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Extracting information from microscopy & biomedical images
My background is in bioimage analysis



There is no right way to do it, but lots of wrong ways –
Understanding the key concepts is essential!

Bioimage analysis is hard!
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(a) Entire image (b) Detail of (a) (c) Some blur (d) A lot of blur

Figure 15.2: Images can be viewed as composed of small points (b), even if these points
are not visible without high magnification (a). This gives us a useful way to understand
what has happened in a blurred image: each point has simply been replaced by a more
di↵use blob, the PSF. Images appear more or less blurred depending upon how large the
blobby PSFs are (c) and (d).

how great our lenses are. Rather, it ends up being focused to some larger volume
known as the PSF, which has a minimum size dependent upon both the light’s
wavelength and the lens being used (Section 15.4.1).

This becomes more practically relevant if we consider that any fluorescing
sample can be viewed as composed of many similar, exceedingly small light-
emitting points – you may think of the fluorophores. Our image would ideally
then include individual points too, digitized into pixels with values proportional
to the emitted light. But what we get instead is an image in which every point has
been replaced by its PSF, scaled according to the point’s brightness. Where these
PSFs overlap, the detected light intensities are simply added together. Exactly
how bad this looks depends upon the size of the PSF (Figure 15.2).

Section 10.2.5 gave one description of convolution as replacing each pixel in
an image with a scaled filter – which is just the same process. Therefore it is no
coincidence that applying a Gaussian filter to an image makes it look similarly
blurry. Because every point is blurred in the same way (at least in the ideal
case; extra aberrations can cause some variations), if we know the PSF we can
characterize the blur throughout the entire image – and thereby make inferences
about how blurring will impact upon anything we measure.

15.3 The shape of the PSF

We can gain an initial impression of a microscope’s PSF by recording a z-stack of a
small, fluorescent bead, which represents an ideal light-emitting point. Figure 15.3a
shows that, for a widefield microscope, the bead appears like a bright blob when
it is in focus. More curiously, when viewed from the side (xz or yz), it has a
somewhat hourglass-like appearance – albeit with some extra patterns. This exact
shape is well enough understood that PSFs can also be generated theoretically
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Figure 15.4: Simplified diagram to help visualize how a light-emitting point would be
imaged using a widefield microscope. Some of the light originating from the point is
captured by a lens. If you imagine the light then being directed towards a focal point, this
leads to an hourglass shape. If a detector is placed close to the focal point, the spot-like
image formed by the light striking the detector would be small and bright. However, if
the detector were positioned above or below this focal plane, the intensity of the spot
would decrease and its size would increase.

whether a plane is in-focus or not? In other words, would you expect more or
less light in the focal plane than in other planes above or below it? Solution

The appearance of interference

Figure 15.4 is pretty limited in what it shows: it does not begin to explain the
extra patterns of the PSF, which appear on each 2D plane as concentric rings
(Figure 15.5), nor why the PSF does not shrink to a single point in the focal plane.
These factors relate to the interference of light waves. While it is important to
know that the rings occur – if only to avoid ever misinterpreting them as extra
ring-like structures being really present in a sample – they have limited influence
upon any analysis because the central region of the PSF is overwhelmingly brighter.
Therefore for our purposes they can mostly be disregarded.

The Airy disk

Finally, the PSF in the focal plane is important enough to deserve some attention,
since we tend to want to measure things where they are most in-focus. This entire
xy plane, including its interfering ripples, is called an Airy pattern, while the
bright central part alone is the Airy disk (Figure 15.6). In the best possible case,
when all the light in a 2D image comes from in-focus structures, it would already
have been blurred by a filter that looks like this.
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Figure 15.5: Ten slices from a z-stack acquired of a fluorescent bead, starting from
above and moving down to the focal plane. The same linear contrast settings have been
applied to each slice for easy comparison, although this causes the in-focus bead to appear
saturated since otherwise the rings would not be visible at all. Because the image is
(approximately) symmetrical along the z-axis, additional slices moving below the focal
plane would appear similar.

(a) George Biddell Airy
(1801–1892)

(b) Airy pattern (c) Surface plot of Airy pattern

Figure 15.6: George Biddell Airy and the Airy pattern. (a) During his schooldays, Airy
had been renowned for being skilled ‘in the construction of peashooters and other such
devices’ (see http://www-history.mcs.st-and.ac.uk/Biographies/Airy.html). The
rings surrounding the Airy disk have been likened to the ripples on a pond. Although the
rings phenomenon was already known, Airy wrote the first theoretical treatment of it in
1835 (http://en.wikipedia.org/wiki/Airy_disk). (b) An Airy pattern, viewed as an
image in which the contrast has been set to enhance the appearance of the outer rings
surrounding the Airy disk. (c) A surface plot of an Airy pattern, which shows that the
brightness is much higher within the central region when compared to the rings.
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Almost nothing ‘just works’ –
existing algorithms & software weren’t designed

for the specifics of your case or mine

Even if you do know the concepts,
bioimage analysis is still hard!
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Image analysis is often seen as a black box
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…which means we need
transparent algorithms & software

Image analysis is often seen as a black box
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Doing bioimage analysis effectively
requires communicating across disciplines



Clever algorithms are sometimes part of this –
but these need software to make them accessible

Doing bioimage analysis effectively
requires communicating across disciplines

www.nature.com/scientificreports/
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QuPath (https://qupath.github.io) has been developed to address these needs by o!ering the "rst comprehen-
sive, open source desktop so#ware application speci"cally designed to analyze and explore whole slide imaging 
data. At its core is a cross-platform, multithreaded, tile-based whole slide image viewer, which incorporates exten-
sive annotation and visualization tools. On top of this, QuPath o!ers an array of novel algorithms to provide not 
only ready-made, user-friendly solutions to common, challenging analysis problems in pathology, but also the 
building blocks to create custom work$ows – and link these together for batch processing with powerful scripting 
functionality (Fig. 1). Finally, QuPath enables developers to add their own extensions to solve new challenges and 
applications, and to exchange data in a streamlined manner with existing tools that otherwise provide limited 
whole slide support, such as ImageJ and MATLAB.

A key feature underpinning QuPath’s functionality, and a major technical distinguishing factor between 
QuPath and other bioimaging analysis so#ware, is its hierarchical, ‘object-based’ data model. Here, an ‘object’ 
refers primarily to a structure or region within the image, which may be created and manipulated by either inter-
active drawing tools (e.g. to annotate a particular region of interest) or automated segmentation commands (e.g. 
to detect individual nuclei or cells). However, in addition to representing a region of interest, objects can also be of 
di!erent types (e.g. detection, annotation) and support the assignment of classi"cations, measurements and links 
to ‘parent’ and ‘child’ objects in a manner that can be rapidly queried and manipulated using built-in command or 
scripting. &is generic model allows QuPath to represent and display relationships between very large numbers 
of image objects in an e'cient and intuitive manner across gigapixel images, and support the fast and interactive 
training of object classi"ers using machine learning techniques.

A practical example of this is in the evaluation of the presence, localization and intensity of expression of 
key diagnostic, prognostic and predictive biomarkers in tissue sections. &ese biomarkers are typically detected 
using antibodies and chromogenic based detection systems, and are selectively expressed in tumor cells or in 

Figure 1. Illustration of QuPath’s use and functionality. (a) A typical work$ow for TMA analysis (here, p53) 
demonstrates several of QuPath’s main features (le#-to-right): Creation of a multi-slide project with automated 
TMA dearraying, stain estimation, cell detection and feature computation, trainable cell classi"cation, batch 
processing, and survival analysis. (b) QuPath o!ers a wide range of additional functionality, including support 
for whole face tissue sections and $uorescence image analysis, data exchange with existing so#ware and 
platforms (e.g. ImageJ and MATLAB), scriptable data mining, and rapid generation, visualization and export of 
spatial, morphological and intensity-based features.



A fabulous ecosystem of open source
bioimage analysis software makes this possible…



…but there can still be applications
that require something new



Digital pathology requires specialised software
designed to handle huge, complex images

> 20 billion pixels

Stored at multiple 
resolutions

> 60 GB raw data
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QuPath: Open source software for 
digital pathology image analysis
Peter Bankheadͷ, Maurice B. Loughreyͷǡ, José A. Fernándezͷ, Yvonne Dombrowski,  
Darragh G. McArtͷ, Philip D. Dunne  ͷ, Stephen McQuaidͷǡ, Ronan T. Grayͺ, Liam J. Murrayͺ, 
Helen G. Colemanͺ, Jacqueline A. Jamesͷǡ, Manuel Salto-Tellezͷǡ & Peter W. Hamiltonͷ

QuPath is new bioimage analysis software designed to meet the growing need for a user-friendly, 
extensible, open-source solution for digital pathology and whole slide image analysis. In addition to 
�ơ�������������������������������������������Ƥ���������������Ǧ��������������������������������
tools, QuPath provides researchers with powerful batch-processing and scripting functionality, and an 
extensible platform with which to develop and share new algorithms to analyze complex tissue images. 
	����������ǡ�������ǯ��ƪ������������������������������������������������������������������������������
applications across biomedical research.

!e ability to acquire high resolution digital scans of entire microscopic slides with high-resolution whole slide 
scanners is transforming tissue biomarker and companion diagnostic discovery through digital image analytics, 
automation, quantitation and objective screening of tissue samples. !is area has become widely known as digital 
pathology1,2. Whole slide scanners can rapidly generate ultra-large 2D images or z-stacks in which each plane 
may contain up to 40 GB uncompressed data. Manual subjective scoring of this data by traditional pathologist 
assessment is no longer su"cient to support large-scale tissue biomarker trials, and cannot ensure the high qual-
ity, reproducible, objective analysis essential for reliable clinical correlation and candidate biomarker selection. 
New and powerful so#ware tools are urgently required to ensure that pathological assessment of tissue is practi-
cal, accessible and reliable for biological discovery and the development of clinically-relevant tissue diagnostics.

In recent years, a vibrant ecosystem of open source bioimage analysis so#ware has developed. Led by ImageJ3, 
researchers in multiple disciplines can now choose from a selection of powerful tools, such as Fiji4, Icy5, and 
CellPro$ler6, to perform their image analyses. !ese open source packages encourage users to engage in further 
development and sharing of customized analysis solutions in the form of plugins, scripts, pipelines or work-
%ows – enhancing the quality and reproducibility of research, particularly in the $elds of microscopy and high 
content imaging. !is template for open-source development of so#ware has provided opportunities for image 
analysis to add considerably to translational research by enabling the development of the bespoke analytical 
methods required to address speci$c and emerging needs, which are o#en beyond the scope of existing com-
mercial applications7. However, none of the aforementioned so#ware applications tackle the speci$c visualiza-
tion and computational challenges posed by whole slide images (WSI) and very large 2D data. Rather, open 
source tools for digital pathology to date have comprised libraries to handle digital slide formats (e.g. OpenSlide8, 
Bio-Formats9), so#ware to crop whole slide images into manageable tiles or perform analysis on such cropped 
tiles (e.g. SlideToolKit10, ImmunoRatio11), or web platforms for data management and collaborative analysis (e.g. 
Cytomine12). While each of this makes a valuable contribution, the $eld continues to lack a commonly-accepted, 
open so#ware framework for developing and distributing novel digital pathology algorithms in a manner that is 
immediately accessible for any researcher or pathologist. In practice, this has meant that users without access to 
expensive commercial solutions have had to either resort to ine"cient workarounds (such as image downsam-
pling and cropping) to apply limited quantitative analysis using general open source analysis tools to a subset of 
their data10,13, or to rely primarily on laborious manual evaluation of slides, which is known to have high variabil-
ity and limited reproducibility14,15. It has also made it more di"cult for computational researchers to innovate in 
algorithm development, and to make state-of-the-art analysis methods widely available16.

ͷNorthern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University 
Belfast, Belfast, Northern Ireland, UK. Tissue Pathology, Belfast Health and Social Care Trust, Belfast, Northern 
Ireland, Northern Ireland, UK. Centre for Experimental Medicine, Queen’s University Belfast, Belfast, Northern 
Ireland, UK. ͅ Cancer Epidemiology and Health Services Research Group, Centre for Public Health, Queen’s University 
Belfast, Belfast, Northern Ireland, UK. Correspondence and requests for materials should be addressed to M.S.-T. 
(email: m.salto-tellez@qub.ac.uk) or P.W.H. (email: p.hamilton@qub.ac.uk)
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QuPath exists to fill this gap:
Open source software for whole slide analysis (and more)
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QuPath (https://qupath.github.io) has been developed to address these needs by o!ering the "rst comprehen-
sive, open source desktop so#ware application speci"cally designed to analyze and explore whole slide imaging 
data. At its core is a cross-platform, multithreaded, tile-based whole slide image viewer, which incorporates exten-
sive annotation and visualization tools. On top of this, QuPath o!ers an array of novel algorithms to provide not 
only ready-made, user-friendly solutions to common, challenging analysis problems in pathology, but also the 
building blocks to create custom work$ows – and link these together for batch processing with powerful scripting 
functionality (Fig. 1). Finally, QuPath enables developers to add their own extensions to solve new challenges and 
applications, and to exchange data in a streamlined manner with existing tools that otherwise provide limited 
whole slide support, such as ImageJ and MATLAB.

A key feature underpinning QuPath’s functionality, and a major technical distinguishing factor between 
QuPath and other bioimaging analysis so#ware, is its hierarchical, ‘object-based’ data model. Here, an ‘object’ 
refers primarily to a structure or region within the image, which may be created and manipulated by either inter-
active drawing tools (e.g. to annotate a particular region of interest) or automated segmentation commands (e.g. 
to detect individual nuclei or cells). However, in addition to representing a region of interest, objects can also be of 
di!erent types (e.g. detection, annotation) and support the assignment of classi"cations, measurements and links 
to ‘parent’ and ‘child’ objects in a manner that can be rapidly queried and manipulated using built-in command or 
scripting. &is generic model allows QuPath to represent and display relationships between very large numbers 
of image objects in an e'cient and intuitive manner across gigapixel images, and support the fast and interactive 
training of object classi"ers using machine learning techniques.

A practical example of this is in the evaluation of the presence, localization and intensity of expression of 
key diagnostic, prognostic and predictive biomarkers in tissue sections. &ese biomarkers are typically detected 
using antibodies and chromogenic based detection systems, and are selectively expressed in tumor cells or in 

Figure 1. Illustration of QuPath’s use and functionality. (a) A typical work$ow for TMA analysis (here, p53) 
demonstrates several of QuPath’s main features (le#-to-right): Creation of a multi-slide project with automated 
TMA dearraying, stain estimation, cell detection and feature computation, trainable cell classi"cation, batch 
processing, and survival analysis. (b) QuPath o!ers a wide range of additional functionality, including support 
for whole face tissue sections and $uorescence image analysis, data exchange with existing so#ware and 
platforms (e.g. ImageJ and MATLAB), scriptable data mining, and rapid generation, visualization and export of 
spatial, morphological and intensity-based features.

Bankhead et al. Sci Rep (2017)



QuPath’s goal is to provide…

1. An open source platform for whole slide image analysis

2. New tools to address other bioimage analysis challenges



QuPath’s goal is to provide…

The hard part of analysis 
should be defining the question

(not wrestling with the software)

A single solution can 
solve many problems

(it’s worth trying to do it well)

Analysis should be 
verifiable

(it’s important to be correct)

1. An open source platform for whole slide image analysis

2. New tools to address other bioimage analysis challenges



QuPath’s approach to image analysis

Identify objects

If your application fits with this model,
you might find QuPath a good choice

Start with pixels Query the objects



How QuPath is used



An easy problem in pathology –
how many nuclei are brown?



An easy problem in pathology –
how many nuclei are brown?



An easy problem in pathology –
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An easy problem in pathology –
how many nuclei are brown?



A not so easy problem in pathology –
how many tumour nuclei are brown?



Accurate & reproducible 
Ki67 scoring is hard!



Early QuPath applications focussed on brightfield IHC analysis

Sample image: 
OpenSlide

Calculate
Ki67 positive %
in tumour cells

Combines image 
processing + AI
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Abstract
Ki67 expression has been a valuable prognostic variable in breast cancer, but has not seen broad adoption due to lack of
standardization between institutions. Automation could represent a solution. Here we investigate the reproducibility of Ki67
measurement between three image analysis platforms with supervised classifiers performed by the same operator, by
multiple operators, and finally we compare their accuracy in prognostic potential. Two breast cancer patient cohorts were
used for this study. The standardization was done with the 30 cases of ER+ breast cancer that were used in phase 3 of
International Ki67 in Breast Cancer Working Group initiatives where blocks were centrally cut and stained for Ki67. The
outcome cohort was from 149 breast cancer cases from the Yale Pathology archives. A tissue microarray was built from
representative tissue blocks with median follow-up of 120 months. The Mib-1 antibody (Dako) was used to detect Ki67
(dilution 1:100). HALO (IndicaLab), QuantCenter (3DHistech), and QuPath (open source software) digital image analysis
(DIA) platforms were used to evaluate Ki67 expression. Intraclass correlation coefficient (ICC) was used to measure
reproducibility. Between-DIA platform reproducibility was excellent (ICC: 0.933, CI: 0.879–0.966). Excellent
reproducibility was found between all DIA platforms and the reference standard Ki67 values of Spectrum Webscope
(QuPath-Spectrum Webscope ICC: 0.970, CI: 0.936–0.986; HALO-Spectrum Webscope ICC: 0.968, CI: 0.933–0.985;
QuantCenter-Spectrum Webscope ICC: 0.964, CI: 0.919–0.983). All platforms showed excellent intra-DIA reproducibility
(QuPath ICC: 0.992, CI: 0.986–0.996; HALO ICC: 0.972, CI: 0.924–0.988; QuantCenter ICC: 0.978, CI: 0.932–0.991).
Comparing each DIA against outcome, the hazard ratios were similar. The inter-operator reproducibility was particularly
high (ICC: 0.962–0.995). Our results showed outstanding reproducibility both within and between-DIA platforms, including
one freely available DIA platform (QuPath). We also found the platforms essentially indistinguishable with respect to
prediction of breast cancer patient outcome. Results justify multi-institutional DIA studies to assess clinical utility.

Introduction

Ki67 labeling index (Ki67 LI) is currently one of the most
promising yet controversial biomarkers in breast cancer [1].
The European Society for Medical Oncology (ESMO)

Clinical Practice Guidelines suggests that Ki67 LI may
provide useful information, if the assay can be standardized
[2]. The St. Gallen Consensus Conference in 2017 also
agreed that Ki67 LI could be used to distinguish between
HER2-negative luminal A-like and luminal B-like breast
cancer subtypes [3]. However, the panel also emphasized
the reproducibility issue of Ki67 LI, suggesting calibration
of Ki67 scoring [3]. The American Society of Clinical
Oncology recommended against the use of Ki67 LI for
prognosis in newly diagnosed breast cancer patients
because of lack of reproducibility across laboratories [4].
The International Ki67 in Breast Cancer Working Group
(IKWG) has nevertheless published consensus recommen-
dations for the application of Ki67 IHC in daily practice [5].
According to this group, parameters that predominantly
influence the Ki67 IHC results include pre-analytical

* David L. Rimm
david.rimm@yale.edu

1 Department of Pathology, Yale School of Medicine, New Haven,
CT, USA

2 Precision Oncology, Sanofi US Services Inc, Cambridge, MA,
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Independent comparison of digital pathology software

AZ, USA) according to the consensus criteria established
by the International Ki67 Working Group [5].

In the second cohort, a tissue microarray was built from
representative 10% neutrally buffered FFPE tissue blocks.
Tumor areas were selected by pathologists based on
hematoxylin and eosin-stained slides. Duplicate cores
(each 0.6 mm in diameter) were punched from each case.
The Mib-1 mouse monoclonal antibody (Dako, Carpinteria,
CA, USA) was used to detect Ki67 [16]. This antibody had
been previously validated by our research group [17, 18].
Slides were deparaffinized by heating for 1 h at 60 °C and
soaked in xylene twice for 20 min, and were rehydrated in
ethanol (twice in 100% ethanol for 1 min, twice in 95%
ethanol for 1 min, once in 85% ethanol, and once in 75%
ethanol). Antigen retrieval was performed in a PT module
(LabVision, Fremont, CA, USA) with citrate buffer
(pH 6.0) at 97 °C for 20 min. Endogenous peroxidase
activity was blocked with hydrogen peroxide in methanol
at room temperature for 30 min. Non-specific antigens were

blocked with incubation in 0.3% bovine serum albumin
in Tris-buffered saline/Tween for 30 min. Slides were
then incubated with Ki67 mouse monoclonal antibody
(1:100 dilution) for 1 h at room temperature. Next, slides
were incubated in mouse EnVision reagent (Dako) for 1 h
at room temperature. The EnVision reagent contains a
mouse secondary antibody conjugated to many molecules
of horseradish peroxidase (HRP). Slides were then incu-
bated in hematoxylin and DAB to detect reactions.

Digital image analysis (DIA)

The Aperio ScanScope XT platform was used at ×40 to
digitize the slides. Three different DIA platforms were used
to evaluate Ki67 LI as follows: HALO (IndicaLab, Corrales,
NM, USA), QuantCenter (3DHistech, Budapest, Hungary),
and QuPath (open source software [19]). All software use
color deconvolution, cell segmentation algorithms (e.g.,
Watershed cell detection) and supervised classifiers as

Fig. 1 Representative pictures of digital image analysis (DIA) masks
on a low cellular density breast cancer case (a). The first step of
analysis with HALO (b) and QuantCenter (d) is the training of
machine-learning classification to identify a tissue pattern (in this case
areas of tumor cells) to be scored. Then, the cell segmentation is only
applied in the annotations designated by the machine-learning classi-
fication. Thus, only tumor cells are shown in the DIA masks for both
HALO and QuantCenter. Blue indicates negative tumor cells, and

yellow, orange, and red indicate 1+, 2+, and 3+ positive tumor cells.
In QuPath (c), the order of operations is switched, so that cell seg-
mentation is the first, followed by machine-learning classification to
identify a sub-population of cells to be scored (in this case tumor
cells). Green indicates stromal cells, purple marks immune cells, blue
corresponds to negative tumor cells, and yellow, orange, and red
indicate 1+, 2+, and 3+ positive tumor cells

Ki67 reproducibility using digital image analysis: an inter-platform and inter-operator study

out of the four was a post-doc researcher with expertise in
breast pathology. All the operators used the same color
deconvolution and cell segmentation setting that has been
previously optimized. However, all the operators were free
to train the machine-learning method on the same slide by
annotating cells into the following classes: tumor cells,
stromal cells, and immune cells. At least 4 days later, the
DIA training was repeated on the same slide. To minimize
the effect of intra-platform variability to inter-operator
reliability, the mean Ki67 LI value of the two DIA eva-
luations were compared among the operators.

Statistical analysis

For statistical analysis SPSS 22 software (IBM, Armonk,
USA) was used. The reproducibility among DIA platforms
and operators was estimated by calculating an intraclass
correlation coefficient (ICC). We considered ICC value
between 0.4 and 0.6 as moderate reliability, values between
0.61 and 0.8 indicate good reliability, and values greater
than 0.8 indicate excellent reliability [26]. Kaplan–Meier
analysis supported with log-rank test was executed to
assess prognostic potential. Breast cancer-specific survival

Fig. 3 Comparison of digital image analysis (DIA) platforms and
different training methods. In spaghetti plots (a, b), each line repre-
sents Ki67 LI scores from one DIA platform, with a specific training
method across the 30 cases. The bold black lines show Ki67 scores at

10, 20, and 30%. On the heat map of Ki67 scores (c), each row
represents a case and each column represents a DIA platform, with a
specific training method. Cases are ordered by the median scores
(across DIA platforms)

Ki67 reproducibility using digital image analysis: an inter-platform and inter-operator study

Fig. 6 Kaplan–Meier plots of automated Ki67 scores from the investigated digital image analysis platforms. P values are from Log-rank test
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Ki67 scoring in breast cancer biopsies using HALO, QuPath, QuantPath
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Abstract
Ki67 expression has been a valuable prognostic variable in breast cancer, but has not seen broad adoption due to lack of
standardization between institutions. Automation could represent a solution. Here we investigate the reproducibility of Ki67
measurement between three image analysis platforms with supervised classifiers performed by the same operator, by
multiple operators, and finally we compare their accuracy in prognostic potential. Two breast cancer patient cohorts were
used for this study. The standardization was done with the 30 cases of ER+ breast cancer that were used in phase 3 of
International Ki67 in Breast Cancer Working Group initiatives where blocks were centrally cut and stained for Ki67. The
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AZ, USA) according to the consensus criteria established
by the International Ki67 Working Group [5].

In the second cohort, a tissue microarray was built from
representative 10% neutrally buffered FFPE tissue blocks.
Tumor areas were selected by pathologists based on
hematoxylin and eosin-stained slides. Duplicate cores
(each 0.6 mm in diameter) were punched from each case.
The Mib-1 mouse monoclonal antibody (Dako, Carpinteria,
CA, USA) was used to detect Ki67 [16]. This antibody had
been previously validated by our research group [17, 18].
Slides were deparaffinized by heating for 1 h at 60 °C and
soaked in xylene twice for 20 min, and were rehydrated in
ethanol (twice in 100% ethanol for 1 min, twice in 95%
ethanol for 1 min, once in 85% ethanol, and once in 75%
ethanol). Antigen retrieval was performed in a PT module
(LabVision, Fremont, CA, USA) with citrate buffer
(pH 6.0) at 97 °C for 20 min. Endogenous peroxidase
activity was blocked with hydrogen peroxide in methanol
at room temperature for 30 min. Non-specific antigens were

blocked with incubation in 0.3% bovine serum albumin
in Tris-buffered saline/Tween for 30 min. Slides were
then incubated with Ki67 mouse monoclonal antibody
(1:100 dilution) for 1 h at room temperature. Next, slides
were incubated in mouse EnVision reagent (Dako) for 1 h
at room temperature. The EnVision reagent contains a
mouse secondary antibody conjugated to many molecules
of horseradish peroxidase (HRP). Slides were then incu-
bated in hematoxylin and DAB to detect reactions.

Digital image analysis (DIA)

The Aperio ScanScope XT platform was used at ×40 to
digitize the slides. Three different DIA platforms were used
to evaluate Ki67 LI as follows: HALO (IndicaLab, Corrales,
NM, USA), QuantCenter (3DHistech, Budapest, Hungary),
and QuPath (open source software [19]). All software use
color deconvolution, cell segmentation algorithms (e.g.,
Watershed cell detection) and supervised classifiers as

Fig. 1 Representative pictures of digital image analysis (DIA) masks
on a low cellular density breast cancer case (a). The first step of
analysis with HALO (b) and QuantCenter (d) is the training of
machine-learning classification to identify a tissue pattern (in this case
areas of tumor cells) to be scored. Then, the cell segmentation is only
applied in the annotations designated by the machine-learning classi-
fication. Thus, only tumor cells are shown in the DIA masks for both
HALO and QuantCenter. Blue indicates negative tumor cells, and

yellow, orange, and red indicate 1+, 2+, and 3+ positive tumor cells.
In QuPath (c), the order of operations is switched, so that cell seg-
mentation is the first, followed by machine-learning classification to
identify a sub-population of cells to be scored (in this case tumor
cells). Green indicates stromal cells, purple marks immune cells, blue
corresponds to negative tumor cells, and yellow, orange, and red
indicate 1+, 2+, and 3+ positive tumor cells

Ki67 reproducibility using digital image analysis: an inter-platform and inter-operator study

out of the four was a post-doc researcher with expertise in
breast pathology. All the operators used the same color
deconvolution and cell segmentation setting that has been
previously optimized. However, all the operators were free
to train the machine-learning method on the same slide by
annotating cells into the following classes: tumor cells,
stromal cells, and immune cells. At least 4 days later, the
DIA training was repeated on the same slide. To minimize
the effect of intra-platform variability to inter-operator
reliability, the mean Ki67 LI value of the two DIA eva-
luations were compared among the operators.

Statistical analysis

For statistical analysis SPSS 22 software (IBM, Armonk,
USA) was used. The reproducibility among DIA platforms
and operators was estimated by calculating an intraclass
correlation coefficient (ICC). We considered ICC value
between 0.4 and 0.6 as moderate reliability, values between
0.61 and 0.8 indicate good reliability, and values greater
than 0.8 indicate excellent reliability [26]. Kaplan–Meier
analysis supported with log-rank test was executed to
assess prognostic potential. Breast cancer-specific survival

Fig. 3 Comparison of digital image analysis (DIA) platforms and
different training methods. In spaghetti plots (a, b), each line repre-
sents Ki67 LI scores from one DIA platform, with a specific training
method across the 30 cases. The bold black lines show Ki67 scores at

10, 20, and 30%. On the heat map of Ki67 scores (c), each row
represents a case and each column represents a DIA platform, with a
specific training method. Cases are ordered by the median scores
(across DIA platforms)
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Fig. 6 Kaplan–Meier plots of automated Ki67 scores from the investigated digital image analysis platforms. P values are from Log-rank test

B. Acs et al.

Fig. 6 Kaplan–Meier plots of automated Ki67 scores from the investigated digital image analysis platforms. P values are from Log-rank test

B. Acs et al.

Fig. 6 Kaplan–Meier plots of automated Ki67 scores from the investigated digital image analysis platforms. P values are from Log-rank test

B. Acs et al.

Laboratory Investigation
https://doi.org/10.1038/s41374-018-0123-7

ARTICLE

Ki67 reproducibility using digital image analysis: an inter-platform
and inter-operator study

Balazs Acs 1
● Vasiliki Pelekanou1,2

● Yalai Bai1 ● Sandra Martinez-Morilla1 ● Maria Toki1 ● Samuel C. Y. Leung3
●

Torsten O. Nielsen3
● David L. Rimm1

Received: 21 June 2018 / Revised: 16 August 2018 / Accepted: 16 August 2018
© United States & Canadian Academy of Pathology 2018

Abstract
Ki67 expression has been a valuable prognostic variable in breast cancer, but has not seen broad adoption due to lack of
standardization between institutions. Automation could represent a solution. Here we investigate the reproducibility of Ki67
measurement between three image analysis platforms with supervised classifiers performed by the same operator, by
multiple operators, and finally we compare their accuracy in prognostic potential. Two breast cancer patient cohorts were
used for this study. The standardization was done with the 30 cases of ER+ breast cancer that were used in phase 3 of
International Ki67 in Breast Cancer Working Group initiatives where blocks were centrally cut and stained for Ki67. The
outcome cohort was from 149 breast cancer cases from the Yale Pathology archives. A tissue microarray was built from
representative tissue blocks with median follow-up of 120 months. The Mib-1 antibody (Dako) was used to detect Ki67
(dilution 1:100). HALO (IndicaLab), QuantCenter (3DHistech), and QuPath (open source software) digital image analysis
(DIA) platforms were used to evaluate Ki67 expression. Intraclass correlation coefficient (ICC) was used to measure
reproducibility. Between-DIA platform reproducibility was excellent (ICC: 0.933, CI: 0.879–0.966). Excellent
reproducibility was found between all DIA platforms and the reference standard Ki67 values of Spectrum Webscope
(QuPath-Spectrum Webscope ICC: 0.970, CI: 0.936–0.986; HALO-Spectrum Webscope ICC: 0.968, CI: 0.933–0.985;
QuantCenter-Spectrum Webscope ICC: 0.964, CI: 0.919–0.983). All platforms showed excellent intra-DIA reproducibility
(QuPath ICC: 0.992, CI: 0.986–0.996; HALO ICC: 0.972, CI: 0.924–0.988; QuantCenter ICC: 0.978, CI: 0.932–0.991).
Comparing each DIA against outcome, the hazard ratios were similar. The inter-operator reproducibility was particularly
high (ICC: 0.962–0.995). Our results showed outstanding reproducibility both within and between-DIA platforms, including
one freely available DIA platform (QuPath). We also found the platforms essentially indistinguishable with respect to
prediction of breast cancer patient outcome. Results justify multi-institutional DIA studies to assess clinical utility.

Introduction

Ki67 labeling index (Ki67 LI) is currently one of the most
promising yet controversial biomarkers in breast cancer [1].
The European Society for Medical Oncology (ESMO)

Clinical Practice Guidelines suggests that Ki67 LI may
provide useful information, if the assay can be standardized
[2]. The St. Gallen Consensus Conference in 2017 also
agreed that Ki67 LI could be used to distinguish between
HER2-negative luminal A-like and luminal B-like breast
cancer subtypes [3]. However, the panel also emphasized
the reproducibility issue of Ki67 LI, suggesting calibration
of Ki67 scoring [3]. The American Society of Clinical
Oncology recommended against the use of Ki67 LI for
prognosis in newly diagnosed breast cancer patients
because of lack of reproducibility across laboratories [4].
The International Ki67 in Breast Cancer Working Group
(IKWG) has nevertheless published consensus recommen-
dations for the application of Ki67 IHC in daily practice [5].
According to this group, parameters that predominantly
influence the Ki67 IHC results include pre-analytical
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agreed that Ki67 LI could be used to distinguish between
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cancer subtypes [3]. However, the panel also emphasized
the reproducibility issue of Ki67 LI, suggesting calibration
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Oncology recommended against the use of Ki67 LI for
prognosis in newly diagnosed breast cancer patients
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Since 2017, QuPath has become used worldwide
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QuPath: Open source software for 
digital pathology image analysis
Peter Bankheadͷ, Maurice B. Loughreyͷǡ, José A. Fernándezͷ, Yvonne Dombrowski,  
Darragh G. McArtͷ, Philip D. Dunne  ͷ, Stephen McQuaidͷǡ, Ronan T. Grayͺ, Liam J. Murrayͺ, 
Helen G. Colemanͺ, Jacqueline A. Jamesͷǡ, Manuel Salto-Tellezͷǡ & Peter W. Hamiltonͷ

QuPath is new bioimage analysis software designed to meet the growing need for a user-friendly, 
extensible, open-source solution for digital pathology and whole slide image analysis. In addition to 
�ơ�������������������������������������������Ƥ���������������Ǧ��������������������������������
tools, QuPath provides researchers with powerful batch-processing and scripting functionality, and an 
extensible platform with which to develop and share new algorithms to analyze complex tissue images. 
	����������ǡ�������ǯ��ƪ������������������������������������������������������������������������������
applications across biomedical research.

!e ability to acquire high resolution digital scans of entire microscopic slides with high-resolution whole slide 
scanners is transforming tissue biomarker and companion diagnostic discovery through digital image analytics, 
automation, quantitation and objective screening of tissue samples. !is area has become widely known as digital 
pathology1,2. Whole slide scanners can rapidly generate ultra-large 2D images or z-stacks in which each plane 
may contain up to 40 GB uncompressed data. Manual subjective scoring of this data by traditional pathologist 
assessment is no longer su"cient to support large-scale tissue biomarker trials, and cannot ensure the high qual-
ity, reproducible, objective analysis essential for reliable clinical correlation and candidate biomarker selection. 
New and powerful so#ware tools are urgently required to ensure that pathological assessment of tissue is practi-
cal, accessible and reliable for biological discovery and the development of clinically-relevant tissue diagnostics.

In recent years, a vibrant ecosystem of open source bioimage analysis so#ware has developed. Led by ImageJ3, 
researchers in multiple disciplines can now choose from a selection of powerful tools, such as Fiji4, Icy5, and 
CellPro$ler6, to perform their image analyses. !ese open source packages encourage users to engage in further 
development and sharing of customized analysis solutions in the form of plugins, scripts, pipelines or work-
%ows – enhancing the quality and reproducibility of research, particularly in the $elds of microscopy and high 
content imaging. !is template for open-source development of so#ware has provided opportunities for image 
analysis to add considerably to translational research by enabling the development of the bespoke analytical 
methods required to address speci$c and emerging needs, which are o#en beyond the scope of existing com-
mercial applications7. However, none of the aforementioned so#ware applications tackle the speci$c visualiza-
tion and computational challenges posed by whole slide images (WSI) and very large 2D data. Rather, open 
source tools for digital pathology to date have comprised libraries to handle digital slide formats (e.g. OpenSlide8, 
Bio-Formats9), so#ware to crop whole slide images into manageable tiles or perform analysis on such cropped 
tiles (e.g. SlideToolKit10, ImmunoRatio11), or web platforms for data management and collaborative analysis (e.g. 
Cytomine12). While each of this makes a valuable contribution, the $eld continues to lack a commonly-accepted, 
open so#ware framework for developing and distributing novel digital pathology algorithms in a manner that is 
immediately accessible for any researcher or pathologist. In practice, this has meant that users without access to 
expensive commercial solutions have had to either resort to ine"cient workarounds (such as image downsam-
pling and cropping) to apply limited quantitative analysis using general open source analysis tools to a subset of 
their data10,13, or to rely primarily on laborious manual evaluation of slides, which is known to have high variabil-
ity and limited reproducibility14,15. It has also made it more di"cult for computational researchers to innovate in 
algorithm development, and to make state-of-the-art analysis methods widely available16.

ͷNorthern Ireland Molecular Pathology Laboratory, Centre for Cancer Research and Cell Biology, Queen’s University 
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Ireland, UK. ͅ Cancer Epidemiology and Health Services Research Group, Centre for Public Health, Queen’s University 
Belfast, Belfast, Northern Ireland, UK. Correspondence and requests for materials should be addressed to M.S.-T. 
(email: m.salto-tellez@qub.ac.uk) or P.W.H. (email: p.hamilton@qub.ac.uk)
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TGFβ drives immune evasion in genetically 
reconstituted colon cancer metastasis
Daniele V. F. Tauriello1,2, Sergio Palomo-Ponce1,2, Diana Stork1, Antonio Berenguer-Llergo1, Jordi Badia-Ramentol1, 
Mar Iglesias2,3,4,5, Marta Sevillano1,2, Sales Ibiza1, Adrià Cañellas1, Xavier Hernando-Momblona1,2, Daniel Byrom1, 
Joan A. Matarin1, Alexandre Calon1†, Elisa I. Rivas1†, Angel R. Nebreda1,6, Antoni Riera1,7, Camille Stephan-Otto Attolini1 & 
Eduard Batlle1,2,6

Most patients with colorectal cancer die as a result of the disease 
spreading to other organs. However, no prevalent mutations have 
been associated with metastatic colorectal cancers1,2. Instead, 
particular features of the tumour microenvironment, such as lack 
of T-cell infiltration3, low type 1 T-helper cell (TH1) activity and 
reduced immune cytotoxicity2 or increased TGFβ levels4 predict 
adverse outcomes in patients with colorectal cancer. Here we 
analyse the interplay between genetic alterations and the tumour 
microenvironment by crossing mice bearing conditional alleles 
of four main colorectal cancer mutations in intestinal stem cells. 
Quadruple-mutant mice developed metastatic intestinal tumours 
that display key hallmarks of human microsatellite-stable colorectal 
cancers, including low mutational burden5, T-cell exclusion3 and 
TGFβ-activated stroma4,6,7. Inhibition of the PD-1–PD-L1 immune 
checkpoint provoked a limited response in this model system. By 
contrast, inhibition of TGFβ unleashed a potent and enduring 
cytotoxic T-cell response against tumour cells that prevented 
metastasis. In mice with progressive liver metastatic disease, 
blockade of TGFβ signalling rendered tumours susceptible to 
anti-PD-1–PD-L1 therapy. Our data show that increased TGFβ in 
the tumour microenvironment represents a primary mechanism 
of immune evasion that promotes T-cell exclusion and blocks 
acquisition of the TH1-effector phenotype. Immunotherapies 
directed against TGFβ signalling may therefore have broad 
applications in treating patients with advanced colorectal cancer.

Progression of colorectal cancer (CRC) generally coincides with suc-
cessive alterations in four signalling pathways: WNT, EGFR, p53 and 
TGFβ 5,8. Mice bearing compound mutations in these four pathways 
were recently shown to enable the study of CRC metastasis9–11. We 
crossed mice bearing conditional alleles in homologues of four key 
human CRC mutations: Apcfl/fl, KrasLSL-G12D, Tgfbr2fl/fl and Trp53fl/fl 
 (designated A, K, T and P, respectively)12–15, and targeted gene recom-
bination to intestinal stem cells (ISCs) by means of the Lgr5eGFP-creERT2 
driver16, which we designated L. We generated eight mouse strains 
bearing combinations of these mutations (Fig. 1a). Histopathological 
 scoring demonstrated a stepwise increase in prevalence and severity 
of  invasive adenocarcinomas along the linear progression sequence  
(Fig. 1b, c and Extended Data Fig. 1c–i). Ninety per cent of LAKTP 
mice developed carcinomas, more than half of which breached all intes-
tinal layers (Fig. 1c). These cancers displayed a histology similar to 
human tumours, with mostly medium to high degrees of differentiation 
and abundant desmoplastic reaction (Extended Data Fig. 1d–j). Forty 
per cent of LAKTP mice developed metastases in the liver or lungs, or 
as carcinomatosis (Fig. 1d and Extended Data Fig. 1k–n), with a median 
latency of 66 days. Notably, mice bearing triple-mutant genotypes 

(LAKT, LATP or LAKP) presented with similarly invasive cancers but 
not metastasis (Fig. 1c). In LAKTP mice, T cells extensively infiltrated 
the stroma of normal mucosa and adenomas but were largely excluded 
from adjacent invasive cancers (Fig. 1e and Extended Data Fig. 2a). This 
exclusion phenotype intensified along the CRC mutational sequence 
(Fig. 1e). Invasive margins of compound-mutant  cancers displayed high 
levels of stromal TGFβ  activity, as indicated by the presence of phos-
phorylated SMAD3 (pSMAD3) (Fig. 1f and Extended Data Fig. 2b)  
and expression of CALD1 and IGFBP7 (Extended Data Fig. 2c, d)—
two TGFβ -induced genes expressed in cancer-associated fibroblasts 
(CAFs) that predict poor prognosis4. These genetic CRC models there-
fore reproduce key features of the tumour microenvironment (TME) 
in advanced human CRCs.

We collected fresh samples from multiple primary mouse tumours 
or metastases and established a mouse tumour organoid (MTO)  
biobank (Fig. 1g). Quadruple-mutant LAKTP MTOs expanded  
in vitro independently of factors that stimulate WNT, EGF and TGFβ  
pathways (Fig. 1h and Extended Data Fig. 3). When injected into the 
caecum wall of syngeneic C57BL/6J recipients, these MTOs engrafted 
with a success rate of 10 out of 32 (31%) and progressed to fully invasive  
T3–T4 tumours (Extended Data Fig. 4a, b). Forty per cent of engrafted 
MTOs produced overt liver metastatic disease. We observed prominent 
T-cell exclusion and increased TGFβ  activity in the TME in primary 
tumours from orthotopically transplanted LAKTP MTOs (Extended 
Data Fig. 4c–f). TGFβ -activated stroma is a defining feature of poor 
prognosis consensus molecular subtype 4 (CMS4)7. Transcriptomic 
classification indicated that LAKTP MTOs displayed the CMS4  
phenotype when transplanted in the caecum of syngeneic mice, but not 
when cultured in vitro (Fig. 1i and Extended Data Fig. 5). We obtained 
similar results with triple-mutant MTOs. These findings confirm 
that stromal gene expression is required to identify poor prognosis 
 molecular subtypes4,17–19 (see Supplementary Discussion).

Similar to microsatellite-stable (MSS) human CRCs20, triple- and 
quadruple-mutant MTOs accumulated between 0.5 and 3.5 non- 
synonymous coding mutations per megabase (Extended Data Fig. 6a, b),  
which indicates that the genomes of these tumours evolved  extensively. 
The most prevalent mutational signature in MTOs was signature 1, 
characteristic of MSS CRCs21 (Extended Data Fig. 6c). MTOs and 
human MSS CRCs also displayed similar numbers of predicted 
high-affinity MHC-I-binding neoantigens, whereas mouse CRC 
cell lines CT26 and MC-38 exhibited around 40 times this number  
(Fig. 1j). Experimental liver colonization by MTOs caused an increased 
metastatic burden in the nu/nu background compared to wild-type 
C57BL/6J mice (Fig. 1k), indicating that the tumours were sus-
ceptible to T-cell-mediated adaptive immunosurveillance. Indeed, 
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Tumors are characterized by extensive heterogeneity, but so far 
efforts in understanding this heterogeneity were largely lim-
ited to cancer cells1. These revealed a remarkably complex and 

diverse portrait of cancer cells, with evidence for genetic diversifi-
cation and clonal selection. However, the stromal cells associated 
with tumors, and the complex cellular ecosystem they build to form 
the TME, may themselves be as complex and heterogeneous as the 
cancer cell compartment2,3. Particularly, an increasing number of 
studies suggest that stromal cells, such as macrophages, T cells and 
fibroblasts, are highly heterogeneous4–7. The extent of this hetero-
geneity, how it is shaped by other cells in the tumor and vice versa 
also directly affects them, remains however poorly characterized, 
in part because of a historical lack of methods to study these cells 
in isolation.

Notwithstanding these open questions, the TME is increasingly 
recognized as a cancer therapy target. Non-small-cell lung cancer 
(NSCLC) above all seems to benefit from such novel treatments. 
For instance, antibodies targeting the programmed cell death-1 
receptor (PD-1) or ligand (PD-L1) activate antitumoral responses 
of cytotoxic T cells. In advanced NSCLC patients, these treatments 
demonstrated response rates up to 45%, with some responses being 
remarkably durable8,9. Likewise, the triple angiokinase inhibi-
tor nintedanib, when added to docetaxel, significantly extends 
median overall survival in previously-treated NSCLC patients10. 

Intriguingly, despite the paramount therapeutic importance, the in 
situ phenotype of stromal cells targeted remains elusive.

The advent of single-cell RNA-sequencing (scRNA-seq) enables 
specific profiling of cell populations at the single-cell level. While 
conventional ‘bulk’ RNA-sequencing (RNA-seq) methods process 
millions of cells, averaging out underlying differences, scRNA-seq 
can reveal changes that render each individual cell type unique. 
Moreover, advances in microfluidics enable simultaneous profil-
ing of thousands of cells from a biopsy sample11. This allows unbi-
ased assessment of many heterogeneous stromal and cancer cells at 
the single-cell level, hence revealing complexities of the molecular 
components and differences with counterparts residing in non-
malignant tissue. Previous scRNA-seq studies on glioblastoma1, 
melanoma12 and oligodendroglioma12 focused largely on cancer 
cells, analyzing few stromal cells from tumors, and not from match-
ing non-malignant tissue. By analyzing cells from tumors and 
matching non-malignant tissue at a much higher scale, we uncover 
stromal cell heterogeneity and adaptation to the tumor.

Results
scRNA-seq and cell typing of non-malignant lungs and lung 
tumors. Five patients with untreated, non-metastatic NSCLC of 
the squamous cell (lung squamous carcinoma (LUSC)) or adeno-
carcinoma subtype (lung adenocarcinoma (LUAD)) underwent 

Phenotype molding of stromal cells in the lung 
tumor microenvironment
Diether Lambrechts! !1,2*, Els Wauters3,4, Bram Boeckx1,2, Sara Aibar! !5,6, David Nittner7,8, Oliver Burton6,9, 
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Cancer cells are embedded in the tumor microenvironment (TME), a complex ecosystem of stromal cells. Here, we present a 
52,698-cell catalog of the TME transcriptome in human lung tumors at single-cell resolution, validated in independent samples 
where 40,250 additional cells were sequenced. By comparing with matching non-malignant lung samples, we reveal a highly 
complex TME that profoundly molds stromal cells. We identify 52 stromal cell subtypes, including novel subpopulations in cell 
types hitherto considered to be homogeneous, as well as transcription factors underlying their heterogeneity. For instance, we 
discover fibroblasts expressing different collagen sets, endothelial cells downregulating immune cell homing and genes coregu-
lated with established immune checkpoint transcripts and correlating with T-cell activity. By assessing marker genes for these 
cell subtypes in bulk RNA-sequencing data from 1,572 patients, we illustrate how these correlate with survival, while immuno-
histochemistry for selected markers validates them as separate cellular entities in an independent series of lung tumors. Hence, 
in providing a comprehensive catalog of stromal cells types and by characterizing their phenotype and co-optive behavior, this 
resource provides deeper insights into lung cancer biology that will be helpful in advancing lung cancer diagnosis and therapy.
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Abstract Lymphoid and myeloid cells are abundant in the tumor microenvironment, can be
quantified by immunohistochemistry and shape the disease course of human solid tumors. Yet,
there is no comprehensive understanding of spatial immune infiltration patterns (‘topography’)
across cancer entities and across various immune cell types. In this study, we systematically
measure the topography of multiple immune cell types in 965 histological tissue slides from N =
177 patients in a pan-cancer cohort. We provide a definition of inflamed (‘hot’), non-inflamed
(‘cold’) and immune excluded patterns and investigate how these patterns differ between immune
cell types and between cancer types. In an independent cohort of N = 287 colorectal cancer
patients, we show that hot, cold and excluded topographies for effector lymphocytes (CD8) and
tumor-associated macrophages (CD163) alone are not prognostic, but that a bivariate classification
system can stratify patients. Our study adds evidence to consider immune topographies as
biomarkers for patients with solid tumors.
DOI: https://doi.org/10.7554/eLife.36967.001
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SUMMARY

Mammary stem and progenitor cells are essential for mammary gland homeostasis and are also candidates for cells of origin ofmammary

tumors. Here, we have investigated the function of the protein kinase p38a in the mammary gland usingmice that delete this protein in

the luminal epithelial cells. We show that p38a regulates the fate of luminal progenitor cells through modulation of the transcription

factor RUNX1, an important controller of the estrogen receptor-positive cell lineage. We also provide evidence that the regulation of

RUNX1by p38a probably involves the kinaseMSK1,which phosphorylates histoneH3 at the RUNX1promoter.Moreover, using amouse

model for breast cancer initiated by luminal cells, we show that p38a downregulation inmammary epithelial cells reduces tumor burden,

which correlates with decreased numbers of tumor-initiating cells. Collectively, our results define a key role for p38a in luminal progen-

itor cell fate that affects mammary tumor formation.

INTRODUCTION

The mammary gland is a complex organ that undergoes
constant remodeling during the different developmental
stages (Hennighausen and Robinson, 2005). During the
last decade, we have learned about the composition and
cellular hierarchy of the mammary epithelium. Mammary
stem cells give rise to threemajor cellular lineages: estrogen
receptor (ER)+ cells and ER! or milk-secreting cells in the
luminal compartment, and myoepithelial cells in the basal
compartment (Giraddi et al., 2015; Rodilla et al., 2015; Van
Keymeulen et al., 2011). The regulatory network that or-
chestrates the lineage specification and differentiation
of the mammary epithelial cells is not fully understood.
Given that stem and progenitor cells are strong candidates
for cells of origin of cancer, the identification of regulatory
components is crucial to improving our understanding
of the mechanism that underlies breast cancer
(Visvader, 2011).
The protein kinase p38a has been implicated in the con-

trol of tissue homeostasis in various organs. There is evi-
dence that p38a signaling in mammalian epithelial cells
can inhibit proliferation and induce differentiation (Cua-
drado and Nebreda, 2010). A possible role for p38a in the
regulation of mammary morphogenesis has been pro-
posed, based on the treatment of established cell lines
with SB203580, a compound that inhibits p38a and the
related kinase p38b, as well as in the analysis of genetically
modified mice that are deficient for the p38a activators
MKK3 and MMK6 (Wen et al., 2011). Furthermore, p38a
has been implicated in the regulation of stem cell prolifer-
ation and differentiation in lung and the hematopoietic
system (Karigane et al., 2016; Ventura et al., 2007). Several

reports using p38a-deficient mice have also revealed that
p38a can function as a tumor suppressor in lung, liver,
and colon (Gupta et al., 2014; Hui et al., 2007; Ventura
et al., 2007). Moreover, the use of SB203580 or the genetic
modification of p38a regulators, such as MKK3, MKK6, or
the Wip1/PPM1D phosphatase, have provided evidence
that p38a in mammary epithelial cells can suppress tumor
initiation (Bulavin et al., 2004; Demidov et al., 2007; Wen
et al., 2011). On the other hand, tumors induced by the
expression of polyoma middle T antigen (PyMT) in the
mouse mammary epithelia, which are initiated by luminal
cells, seem to rely on p38a for normal growth based on re-
sults using chemical inhibitors (Pereira et al., 2013).
We have used mice that delete p38a in the luminal cell

compartment to investigate the function of p38a in the
mammary gland. We found that p38a deficiency reduces
the number of mammary progenitor cells and the ER+ cell
lineage. Moreover, these mice show reduced mammary
tumorigenesis induced by PyMT expression, which corre-
lates with a decreased pool of tumor-initiating cells (TICs).

RESULTS

p38aRegulatesMammary Luminal Progenitor Cells in
Homeostasis
To study the role of p38a in mammary gland homeostasis,
we crossed animals carrying a conditional allele of p38a
(p38a(lox/lox)) (Heinrichsdorff et al., 2008; Ventura et al.,
2007) with transgenic mice expressing Cre under control
of the mouse mammary tumor virus (MMTV) promoter
(Wagner et al., 2001). The p38a(lox/lox);MMTV-Cre mice
showed downregulation of p38a in the epithelium of the
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Abstract

Purpose: WST11 vascular targeted photodynamic therapy
(VTP) is a local ablation approach relying upon rapid, free
radical-mediated destruction of tumor vasculature. A phase III
trial showed that VTP significantly reduced disease progression
when compared with active surveillance in patients with low-risk
prostate cancer. The aim of this study was to identify a druggable
pathway that could be combined with VTP to improve its efficacy
and applicability to higher risk prostate cancer tumors.

Experimental Design: Transcriptome analysis of VTP-treated
tumors (LNCaP-AR xenografts) was used to identify a candidate
pathway for combination therapy. The efficacy of the combina-
tion therapy was assessed in mice bearing LNCaP-AR or VCaP
tumors.

Results: Gene set enrichment analysis identifies the enrich-
ment of androgen-responsive gene sets within hours after VTP
treatment, suggesting that the androgen receptor (AR) may be a

viable target in combination with VTP. We tested this hypoth-
esis in mice bearing LNCaP-AR xenograft tumors by using
androgen deprivation therapy (ADT), degarelix, in combina-
tion with VTP. Compared with either ADT or VTP alone, a
single dose of degarelix in concert with VTP significantly
inhibited tumor growth. A sharp decline in serum prostate-
specific antigen (PSA) confirmed AR inhibition in this group.
Tumors treated by VTP and degarelix displayed intense terminal
deoxynucleotidyl transferase–mediated dUTP nick end labeling
staining 7 days after treatment, supporting an increased apo-
ptotic frequency underlying the effect on tumor inhibition.

Conclusions: Improvement of local tumor control following
androgen deprivation combined with VTP provides the ratio-
nale and preliminary protocol parameters for clinical trials
in patients presented with locally advanced prostate cancer.
Clin Cancer Res; 24(10); 2408–16. !2018 AACR.

Introduction
Current treatment choices for localized prostate cancer range

from active surveillance to radical therapies (prostatectomy,
external beam radiation; ref. 1). However, active surveillance can
present a risk of progression for patients with higher-risk disease,

whereas for some cancers, radical therapies may be an unneces-
sarily aggressive overtreatment and are associated with notable
side effects (2–4). Therefore, there has been interest in developing
partial gland ablation such as focal therapies that are less aggres-
sive than radical therapies as an alternative treatment option for
these patients (5). Vascular targeted photodynamic therapy (VTP)
destroys targeted tissues using padeliporfin (TOOKAD Soluble,
WST11) as a photosensitizer in association with a low-power
near-infrared laser light in the presence of oxygen. Padeliporfin is
intravenously infused and circulates systemically with no extra-
vagation out of the circulation until clearance. Illumination
confined to the cancerous lobe of the prostate using transperineal
optic fibers induces ultrafast electron transfer to oxygenmolecules
in the circulation. The resulting short-lived super oxide and
hydroxyl radicals (6, 7) initiate rapid destruction of the targeted
vasculature followed by a cascade of biological events that end
with coagulative necrosis of the tumor (6–8).

Positive outcomes from patients with low-risk, localized pros-
tate cancer [Grade Group 1 (Gleason Score ! 6), no prior
treatment] treated with VTP have recently been reported in U.S.
and European multicenter phase II and III studies. In follow-up
biopsies at 6 months after prostate hemiablation, up to 80.6% of
patients were negative for cancer (9), and there was a decreased
disease progression at 24 months when compared with active
surveillance (28% vs. 58%, respectively; HR, 0.34; 95% confi-
dence interval, 0.24–0.46; P < 0.0001; ref. 10). After a median
follow-up of 68 months, 82% of patients treated with VTP were
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