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Molecular hydrogen (H2) has demonstrated therapeutic properties 

across numerous models. To date, the mechanism underlying the 

beneficial responses toH2 exposure remains elusive. The initial 

hypothesis that molecular hydrogen acts as a direct, selective 

antioxidant in vivodoes not reconcile models where H2 has shown to 

increase oxidative stress, nor does it explain numerous other 

physiological changes that have been observed throughout the 

literature. Some researchers have proposed that H2acts as ahormetic 

stress. This hypothesisdoes not reconcile H2 being non-toxic in nature, 

even at high doses. Hormeticstressors have contributedto evolutionary 

adaptations, with the absence of these stressors causing cellular 

dysfunction.H2 has played an intimate role in the evolution of our 

planet’s atmosphere, the evolution of mitochondria andof life on the 

planet.Endogenously produced H2 volumes vary dramatically between 

individuals and are expected to have varied through human 

evolution.Our cells have evolved to tolerate erratic and intermittent 

exposure to H2. Intermittent exogenous H2exposure yields results 

similar to various hormetic stressors. Continued research elucidating 

how H2 acts as an adaptive stressor, both through endogenous levels 

and exogenous supplementation, are highly warranted. 
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Introduction:- 
Article: 

The seminal article published in Nature Medicine in 2007 demonstrated potential therapeutic benefits of molecular 

hydrogen(H2), attributing the results to direct scavenging of the hydroxyl radical(Ohsawa et al., 2007).This 

attribution of mechanism of action does not resolve results demonstrating increases in oxidative stress (Hirayama et 

al., 2019) or fully elucidate the significant obserations in gene expression alteration (Nishiwaki et al, 2018). As 

published results have broadened in therapeutic outcomes, researchers have been unable to determine the underlying 

mechanisms, as it has long been believed that H2is a physiologically inert, non-functional gas within our body (Ohta, 

2014). As research has progressed and empirical evidence has amassed, totalling an estimated 1500 unique 

publications demonstrating its beneficial effects, with close to 100 of them having been conducted in humans, the 

mechanisms by which H2 exerts its beneficial effects in the body continue to elude the research community 

(Kawamura et al., 2020). Some researchers have hypothesized that when ingestedH2 acts as a hormetic stress 

(Murakami et al., 2017; Hirayama et al., 2019; LeBaron et al., 2019),but this hypothesis has not yet been reconciled 

with what is known regarding the safety profile of H2,due to it being non-toxic in nature (LeBaron et al., 2019b). 

Corresponding Author:- Alex T. Tarnava 

Address:- Drink HRW. 

 

http://www.journalijar.com/


ISSN: 2320-5407                                                                               Int. J. Adv. Res. 8(11), 216-219 

217 

 

Hormesis is typically defined as any intervention or process which exposes an organism to toxicity,producing a 

biphasic response. Typically, exposure to low levels of a hormetic stressor yields a beneficial response, 

whereasexposure to high levels produces a deleterious response. Conversely, exposure to H2 has typically 

demonstrated a more beneficial response at higher doses. It is commonly accepted that correctly dosed hormetic 

stressors lead to positive adaptations of the organism (Mattson, 2008).It has also been suggested that adaptive 

responses to hormetic stressors have played a fundamental role in evolution (Mattson, 2009). In fact, the most 

commonly accepted forms of hormesis to the human body, such as exercise (Radak et al., 2005), cold exposure (Le 

Bourg, 2007), heat exposure (Rattan, 2005), fasting (Horne et al., 2015), caloric restriction (Masoro, 2007), radiation 

(Vaiserman, 2008)and even ethanol (Parsons, 2001), all have been present throughout and can be explained by 

evolution, with the likelihood that humans were exposed to variable levels of these stressors, often at high levels and 

in an erratic manner, throughout the evolution of our species.  

 

The role of H2 exposure as a beneficial form of hormesis can be reconciled when considering a different perspective 

on how and why hormetic stressors positively impact cellular signalling (Calabrese, 2013). Since hormetic stressors 

play both an adaptive role in our current physiology, and have played a fundamental role in driving evolutionary 

change, logic follows that we have evolved to anticipate and require adequate levels of stressors for our cellular 

communication to operate harmoniously.This is corroborated by the known deleterious effects of the lack of 

exercise-induced hormesis, defined as a sedentary lifestyle (Buford et al., 2010). 

 

It is known that H2 has played an integral role in our evolution, with the “hydrogen hypothesis” being put forth to 

explain the eukaryote origins of our mitochondria(Martin and Müller, 1998), which suggests that the first eukaryote 

emerged from a symbiotic association between a hydrogen-dependentarchaebacterium (the host) and eubacterium 

(the symbiont) that was able to respire, but generated H2as a waste product of anaerobic heterotrophic metabolism. It 

is now commonly accepted that mitochondria and hydrogenosomes, which expel H2 as a waste product, share a 

common evolutionary origin (Martin and Mentel, 2010).Moreover, it has been reported that the oldest water ever 

discovered on our planet had measurable and significant levels of dissolved H2 gas(Lollar et al, 2014). Further, it is 

recognized that H2 has played a pivotal role in our planet and atmosphere, with H2 escape leading to oxygenation 

(Zahnle et al., 2018). It has also been known since the 1950s how critical H2in the Earth’s atmosphere was for 

promoting early life (Urey, 1952). 

 

The human body produces up to 12L of hydrogen gas per day via bacterial breakdown of carbohydrates in the small 

intestine (Ohno et al., 2012). It has recently been proposed that exercise-driven gut-microbial production of H2 gas is 

a possible factor of metabolic health,(Ostojic, 2020)while inadequate endogenous H2production may play a role 

indevelopment of Parkinson’s disease (Ostojic, 2018);moreover, it has been suggested that endogenously produced 

H2 may serve in regulation of liver homeostasis (Zhang et al., 2020).In turn, exogenous supplementation with 

hydrogen-rich water has been demonstrated to produce significant improvements in metabolic health (LeBaron et 

al., 2020), protective effects against non-alcoholic fatty liver disease (Korovljev et al., 2019)and improvements in 

symptoms of Parkinson’s disease (Yoritaka et al., 2013)in human pilot research.Furthermore, it is possible that 

endogenous production of H2 varies widely across individuals, depending on factors such as diet, and has varied 

widely throughout our species evolution and history. Due to the intermittent and erratic access to carbohydrates prior 

to the Neolithic revolution,it is likely that endogenous hydrogen production throughout most of our evolution was 

also intermittent, with highdoses followed by periods of deprivation and absence. This could shed an evolutionary 

explanation on why consumption of hydrogen water, and intermittent hydrogen inhalation,were shown to be 

effective in a rodent model of Parkinson’s Disease, but continuousH2 gas inhalation and additional endogenous 

production via lactulose were not (Ito et al., 2012). 

 

If humans have evolved and adapted to anticipate intermittent exposure to hydrogen gas, leading to spikes and drops 

in cellular concentrations, optimal cellular communication may depend on this erratic change. As specific, 

intermittent, and constantly changing dietary protocols would likely come with low compliance, exogenous H2 

supplementation may be the answer to address these potential evolutionary adaptations. Determining the extent of 

the importance of H2, both endogenous and exogenous, on our physiology, particularly regarding stress adaptation,  

warrants well constructed exploratory research.  
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