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 Over-compensation and under-compensation phenomena are two undesirable 

results in power system compensation. This will be not a good option  

in power system planning and operation. The non-optimal values of  

the compensating parameters subjected to a power system have contributed 

to these phenomena. Thus, a reliable optimization technique is mandatory to 

alleviate this issue. This paper presents a stochastic optimization technique 

used to fix the power loss control in a high demand power system due to  

the load increase, which causes the voltage decay problems leading to current 

increase and system loss increment. A new optimization technique termed as 

embedded differential evolutionary programming (EDEP) is proposed, which 

integrates the traditional differential evolution (DE) and evolutionary 

programming (EP). Consequently, EDEP was for solving optimizations 

problem in power system through the tap changer optimizations scheme. 

Results obtained from this study are significantly superior compared to  

the traditional EP with implementation on the IEEE 30-bus reliability test 

system (RTS) for the loss minimization scheme. 
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1. INTRODUCTION 

The growing demand in power system network due to increasing load has caused voltage decay, 

leading to current increase and system loss. To curb the voltage problems, several power compensation 

schemes can be implemented. This requires the use of optimisation processes; among the important 

optimisation techniques are evolutionary programming (EP), genetic algorithm (GA) and differential 

evolution (DE). In the year 2008, M. Varadarajan et al. [1] reported that the method used to determine 

control variables needs to be varied to minimise system loss using the DE method. Several main parameters 

can be controlled via the parameter settings of mutation, crossover and population size. The result of system 

loss showed that DE provided the best solution compared to sequential quadratic programming [2]. DE is also used in 

order to perform parameter estimation in chaotic systems as a way to counter the issues. It also demonstrated 

that DE was more effective than partical swarm optimisation (PSO) and GA techniques [3]. Apart from that, 

https://creativecommons.org/licenses/by-sa/4.0/
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in 2012, the study was carried out in order to minimise power losses by selecting the optimal location  

and parameter settings of thyristor-controlled series capacitor (TCSC).  

The technique had adopted DE and GA methods, which showed that DE was more effective.  

Some improvements were made on DE by Z. Huang et al. [4] to establish suitable parameter adjustment 

method by adjusting the control parameters following the evolution stage. The results showed that DE was 

able to increase the ability of exploration and faster convergence speed. When a higher population is applied 

in DE, the effectiveness on DE can be observed through the fast convergence performance [5].  

Many parameters can be controlled via DE such as population size, differential weight, crossover  

and generation number [6]. An important study related to optimisation technique is the Optimal Power Flow 

(OPF). OPF is a problem that occurs in the identification of most acceptable operating levels, such as to 

minimise the losses and cost for electric power to make sure it satisfies the consumer demand, which flows 

throughout a transmission network. Loss minimisation in OPF is due to current heating [7-9].  

In order to perform OPF, N. Sinha et al. [10, 11] found that the technique was suitable for secure 

and economic operation in power system. C. Ameur et al. [12] reported that any set of optimisation problems 

in electric power systems is known as OPF, which is one of the most practically important research subfields 

of constrained nonlinear optimisation. To solve the OPF problems, methods such as DE can be used for 

different objectives that reflect fuel cost minimisation, voltage profile improvement, and voltage stability 

enhancement, all of which show the effectiveness and robustness of the method used [13]. EP is useful to 

solving nonlinear programming problems [14]. Over the past years, OPF problems can be assessed by 

various techniques, such as non-linear programming, quadratic programming, mixed-integer programming 

and interior-point method. This types of method are categories as traditional methods. Traditional methods 

have some disadvantages, as they cannot be used in case of prohibited operating regions and multiple fuels [15]. 

In addition, they have a high sensitivity to initial solution, consequently, it may be trapped into local results, 

thus affecting the findings of the research. The difficulties in implementing OPF based on traditional methods 

can now be overcomed by modern stochastic algorithms, such as evolutionary programming (EP), tabu 

search (TS), improved evolutionary programming (IEP) and differential evolution (DE).  

Genetic algorithm (GA) is an optimisation method for solving both constrained and unconstrained 

problems that are based on the  natural selection of the population [16, 17]. It is commonly used to generate 

the best solutions for optimisation purposes by relying on the algorithm.. Tabu Search is commonly used as  

a mathematical optimisation tool to act as a derivative-free optimisation technique in solving OPF problems, 

thus significantly reducing computational burden. The main advantages of TS algorithm is its robustness to 

its own parameter settings. In addition, TS is characterised by its ability to avoid entrapment in local optimal 

solution and prevent cycling by using a flexible memory of search history [18]. Furthermore, PSO is a swarm 

technique developed by R. C. Eberhart et al. [19] in 1995. This technique motivated from the simulation of 

social behaviour. PSO, like the other optimisation techniques, is able to update the population of individuals 

by applying some type of operators according to the fitness information so that the population can be 

expected to receive better solution areas [20]. EP was also used in this study. EP is an algorithm that is works 

on mutation to breed the offspring [21]. In recent years, EP has been applied with success to many numerical 

and other optimisation problems. Nevertheless, there are weaknesses to using EP, which is slow convergence 

to a good near optimum [22]. EP can be compared to Genetic Algorithm (GA) in a way that EP controls  

the parameter and is based on mutation and selection parameters [23]. EP has two major steps in its 

algorithm, which are 1) mutate the solutions in the current population; and 2) select the next generation from 

the mutated [24]. On the other hand, J-H. Kim and H. Myung have proposed two EP methods for handling of 

nonlinear constrained optimisation problems [25].  

 This paper presents a stochastic optimization technique used to fix the power loss control in a high 

demand power system due to the load increase. A new technique termed as EDEP is developed to solve 

optimization involving loss and voltage control. Implementation on a reliability test system produced 

promising results; highlighting its superiority over the traditional EP. 

 

 

2. RESEARCH METHOD 

In this section, the processes involved in this study are presented as: 
 

2.1. Problem formulation 

Power loss in power system is the big problem for the system. They are happened due to disturbance 

on voltage and current as both of them are related. This can be seen through the formula: 
 

      ∑  (    )
    

               

  

   

 (1) 
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where: 

   = Number of transmission line 

   = Conductance of line, vi and vj=voltage magnitude 

    = Voltage angle difference between busses   and   

 

2.2. Differential evolution 

DE has three main operators, which are mutation, crossover and selection. These operators are 

similar to the EP’s operators. The efficiency of DE is based on mutation and crossover. 

a. Mutation  

Three different vector xr1, xr2 and xr3 were randomly selected to generate mutant vector using  

the following formula: 
 

  
     

   (   
    

 )               (2) 

 

b. Crossover 

Crossover is a process when a mutant vector and a parent vector are combined to create a trial vector by 

the following formula: 
 

  
  {

  
                        

  
                              

                (3) 

 

c. Selection  

In selection, competition between the parent vectors will occur. The selection process is when  

the value of the trial vector is less than or equal to the parent vector, the trial vector will enter to the next 

generation. Otherwise, the parent vector will survive and go to the next generation [16]. This operator can 

be described by the following formula: 

 

  
    {

  
            (  

 )   (  
 ) 

  
                              

       (4) 

 

2.3. Evolutionary programming 

For EP, there are two major steps which are mutation and selection of fitness. The explanations of 

those steps are below: 

a. Initialisation 

It is a process to generate random numbers,   
 ,   

      
  where k is the number of variables and α is the 

number of individuals. 

b. Fitness Evaluation 

In this phase, fitness values are calculated using generated individuals. 

c. Mutation  

In mutation, offspring is created using Gaussian Mutation technique by applying this formula: 

 

             (   (           )(
    
    

) (5) 

 

d. Combination 

Combination is when the parent and offspring are combined in series (by rows). The number of rows will 

be doubled: 

 

[           ]    [
       

          
] 

[      ]    [
     
     

] 

(6) 

 

e. Selection 

This process proceeds to selecting the survivors from the combination of parent and offspring. 

 

2.4. Proposed embedded differential evolutionary programming (EDEP) technique 

The embedded differential evolutionary programming is combination technique that was applied in 

this research. The mutation formula from DE was implemented in the evolutionary programming steps to 
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produce the second fitness. The major program is EP while DE is the supporting program inserted into EP. 

The flowchart of the proposed EDEP technique is shown in Figure 1. Mutation and crossover are steps from 

differential evolution which were implemented in the EP algorithm. The steps are discussed in details in 

this section: 

a. Initialisation 

Generation of random number of location (L1, L2,…i) and random number of tap changer  

(tap1, tap2….i) are based on the EP’s initialisation approach as mentioned previously. 20 individuals of 

each control variable are created in this process. 

b. Fitness 1 

Parents were created based on the 20 initial individuals using selection tap and location tap from  

line data. 
 

 

 
 

Figure 1. Proposed EDEP 
 

 

c. Mutation 

In this section, DE was implemented by using (2) to produce the offspring. The random number,  

r for tap changer is selected by using a random selection r=randperm(20,i). F is a constant with a 

value set at 1. To form the offspring for a new tap changer and new location, the alpha needs to be less 

than the crossover, which is 0.5 or the number of individuals is same to the random number that generated 

in the initialisation. If these conditions are not fulfilled, the previous parent value can be taken to form the 

tap changer and establish its location. Next, be careful for the value of location of tap changer, if the value 

of tap changer is less than zero, use ‘abs’ to form an absolute value. Then, when the location value 

equals to zero, take 1. Lastly, if the new location is more than maximum branch number, 

Ln_new>maximum branch, take the data value Ln_new=maximum branch number, because the 

location must be less than or equal to the data value. 

d. Fitness 2 

Offspring created during mutation was then used to form Fitness 2. 

e. Combination  

Offspring (from mutation) and parents are combined in order to perform the selection process. 

f. Selection 

For this section, the top 20 values for tap changer and location were selected in ascending order. 

INITIALISATION 

FITNESS 1 

MUTATION 

FITNESS 2 

SELECTION 

CONVERGE? 
No 

START 

END 
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3. RESULTS AND DISCUSSION 

In this study, the proposed EDEP optimisation technique was implemented on the IEEE 30-bus RTS 

for loss minimisation process. 

 

3.1. Implementation of EDEP on bus 3 

Figure 2 illustrates the loss profile results using the proposed EDEP with load variation at bus 3, 

Qd3, which was gradually increased from 10 to 40 MVar. In general, the loss increased as the load was 

increased from 10 to 40 MVar. The loss profile is lower when EDEP was implemented to the system through 

the transformer tap changer optimisation exercise. On the other hand, Table 1 shows the results for optimal 

location and sizing of transformer tap setting values of load variations subjected to bus 3.  

For instance, at Qd30=10 MVar, the optimal locations for tap settings were at lines 33, 32 and 36, with their 

corresponding optimal tap setting values of 0.5951, 1.107, and 0.6736. The same table can be referred  

for other load variations. 

 

 

 
 

Figure 2. Result for loss profile with load variations at bus 3 

 

 

Table 1. Result for optimal location and sizing of transformer taps 
 10 MVar 20 MVar 30 MVar 35 MVar 40 MVar 

L1 33 23 36 36 38 
L2 32 41 9 16 36 

L3 36 36 33 13 28 

Tap1 0.5951 0.9763 0.8300 0.8932 0.9771 
Tap2 1.1070 1.0296 1.0594 0.9718 0.7956 

Tap3 0.6736 0.7293 0.9040 0.9800 0.9870 

 

 

3.2. Implementation of EDEP on bus 30 

Figure 3 illustrates the result for loss profile using the proposed EDEP when the load at bus 30, Qd30 

was gradually increased from 5 MVar to 35 MVar. In general, the loss increased as the load was increased 

from 5 MVar to 35 MVar. The loss profile is lower when EDEP was implemented to the system through  

the transformer tap changer optimization exercise. On the other hand, Table 2 portrays the result for optimal 

location and sizing of transformer tap setting values of load variations subjected to bus 3. For instance,  

at Qd30=5 Mvar, the optimal location for tap settings are lines 37, 38, and 2 with their corresponding  

optimal tap setting values of 0.8308, 0.8239, and 0.9596. Results for other load variations can be referred to 

the same table. 
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Figure 3. Result for loss profile with load variation at bus 30 

 

 

Table 2. Result for optimal location and sizing of transformer taps 
 5 MVar 10 MVar 20 MVar 30 MVar 35 MVar 

L1 37 36 33 5 13 
L2 38 14 3 36 11 

L3 2 33 36 15 36 

Tap1 0.8308 0.7658 0.8981 0.9460 0.9394 
Tap2 0.8239 0.9795 0.9922 0.7603 0.9128 

Tap3 0.9596 0.8081 0.8611 0.9629 0.8039 

 

 

3.3. Implementation of EP  

 Figure 4 illustrates the result for loss using the EP when the load at bus 30, Qd30 was gradually 

increased from 5 MVar to 35 MVar. In general, the loss increased as the load was increased from 5 MVar to 

35 MVar. The loss profile is lower when EP was implemented to the system through the transformer tap 

changer optimization exercise. On the other hand, Table 3 demonstrates the result for optimal location  

and sizing of transformer tap setting values of load variations subjected to bus 3. For instance, at Qd30=5 

Mvar, optimal tap setting values are 0.9733, 0.9478, and 0.9910. Results for other load variations can be 

referred to the same table. 

 

 

 
 

Figure 4. Result for loss profile with load variation at bus 30 

 

 

Table 3. Result for optimal location and sizing of transformer taps 

 5 MVar 10 MVar 20 MVar 30 MVar 35 MVar 

Tap1 0.9733 0.9783 0.9744 0.9533 0.9128 

Tap2 0.9478 0.9570 0.9588 0.9695 0.9054 
Tap3 0.9910 0.9926 0.9897 0.9423 0.9058 
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3.4. Comparing EDEP and EP 

 Figure 5 illustrates the comparison results for loss using the proposed EDEP, EP and without 

optimisation where the load at bus 30, Qd30 had gradually increased from 5 MVar to 35 MVar. In general,  

the loss increased as the load was increased from 5 MVar to 35 MVar. The loss profile is lower when EP  

and EDEP were implemented to the system through the transformer tap changer optimization exercise.  

The lowest loss profile that can be seen is when EDEP was implemented in this research. 

 

 

 
 

Figure 5. Result for loss profile with load variations at bus 30 

 

 

4. CONCLUSION 

A new technique was developed and termed as embedded differential evolutionary programming 

(EDEP) for solving optimisation problem in power system through tap changer optimisation scheme. EDEP 

was found to be more efficient than EP, and the mutation method from differential evolution (DE) was used 

to replace the Gaussian mutation method in the original EP. The comparison result between EDEP and EP 

proved that EDEP is the best method for power loss minimisation the loss. 
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