The main difference here is the existence of the proof object
used to prove that the data object associated with it is already stored in a dissemination quorum. The
following lemmas state the properties of this object.

Lemma 4. The value associated with every valid proof object in L can be retrieved from at least f + 1
base objects.

Proof. Each valid proof object found in L was previously written by a correct writer. In turn, since we
do not consider malicious writers, each writer only replicates the proof object after storing its associated
data object in at least q = dn+f+1

2 e base objects. Therefore, we know that the data object associated
with a valid proof object in L is available in at least q − f ≥ f + 1 base objects. This means that there
will be enough data objects to reconstruct the original value.

Lemma 5. The maximum valid version found among the proof objects observed in L corresponds to the
last complete write, or to a concurrent one.

Proof. This can be proved following the same rationale of Lemma 3. Writers are considered correct and
therefore they calculate new versions correctly, i.e., they find the maximum valid version on a quorum of
proof objects and increment it ensuring that each new version has a greater version number. Furthermore,
an 3S-write operation is considered complete only after it writes the proof object to a dissemination
quorum. Since we know that the intersection of any two dissemination quorums contains at least f + 1
base objects, the proof object associated with the last complete write can always be found. This proves
that, without concurrency, the maximum version found corresponds to the last complete write operation.
If some concurrent writes are being executed, they may be seen as the maximum version because they
surely have a greater version than the last complete write.

Using these lemmas we are now able to prove that Algorithm 4 respects multi-writer multi-reader
regular register semantics and wait-freedom.

Theorem 3. A 3S-read operation running concurrently with zero or more 3S-write operations will return
the value associated with the last complete write or one of the values being written.

Proof. According to Lemma 4, the value associated with each valid proof object in L can always be read
from the base objects. The protocol reads the value associated with the maximum valid version found
in L, and we know by Lemma 5 that this version is associated either with the last complete write or to
one of the values being written. Therefore, the value returned by 3S-read belongs to the last complete
write or to a concurrent one.

Theorem 4. The 3S-read and 3S-write procedures satisfy wait freedom.

Proof. The write procedure invokes listQuorum once, to obtain L, and writeQuorum twice, one to write
the data blocks and another to write the proof objects. According to Lemma 1, these two operations
terminate in finite time, and thus 3S-write always terminates as well.

The read procedure also satisfies wait freedom due to Lemma 4: a value associated with a valid proof
object is always available for read.

16

