
Cross-project Vulnerability Prediction based on
Software Metrics and Deep Learning

Ilias Kalouptsoglou, Miltiadis Siavvas?, Dimitrios Tsoukalas, and
Dionysios Kehagias

Centre for Research and Technology Hellas, Thessaloniki, Greece
{iliaskaloup,siavvasm,tsoukj,diok}@iti.gr

Abstract. Vulnerability prediction constitutes a mechanism that en-
ables the identification and mitigation of software vulnerabilities early
enough in the development cycle, improving the security of software
products, which is an important quality attribute according to ISO/IEC
25010. Although existing vulnerability prediction models have demon-
strated sufficient accuracy in predicting the occurrence of vulnerabilities
in the software projects with which they have been trained, they have
failed to demonstrate sufficient accuracy in cross-project prediction. To
this end, in the present paper we investigate whether the adoption of
deep learning along with software metrics may lead to more accurate
cross-project vulnerability prediction. For this purpose, several machine
learning (including deep learning) models are constructed, evaluated, and
compared based on a dataset of popular real-world PHP software appli-
cations. Feature selection is also applied with the purpose to examine
whether it has an impact on cross-project prediction. The results of our
analysis indicate that the adoption of software metrics and deep learning
may result in vulnerability prediction models with sufficient performance
in cross-project vulnerability prediction. Another interesting conclusion
is that the performance of the models in cross-project prediction is en-
hanced when the projects exhibit similar characteristics with respect to
their software metrics.

Keywords: Software Quality · Security · Vulnerability Prediction

1 Introduction

According to the ISO/IEC 25010 [1] International Standard on Software Quality,
software security is one of the main quality characteristics of modern software
products. In order to enhance the security of the produced software, software
industries should ensure that their products are not bundled with critical vul-
nerabilities. The exploitation of a single vulnerability may lead to far-reaching
consequences both for the end user (e.g., information leakage) and for the own-
ing enterprise of the compromised software (e.g., financial losses and reputation
damages) [2]. Hence, appropriate mechanisms are required in order to assist the

? Corresponding Author



I. Kalouptsoglou et al.

identification and mitigation of software vulnerabilities as early in the Software
Development Lifecycle (SDLC) of a software product as possible [3].

One such mechanism that enables the early identification and mitigation of
software vulnerabilities is vulnerability prediction [3]. Vulnerability prediction,
which is actually inspired by the idea of fault prediction [4] that is used for
reliability assessment [5], is a subfield of software security aiming to predict
software components that are likely to contain vulnerabilities (i.e. vulnerable
components). Vulnerability prediction models (VPMs) are normally built based
on Machine Learning (ML) techniques that use software attributes as input
(e.g., software metrics [6–8]), to discriminate between vulnerable and neutral
components. These models can be used for prioritizing testing and inspection
efforts, by allocating limited test resources to potentially vulnerable parts [9].

Several VPMs have been proposed over the years utilizing various software
factors as inputs for predicting the existence of vulnerable components, includ-
ing software metrics [10], text mining [9, 11], and static analysis alerts [12, 13].
Although these models have demonstrated promising results in predicting the
existence of vulnerabilities in the projects on which they have been trained (i.e.,
within-project vulnerability prediction), they failed to sufficiently predict the
existence of vulnerabilities in previously unknown software projects (i.e., cross-
project vulnerability prediction) [14, 3]. However, the adoption of advanced ML
techniques like deep learning is expected to increase the predictive performance
of existing models in cross-project vulnerability prediction. Despite some initial
attempts (e.g., [15, 11]), more work is required in order to reach safer conclusions.

To this end, in the present paper we investigate whether the adoption of deep
learning along with software metrics may lead to accurate and practical cross-
project vulnerability prediction. For this purpose, we initially construct a vulner-
ability dataset by carefully restructuring the dataset provided by Walden et al.
[16]. The resulting dataset contains 21,445 vulnerable and clean files, which were
retrieved from three real-world open-source PHP applications. Subsequently,
based on this dataset, several machine learning (including deep learning) mod-
els are constructed, both for the case of within-project vulnerability prediction
and for the case of cross-project vulnerability prediction. In each one of these
cases, the produced models are evaluated and compared with respect to their
accuracy and practicality based on a set of performance metrics. Finally, feature
selection is also applied in order to examine how the selected features affect the
performance of the produced models.

The rest of the paper is structured as follows. Section 2 discusses the related
work in the field of vulnerability prediction. Section 3 provides information about
the adopted methodology, whereas Section 4 presents the results of our analysis.
Finally, Section 5 concludes the paper and presents directions for future work.

2 Related Work

A large number of VPMs has been proposed in the literature over the past
decade [3]. As stated in [14], the main VPMs that can be found in the literature



Vulnerability Prediction using Deep Learning

utilize software metrics [10, 17, 18], text mining [9, 15], and security-related static
analysis alerts [12, 13] to predict vulnerabilities in software products. However,
as stated before, while these models have demonstrated promising results in
predicting the existence of vulnerabilities in the software projects on which they
have been built (i.e., within-project vulnerability prediction), they have failed
to demonstrate sufficient performance in cross-project vulnerability prediction.
This is a major shortcomings of existing VPMs, affecting their practicality [3].

In fact, several empirical studies have shown that that text mining-based
models exhibit better predictive performance compared to other state-of-the-
art techniques [16, 19, 20], but they perform poorly in cross-project vulnerabil-
ity prediction [13]. This can be explained by the fact that that these models
base their predictions on the frequencies of specific text features (i.e., keywords)
extracted directly from the source code (e.g., [9]), which makes them highly
project-specific. On the contrary, VPMs based on software metrics have been
found to be more promising solutions in cross-project vulnerability prediction
[19, 16], as software metrics are able to capture more high-level characteristics
of the analyzed code. Therefore, more work is required towards this direction.

Recently, several researchers have started examining whether the adoption
of more advanced ML techniques, particularly deep learning, may lead to bet-
ter VPMs. For instance in [15], the authors employed deep learning, and more
precisely a Long-short Term Memory (LSTM) network [21], to construct new
features from the vulnerability dataset provided by Scandariato et al. [9]. Subse-
quently, based on these features, they built both metric-based and text mining-
based VPMs using Random Forest algorithm. The results of their experiments
indicate that the new models are better than the models of Scandariato et al. [9],
both in within-project and in cross-project vulnerability prediction. Similarly,
Pang et al. [11] used deep neural networks to built text mining-based VPMs
using four software projects retrieved from the dataset provided by Scandari-
ato et al. [9]. Their results showed that deep learning-based VPMs demonstrate
sufficient predictive performance in within-project vulnerability prediction.

Although these studies provide useful insights regarding the efficacy of deep
learning in vulnerability prediction, they are hindered by several shortcomings.
First of all, in [15], deep learning was used only for the construction of new fea-
tures, while the produced models were built using the Random Forest algorithm.
However, better results could have been achieved, if deep learning was adopted
for the construction of the VPMs, especially in the case of cross-project vulner-
ability prediction. Secondly, although Pang et al. [11] built deep learning-based
VPMs, they focused only on the case of within-project vulnerability prediction,
not providing any insight on the performance of these models on cross-project
vulnerability prediction. Finally, an important issue of both studies is that the
vulnerability dataset that was utilized does not contain actual vulnerability data
retrieved from real-world vulnerability databases. That is, the source code files
of the software projects are marked as vulnerable (or clean), based on the out-
puts of a commercial static code analyzer (i.e., Fortify SCA1), and not based

1 https://www.microfocus.com/en-us/products/static-code-analysis-sast/overview



I. Kalouptsoglou et al.

on actual reported vulnerabilities. As a result, due to the fact that static code
analyzers are prone to false positives and false negatives [20, 3], many of the files
that are marked in the dataset as vulnerable may, in fact, be clean (and vice
versa), obviously affecting the correctness of the produced models.

The main goal of the present study is to examine whether the adoption of
deep learning along with software metrics may lead to VPMs with sufficient
accuracy and practicality, especially in the case of cross-project prediction. Con-
trary to the previous studies, in the present work, we put significant emphasis on
the predictive performance of the produced models in cross-project vulnerability
prediction, since in this case, poor performance may hinder the practicality and
acceptance of the produced models, whereas it is an open issue in the related
literature that remains unresolved [3]. In addition, as opposed to the previous
studies that were based on static analysis to classify the source code files as
vulnerable or clean, in the present work, we construct our experiments based on
real-world vulnerability data retrieved from actual vulnerability databases and
vendor advisories. In particular, our work is based on the vulnerability dataset
provided by Walden et al. [16], which contains actual vulnerability data retrieved
from three popular open-source PHP web applications.

3 Methodology

3.1 Dataset

For the purposes of the present study, the vulnerability dataset provided by
Walden et al. [16] was utilized. This dataset contains real-world vulnerability
information retrieved from public databases, including both vendor advisories
and the National Vulnerability Database2 (NVD) for three popular PHP web
applications, namely Drupal, PHPMyAdmin, and Moodle.

More specifically, to construct the dataset, Walden et al. [16] fetched mul-
tiple versions of these three open-source applications, and for each source code
file they marked its vulnerability status based on whether there were relevant
reports for these files on vendor and NVD security advisories. In brief, according
to this approach, files that have at least one vulnerability reported on vulner-
ability databases are marked as vulnerable, whereas files that do not have any
reported vulnerabilities are defined as neutral. It should be noted that files with
no vulnerabilities are defined as neutral, and not as clean, because they may
contain potential vulnerabilities that have not been reported yet.

For each one of the source code files of the dataset, 12 software metrics were
computed, using a custom static code analyzer proposed by Walden et al. [16],
which is based on the PHP compiler front-end developed by Vries and Gilbert
[22]. The reasoning behind the adoption of this tool is twofold. Firstly, no tools
are available on the market that are capable of computing a sufficient set of
coupling, complexity, and size metrics of PHP files. Secondly, using this tool
could enable us more reliably compare the results of the present work to the

2 https://nvd.nist.gov/



Vulnerability Prediction using Deep Learning

results of the work of Walden et al. [16] on which the present study was based.
The source code metrics collected for each version of every PHP file of the three
selected software applications are listed below:

– Lines of code (LoC): The total lines of code of the PHP file being mea-
sured, excluding lines that do not have PHP tokens.

– Non-HTML lines of code (Nonecholoc): The same with the LoC metric,
excluding lines containing HTML code embedded in the file being measured.

– Number of functions (Nmethods): The total number of functions and
methods of the PHP file being measured.

– Cyclomatic Complexity (Ccom): The total number of linearly indepen-
dent paths through a program’s source code.

– Maximum nesting complexity (Nest): The maximum nesting depth of
loops and control structures of the PHP file being measured.

– Halstead’s volume (Hvol): An estimate of the program’s size (i.e., vol-
ume) using the number of unique operators (i.e., method names and PHP
language operators) and operands (i.e., parameter and variable names).

– Internal functions or methods called (nIncomingCalls): The number
of functions or methods defined in a PHP file that are invoked (at least once)
by another method or function that belongs to the same file.

– Fan-in (NIncomingCallsUniq): The number of files that invoke methods
or functions of the PHP file being measured.

– Fan-out (nOutgoingInternCalls): The number of files that contain meth-
ods and functions that are invoked by the PHP file being measured.

– External calls to functions or method (nOutgoingExternCallsUniq):
The number of files calling a particular function or method defined in the
file being measured, summed across all functions and methods.

– Total external calls (nOutgoingExternFlsCalled): The total number
of statements that invoke functions or methods that are not defined in the
PHP file being measured.

– External functions or methods called (nOutgoingExternFlsCalle-
dUniq): The total number of statements that invoke methods or functions
that belong to the PHP file being measured.

The dataset that is used in the present study is based on the original dataset
provided by Walden et al. [16]. However, while constructing it we followed a
slightly different approach. More specifically, the original dataset consists of the
computed metrics and the vulnerability status of each PHP file and version of the
selected PHP applications. This results in a broader dataset of 112,947 samples.
In the original study [16], the authors focused on a significantly smaller subset
of the dataset, as they considered only one version of each PHP file. However,
we observed that significant differences may exist in the source code of different
versions of the same file. Therefore, in the present study, we decided to treat the
different versions of the same file as different samples of the dataset, provided
that a significant difference is observed between their computed metrics (as this
indicates significant differences in their actual source code).



I. Kalouptsoglou et al.

Hence, from the original dataset we kept only those files that were different
in all the computed metrics. This ensures that the remaining samples refer to
PHP files that are significantly different with respect to their source code. Even
a small change in the source code of a PHP file (e.g., addition or removal of a
single line of code in a function, addition or removal of a single square bracket,
etc.) will lead to a difference in at least one of the file-level metrics. Requesting a
difference to exist in all the studied metrics means that significant modifications
need to be performed between commits in order these files to be considered
different. In that way, we ensure that not only duplicates are removed, but also
highly different files are considered as part of the dataset. This led to a dataset
of 21,445 samples. Table 1 shows the descriptive statistics of the final dataset.

Table 1. Descriptive statistics of the final dataset

Application Vulnerable files Total files

Drupal 62 195
PHPMyAdmin 480 4732
Moodle 362 16536

3.2 Data Pre-processing

Sampling Techniques and Scaling As can be seen by Table 1, the pro-
duced dataset is highly imbalanced. In particular, the number of neutral files
is significantly larger compared to the number of the files that are marked as
vulnerable. This observation, which is in-line with the majority of similar re-
search endeavors that are based on real-world vulnerability data (e.g., [14, 19,
13]) can be explained by the fact that only a small number of vulnerabilities are
identified and reported on public databases throughout the lifetime of software
applications [14].

Classification problems with imbalanced datasets are challenging, as the
skewed distribution makes many conventional ML algorithms less effective, espe-
cially in predicting minority class examples. To eliminate this risk, similarly to
other studies [16, 19], we applied under-sampling to make the dataset perfectly
balanced. For this purpose, we employed the RandomUnderSampler offered by
the sklearn3 package to reduce the neutral samples to a number equal to the
number of vulnerable samples. More specifically, we retained all the samples
that belong to the minority class (i.e., vulnerable files) and randomly chose N
samples from the majority class (i.e., neutral files), where N is the total number
of the samples of the minority class. It is worth mentioning that under-sampling
was applied only to the training set, as re-sampling on test data imposes a bias
on the findings. This is crucial in order to preserve the correct testing conditions.

3 https://scikit-learn.org/



Vulnerability Prediction using Deep Learning

In addition, we performed data normalization due to the fact that ML tech-
niques (especially neural networks) produce better results when data are nor-
malized. For this purpose, we used sklearn’s MinMaxScaler, which transforms
features by scaling each sample to a given range between zero and one.

Feature Selection The selection of independent input variables (i.e., features)
is a critical part in the design of ML algorithms. Each additional feature makes
the model more complicated by adding an extra dimension. A large number
of input variables may lead to the ”curse of dimensionality”, a phenomenon
in which the model’s performance degrades as the inputs’ number increases.
Feature selection is a strong weapon against the curse of dimensionality, as it
reduces both the computational cost of modeling and training time. In many
cases, feature selection can even improve the performance of the model, since
irrelevant features can negatively affect the model performance.

In order to study the statistical significance of each file-level software met-
ric over the existence of vulnerabilities, we applied an embedded method named
Tree-based Elimination (TBE) [21]. TBE uses the built-in feature selection mech-
anism of the Random Forest algorithm to measure the importance of each fea-
ture. Importance provides a score that indicates how valuable each feature is
in the construction of the decision trees within the model. We chose Random
Forest as it is one of the most popular methods for feature selection [23].

We applied the TBE method independently on the feature set of each applica-
tion of our dataset and ranked the 12 metrics (features) presented in Section 3.1
by the order that they were selected by the method. The results are illustrated
in Figure 1. In particular, in Figure 1a, Figure 1b and Figure 1c, we present the
importance of each metric in vulnerability prediction for Drupal, PHPMyAdmin
and Moodle respectively, as computed by the TBE method.

By having a look at Figures 1a, 1b and 1c, we can clearly see that the rank-
ing of metrics is highly similar for PHPMyAdmin and Moodle, whereas the top
three metrics (i.e., Hvol, nOutgoingExternCallsUniq, and Ccom) are identical
for both applications. More specifically, the importance of Hvol in vulnerability
prediction was found to be 0.140226 and 0.171136 for PHPMyAdmin and Moo-
dle respectively. The importance of nOutgoingExternalCallsUniq metric equals
to 0.139171 for PHPMyAdmin and 0.147026 for Moodle, while the importance
of Ccom was found to be 0.118421 and 0.126714 for PHPMyAdmin and Moodle
respectively. In addition to the top metrics, the rest of the ranking is also highly
correlated, indicating that a model trained to predict vulnerabilities in one ap-
plication, may as well perform equally good in the other. Regarding Drupal, the
Hvol metric is also ranked first with an importance of 0.141249. In the second
place, however, we can see the nOutgoingExternFlsCalledUniq metric (with an
importance of 0.129682), while the nOutgoingExternCallsUniq metric that is
ranked second for PHPMyAdmin and Moodle, in this case is ranked third (with
an importance of 0.106244).

We believe that Hvol is considered the most important metric by the TBE
as it indicates how many distinct operators and operands are used. Thus, if all



I. Kalouptsoglou et al.

(a) Drupal (b) PHPMyAdmin

(c) Moodle

Fig. 1. Feature selection for each one of the software applications of the selected
dataset, namely (a) Drupal, (b) PHPMyAdmin, and (c) Moodle.

the operators and operands are used in a project, as opposed to only using the
safe ones, the Hvol value will be directly affected. The same holds for the Ccom
metric. If we use only the safe linearly independent paths instead of using all of
them, it will have an important variation in Ccom’s value.

It should be noted, that in the case of within-project vulnerability prediction
(see Section 4.1), for the construction of the application-specific models, the top
three features of their corresponding application are used. However, in the case of
cross-project prediction (see Section 4.2), the top three features of the dominant
projects, i.e., PHPMyAdmin and Moodle, are used (i.e., the Hvol, nOutgoingEx-
ternCallsUnique, and Ccom metrics) for each one of the three studied cases, in
order to investigate whether the application of a vulnerability prediction model,
which was built based on a specific application, on previously unknown appli-
cations that demonstrate similarities with respect to the importance of their
features in the existence of vulnerabilities may affect its prediction performance.

3.3 Model Selection and Performance Metrics

Selection of Classifiers In the present study different ML algorithms are used
in order to build models able to discriminate between vulnerable and neutral
source code files. Contrary to the previous work of Walden et al. [16], in which
emphasis was given only on the Random Forest algorithm, in the present work



Vulnerability Prediction using Deep Learning

we also investigate additional ML algorithms, including Support Vector Ma-
chine (SVM), XGBoost, and an ensemble method that combines various ML
algorithms. We also examine the ability of deep learning, specifically the Multi-
Layer Perceptron (MLP), to provide reliable vulnerability predictions.

For the construction of these models, hyperparameter tuning is initially em-
ployed in order to determine the optimal parameters for each model. More specif-
ically we use the Grid-search method [24], which is commonly used to find the
optimal hyper-parameters of a model, by performing an exhaustive search over
specified parameter values for an estimator. Subsequently, we train the models
using the dataset presented in Section 3.1. For instance, for the case of MLP,
several models were constructed using the hyperparameters presented in Table
2. It should be noted that the same parameters were used for the MLP models
that were built both for the case of within-project and cross-project vulnera-
bility prediction. The performance of the produced models is compared using
the performance parameters presented in the rest of this section. Based on these
performance metrics the best model in each case is determined.

Table 2. The selected hyperparameters of the Multi-layer Perceptrons (MLPs) that
are constructed in the present study.

Hyperparameter Name Value

Number of Layers 4
Number of Hidden Layers 3
Number of Hidden Units (per Hidden Layer) 1000/500/50
Weight Initialization Technique Glorot Xavier
Learning Rate 0.01
Gradient Descent Optimizer Adagrad
Batch Size 128
Activation Function relu
Output Activation Function sigmoid
Loss Function Cross-entropy
Over-fitting Prevention Dropout = 0.15 (per layer)

Evaluation Metrics Several performance indicators are available in the lit-
erature and are commonly used for evaluating the predictive performance of
ML models. These performance indicators are normally computed based on the
number of True Positives (TP), True Negatives (TN), False Positives (FP), and
False Negatives (FN) that are generated by the produced models.

Similarly to previous works in vulnerability prediction [9, 13, 14, 16, 15], we
put specific emphasis on the Recall (R) of the produced models, as the higher
the Recall of the model, the more actual vulnerabilities it predicts. Recall is
described as follows:

R =
TP

TP + FN
(1)



I. Kalouptsoglou et al.

Apart from the ability of the produced models to accurately detect the vast
majority of the vulnerable files that a software product contains, it is important
to take into account the volume of the produced FP, (i.e., neutral files that
are marked as vulnerable by the models), since they are known to affect the
models’ practicality. A large number of FP forces the developers to inspect a
non-trivial number of non-vulnerable files, in order to detect a file that is actually
vulnerable. Hence, the number of FP is associated to the manual effort required
by the developers for identifying files that actually contain vulnerabilities.

In order to measure the impact of the produced FP, similarly to [16], we
use the Inspection Ratio (I), which is the percentage of files that one has to
consider (i.e., inspect manually) to make it possible to find the TP identified by
the model. This performance metric, which actually corresponds to the effort
required for identifying a vulnerable file, receives values between 0 and 1, and is
given by the following formula:

I =
TP + FP

TP + NP + FP + FN
(2)

These two performance metrics are used as the basis for the comparison of
the produced VPMs, as well as for the selection of the best model in each one of
the studied cases that are presented in Section 4, as their combination provides a
complete picture of the model performance in predicting vulnerable files. In fact,
Recall (R) indicates how effectively the produced models detect TP, whereas the
Inspection Ratio (I) indicates how efficient the model is in predicting TP, based
on how many FP have to be triaged by the developer until a TP is detected.

3.4 Strategy

Within-project Prediction The first step of our study is to investigate the
performance of the selected ML algorithms described in Section 3.3 in predicting
the occurrence of vulnerabilities in the software applications on which they have
been trained. To achieve this, we trained the selected models on each application
of our dataset, namely Drupal, PHPMyAdmin, and Moodle, and evaluated them
based exclusively on data retrieved from the corresponding application.

For the evaluation of the models we decided to employ k-fold cross-validation.
In k-fold cross-validation, the dataset is split into k folds from which the k-1
participate in training and the remaining one participates in evaluation. The
fold that remains for the evaluation is different every time. In this way, we have
a model that is trained and evaluated k times using each time different training
and testing data. The model performance is the average performance of these k
models. In that way, we reduce the possibility of having biased results.

We chose to perform a 3-fold cross-validation in order to be in line with the
work of Walden et al. [16]. More specifically, we used the sklearn’s stratified
cross-validation in order to construct folds that retain the percentage of samples
for each class, thus creating realistic conditions for model training and validation.
The 3-fold cross-validation was repeated 10 times for each model, after shuffling
the dataset randomly before each iteration. Hence, the computed performance



Vulnerability Prediction using Deep Learning

metrics (i.e., Recall and Inspection Ratio) of each model are the average values
of 30 models trained and evaluated on the same dataset. This enhances the reli-
ability of the produced results, as the potential bias introduced by the selection
of non-representative subsets of the broader dataset is avoided.

Cross-project Prediction During the second part of this study, we examined
the predictive performance of the software metrics-based VPMs, constructed us-
ing the ML algorithms presented in Section 3.3, in cross-project vulnerability
prediction. In cross-project vulnerability prediction, emphasis is given on the
ability of a given vulnerability prediction model to accurately predict vulnera-
bilities in previously unknown software projects (i.e., applications).

For this purpose, we trained several ML models based on the data of two out
of the three PHP applications of the dataset (i.e., by merging their vulnerability
data into a single dataset), and tested them on the vulnerability data of the
remaining application. We repeated this experiment three times, covering the
cases described in Table 3 (i.e., combinations of training and testing data).

Table 3. The studied cases of cross-project vulnerability prediction.

Case Training Set Testing Set

Case 1 Drupal+PHPMyAdmin Moodle
Case 2 Drupal+Moodle PHPMyAdmin
Case 3 Moodle+PHPMyAdmin Drupal

The reasoning behind the decision of merging vulnerability data of two ap-
plications for constructing the training set in each one of the studied cases is
twofold. Firstly, the combination of data retrieved from various software projects
for training enhances the generalizability of the produced models, as the models
will be able to capture patterns from several applications (instead of one), which
is expected to lead to better cross-project vulnerability prediction. Secondly,
by merging vulnerability data from various projects the size of the training set
is increased, which is critical for the performance of deep learning models. It
should be noted that in the case of cross-project vulnerability prediction, 3-fold
cross-validation was not required, as a completely independent test set (i.e., the
vulnerability data of the remaining application) was used for the evaluation.

4 Results and Discussion

4.1 Within-project Prediction

In this section, we present the results of within-project vulnerability prediction.
Table 4 reports the evaluation results of the classifiers that were build based
exclusively on the vulnerability data of each one of the three PHP applica-
tions. These results were obtained after applying the cross-validation approach



I. Kalouptsoglou et al.

described in Section 3.4. In brief, the values on the Table 4 depict the aver-
age performance of the models over 10 executions of the 3-fold cross-validation
experiment. As mentioned in Section 3.4, we considered Recall and Inspection
Ratio as the main performance indicators, as they provide a complete picture of
the accuracy and practicality of the produced models (see Section 3.3).

Table 4. Classification results of the projects.

Application Indicator SVM RF MLP XGBoost Ensemble

Drupal Recall 71.17 77.11 75.32 76.27 75.76
Inspection Rate 41.44 47.64 44.92 44.58 46.35

PHPMyAdmin Recall 82.38 90.25 87.57 85.26 90.62
Inspection Rate 17.59 19.13 21.47 22.84 19.77

Moodle Recall 81.77 92.13 84.63 86.81 91.16
Inspection Rate 7.78 16.65 17.97 19.41 15.74

Combined Recall 78.34 90.32 85.25 83.54 90.45
Inspection Rate 18.74 17.30 17.81 23.95 18.88

As can be seen by Table 4, in the case of Drupal, all classifiers, except for SVM
have similar performance metrics, with RF being slightly better with respect to
Recall. In the case of PHPMyAdmin, we notice that the RF classifier shows the
best performance in terms of Recall (90.25%) and Inspection Ratio (19.13%).
In the case of Moodle, RF demonstrates again the best performance, with a
Recall of 92.13% and an Inspection Ratio of 16.65%, but competes closely with
the stacking ensemble method (which has a Recall of 91.16% and an Inspection
Ratio of 15.74%). These results are in bold font.

As can be seen by Table 4, RF is the best classifier in all the studied cases.
This indicates that metric-based VPMs that are constructed using the RF algo-
rithm exhibit sufficient predictive performance and practicality in within-project
vulnerability prediction. This observation is in line with the the results of other
similar studies (e.g., [19, 13, 9, 15]), including the work of Walden et al. [16]. In
all these research endeavors, RF was found to be the most promising model
for the construction of project-specific VPMs. It should be noted that a direct
comparison of our evaluation results with those of Walden et al. [16] would not
be correct, since the original dataset was restructured (see Section 3.1), whereas
a different pre-processing process was employed (see Section 3.2). Finally, an-
other interesting observation is that the MLP-based VPMs also demonstrate
sufficient predictive performance, which suggests that they may also constitute
a promising solution for within-project vulnerability prediction.

4.2 Cross-project Prediction

In this section we present the results of cross-project vulnerability prediction.
As described in detail in Section 3.4, we investigate three individual cases (see
Table 3). In each case, we merge the vulnerability data of two PHP applications



Vulnerability Prediction using Deep Learning

and we test the produced models on the vulnerability data of the remaining one.
Feature selection is also applied in order to improve the predictive performance
of the produced models. It should be noted that the utilization of all the 12
features, did not lead to any good model in cross-project prediction. However,
by applying feature selection (see Section 3.2) we achieved much better results.

More specifically, for each one of the cases presented in Table 3, we built
several ML models. Emphasis was given on the RF algorithm that was found to
be the best algorithm in the case of within-project vulnerability prediction, as
well as on the MLP, as the specific interest of the present work is to examine
whether deep learning can lead to better cross-project vulnerability prediction.
As already mentioned in Section 3.2, for each one of the three studied cases, we
took into account the top three features of the dominant projects in the training
set, i.e., PHPMyAdmin or Moodle. It should be noted that in the case of PHP-
MyAdmin and Moodle the top three features are exactly the same. We built the
models using two projects and evaluated them using the complete vulnerability
data of remaining project. In what follows, we report the performance metrics of
the two best-performing models, namely RF and MLP. In particular, in Table 5
we present the results of RF and MLP for cross-project prediction after feature
selection for each one of the three studied cases (see Table 3).

Table 5. The evaluation results of the classifiers that were built using the Random
Forest (RF) and the Multi-layer Perceptron (MLP) algorithms in the case of cross-
project vulnerability prediction.

Project Indicator RF MLP

Drupal & PHPMyAdmin (train) – Moodle (test) Recall 56 80
Inspection Ratio 33.99 38.16

Drupal&Moodle (train) – PHPMyAdmin (test) Recall 53 72
Inspection Ratio 39.77 42.29

PHPMyAdmin & Moodle (train) – Drupal (test) Recall 47 52
Inspection Ratio 35.90 28.21

An interesting observation obtained by Table 5 is that RF, although it was
found to be the best model in within-project vulnerability prediction, does not
demonstrate sufficient predictive performance in cross-project vulnerability pre-
diction (i.e., the Recall of the produced models does not exceed the value of 56%
in all the studied cases). This is in line with the findings of Walden et al. [16]
who also observed that the predictive performance of RF drops when it comes
to cross-project vulnerability prediction. On the contrary, MLP demonstrates
higher Recall than RF in all the three cases. In addition, in the case where
Drupal and PHPMyAdmin were used for training and Moodle for testing, as
well as in the case where Drupal and Moodle were used for training and PHP-
MyAdmin for testing, the observed Recall was found to be above 70%, which
is considered sufficient for cross-project vulnerability prediction. This indicates
that deep learning may provide better VPMs than RF.



I. Kalouptsoglou et al.

Focusing on the MLP models themselves, from Table 5 we can see that in
the first two cases the observed Recall is higher than 70%, whereas in the third
case the Recall was found to be only 52%. This can be explained by the fact
that in the first two cases the models were built and subsequently tested on soft-
ware projects that were similar with respect to the relevance (i.e., importance)
of their features to the existence of vulnerabilities. More specifically, as was dis-
cussed in Section 3.2, PHPMyAdmin and Moodle had a very similar feature
ranking, whereas their top three features were identical (Hvol, nOutgoingEx-
ternCallsUniq, and Ccom). Hence, in these two cases, both in the training set
and in the testing set there were projects with similarities with respect to their
feature ranking. On the contrary, in the third case, the projects in the training
set (i.e., PHPMyAdmin and Moodle) and the project in the test set (i.e., Dru-
pal), are not very similar with respect to their feature ranking, whereas their
top three features (which were used as the models’ inputs) are not identical.
This indicates that the relative importance of the selected features (i.e., met-
rics) on the existence of vulnerabilities may affect the predictive performance of
the produced models in cross-project vulnerability prediction.

In simple words, satisfactory cross-project vulnerability prediction can be
achieved, if a model is built on a specific set of projects and applied on a pre-
viously unknown software project that exhibits similar characteristics regarding
the relative importance of the selected metrics to the existence of vulnerabilities.
Hence, several VPMs can be built based on the available data and then, the most
suitable model can be applied to a new software project, based on whether the
inputs (i.e., features) of the model are within the most important features of the
new project, with respect to vulnerability identification.

Contrary to previous research endeavors in the field of vulnerability pre-
diction [14, 3] that demonstrated bad predictive performance in cross-project
prediction, the results of the present work indicate that the adoption of software
metrics with deep learning may lead to better results, especially when feature
selection is employed. This, in fact, constitutes the main contribution of the
present work.

5 Conclusion and Future Work

In this paper, we investigated the ability of software metrics to be used as the
basis for the construction of VPMs, with sufficient accuracy in cross-project
vulnerability prediction. For this purpose, we constructed a dataset by properly
restructuring the vulnerability dataset provided by Walden et al. [16], which
contains real-world vulnerability data (i.e., 21,445 files) retrieved from three
popular PHP web applications, namely Drupal, PHPMyAdmin, and Moodle.
Several ML, including deep learning, models were built covering both the cases of
within-project and cross-project vulnerability prediction. Feature selection was
also employed using the popular TBE [21] technique, in order to detect important
features and to examine whether feature selection affects the performance of the
produced models in the case of cross-project vulnerability prediction.



Vulnerability Prediction using Deep Learning

The results of our experiments showed that RF is the best model in the
case of within-project vulnerability prediction, which is in line with the findings
of Walden et al. [16]. On the contrary, Deep Learning was found to be the
best solution in the case of cross-project vulnerability prediction, as MLP-based
models demonstrated sufficient levels of recall and inspection ratio, especially
compared to the RF models. This indicates that deep learning and software
metrics constitute a promising solution for cross-project vulnerability prediction.
Another interesting observation is that the performance of the models in cross-
project vulnerability prediction tends to be affected by feature selection. In fact,
models that were built based on a specific set of software projects seem to provide
better results when applied to new software projects that exhibit similarities with
respect to the relevance of their features to the existence of vulnerabilities.

Several directions for future work can be identified. First of all, the present
study was based solely on PHP web applications. In order to investigate the
generalizability of the produced results, we are planning to replicate our study
using software products that are written in other programming languages (e.g.,
Java, C/C++, etc.) and that belong to different domains (e.g., healthcare). Sec-
ondly, although the present analysis was based on a relatively large vulnerabil-
ity dataset comprising 21,445 files, these files were actually retrieved from three
real-world PHP applications. Hence, in the future, we are planning to extend
our analysis by enriching this dataset with vulnerability information retrieved
from additional PHP applications, in order to ensure that the results are not bi-
ased towards specific applications. Finally, we are also planning to replicate our
study by using metrics calculated at lower levels of granularity, such as class- or
function- level, in order to further investigate the generalizability of our results.

References

1. ISO/IEC: ISO/IEC 25010 - Systems and software engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - System and software qual-
ity models. ISO/IEC (2011)

2. Gelenbe, E., Görbil, G., Tzovaras, D., Liebergeld, S., Garcia, D., Baltatu, M.,
Lyberopoulos, G.: Nemesys: Enhanced network security for seamless service pro-
visioning in the smart mobile ecosystem. In: Information Sciences and Systems
2013. Springer (2013) 369–378

3. Siavvas, M., Gelenbe, E., Kehagias, D.: Static analysis-based approaches for secure
software development. Security in Computer and Information Sciences (2018) 142

4. Kumar, L., Misra, S., Rath, S.K.: An empirical analysis of the effectiveness of
software metrics and fault prediction model for identifying faulty classes. Computer
Standards & Interfaces 53 (2017) 1–32

5. Shukla, S., Behera, R.K., Misra, S., Rath, S.K.: Software Reliability Assessment
Using Deep Learning Technique. Towards Extensible and Adaptable Methods in
Computing (2018)

6. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE
Transactions on software engineering 20(6) (1994) 476–493

7. Misra, S., Akman, I., Colomo-Palacios, R.: Framework for evaluation and valida-
tion of software complexity measures. IET software 6(4) (2012) 323–334



I. Kalouptsoglou et al.

8. Misra, S., Adewumi, A., Fernandez-Sanz, L., Damasevicius, R.: A suite of object
oriented cognitive complexity metrics. IEEE Access 6 (2018) 8782–8796

9. Scandariato, R., Walden, J., Hovsepyan, A., Joosen, W.: Predicting vulnerable
software components via text mining. IEEE Transactions on Software Eng. (2014)

10. Zhang, M., de Carnavalet, X.d.C., Wang, L., Ragab, A.: Large-scale empirical
study of important features indicative of discovered vulnerabilities to assess appli-
cation security. IEEE Transactions on Information Forensics and Security (2019)

11. Pang, Y., Xue, X., Wang, H.: Predicting Vulnerable Software Components through
Deep Neural Network. Proceedings of the 2017 International Conference on Deep
Learning Technologies - ICDLT ’17 (2017) 6–10

12. Tang, Y., Zhao, F., Yang, Y., Lu, H., Zhou, Y., Xu, B.: Predicting Vulnerable
Components via Text Mining or Software Metrics? An Effort-Aware Perspective.
IEEE International Conference on Software Quality, Reliability and Security (2015)

13. Yang, J., Ryu, D., Baik, J.: Improving vulnerability prediction accuracy with
Secure Coding Standard violation measures. 2016 International Conference on Big
Data and Smart Computing, BigComp 2016 (2016) 115–122

14. Jimenez, M., Papadakis, M., Traon, Y.L.: Vulnerability Prediction Models : A case
study on the Linux Kernel. In: 2016 IEEE 16th International Working Conference
on Source Code Analysis and Manipulation (SCAM). (2016) 1–10

15. Dam, H.K., Tran, T., Pham, T.T.M., Ng, S.W., Grundy, J., Ghose, A.: Automatic
feature learning for predicting vulnerable software components. IEEE Transactions
on Software Engineering (2018) 1–1

16. Walden, J., Stuckman, J., Scandariato, R.: Predicting vulnerable components:
Software metrics vs text mining. In: 2014 IEEE 25th International Symposium on
Software Reliability Engineering. (Nov 2014) 23–33

17. Ferenc, R., Hegedűs, P., Gyimesi, P., Antal, G., Bán, D., Gyimóthy, T.: Challeng-
ing machine learning algorithms in predicting vulnerable javascript functions. In:
Proceedings of the 7th International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering. (2019)

18. Siavvas, M., Kehagias, D., Tzovaras, D.: A preliminary study on the relationship
among software metrics and specific vulnerability types. In: 2017 International
Conference on Computational Science and Computational Intelligence. (2017)

19. Tang, Y., Zhao, F., Yang, Y., Lu, H., Zhou, Y., Xu, B.: Predicting Vulnerable
Components via Text Mining or Software Metrics? An Effort-Aware Perspective.
Proceedings - 2015 IEEE International Conference on Software Quality, Reliability
and Security, QRS 2015 (2015) 27–36

20. Jimenez, M., Rwemalika, R., Papadakis, M., Sarro, F., Le Traon, Y., Harman, M.:
The importance of accounting for real-world labelling when predicting software
vulnerabilities. In: 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. (2019)

21. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comp. (1997)
22. de Vries, E., Gilbert, J.: Design and implementation of a php compiler front-end.

dept. Technical report, TR-2007-47, Trinity College Dublin (2007)
23. Genuer, R., Poggi, J.M., Tuleau-Malot, C.: Variable selection using random forests.

Pattern recognition letters 31(14) (2010) 2225–2236
24. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.:

Efficient and robust automated machine learning. In: Proceedings of the 28th In-
ternational Conference on Neural Information Processing Systems (NIPS). (2015)


