Highlights on key polar processes driving the Antarctic surface mass balance

Cécile AGOSTA

Christoph Kittel, Charles Amory, Xavier Fettweis

Cécile AGOSTA – AGU100 – C34A

1

Highlights on key polar processes driving the Antarctic surface mass balance

Study questions

What are the processes controlling the Antarctic SMB?

What are the differences between MAR and other models? What are the processes correctly or incorrectly simulated?

Method

Regional modeling: MAR forced by 7 reanalyses Model-Observation comparison

Model intercomparison: MAR vs RACMO, MAR vs reanalyses

Highlights on key polar processes driving the Antarctic surface mass balance

Study questions

What are the processes controlling the Antarctic SMB?

What are the differences between MAR and other models? What are the processes correctly or incorrectly simulated?

Method

Regional modeling: MAR forced by 7 reanalyses

Model-Observation comparison

Model intercomparison: MAR vs RACMO, MAR vs reanalyses

Agosta et al. (2019), The Cryosphere

Modeling the Antarctic surface mass balance with MAR Resolution + Snowpack + Boundary layer + Microphysics \implies SMB

Snowfall sublimation in surface layers: a large mass sink

adapted from Grazioli et al. (2017)

Grazioli et al. (2017): 300 Gt/yr for 2015

Snowfall sublimation in surface layers: a large mass sink

Grounded ice sheet atmospheric sublimation for 2015: Grazioli et al. (2017): 300 Gt/yr vs. MAR: 360 Gt/yr vs. RACMO2 130 Gt/yr Cécile AGOSTA – AGU100 – C34A Highlights on key polar processes driving the Antarctic surface mass balance

Study questions

What are the processes controlling the Antarctic SMB?

Are reanalyses SMB simulations reliable? Are climate models SMB simulations reliable?

Method

Regional modeling: MAR forced by 7 reanalyses Model-Observation comparison

Model intercomparison: MAR vs RACMO, MAR vs reanalyses

Reanalyses (1979-2017)

SMB Reanalyses = Precipitation - Evaporation

Reanalyses (1979-2017)

SMB Reanalyses = Precipitation - Evaporation

Multi-reanalyses forcing of MAR (1979-2017)

SMB MAR(Reanalyses) = Precipitation - Evaporation - Runoff

NCEP and 20CR large scale circulation sufficiently reliable for regional downscaling

MAR vs Reanalyses for SMB (1979-2017)

MAR vs Reanalyses for SMB (1979-2017) Rean – MARmean

REANmean – MARmean

MAR vs Reanalyses for SMB (1979-2017) Rean – MARmean

REANmean – MARmean

RACMO2 – MARmean

REANmean – MARmean ▲ 150 ∆SMB

50

0

-50

-100

-150

REANmean – MARmean ▲ 150 ∆SMB

SMB along transect (kg m⁻² yr⁻¹)

50

0

-50

-100

-150

MAR advects precipitation further inland

- Clouds-precipitation conversion
- Precipitation fall speed

Medley et al. (2014) radar transects

CHINARE, Ding et al. (2011), Wang et al. (2016)

12

Too much accumulation in MAR at elevation > 3000 m

- High elevation SMB is controlled by Clausius-Clapeyron
 - Overestimated supersaturation? (Genthon et al. 2017)

Conclusions

- MARv3.6 correctly model the coast-to-inland SMB gradient, independently of the reanalysis forcing.
- Cloud/precipitation conversion and fall speed have large impact on the surface mass balance pattern.
- Sublimation of precipitation, ~360 Gt yr⁻¹ in MAR, is probably underestimated in reanalyses.
- Supersaturation to be improved
- Drifting snow sublimation still to be quantified

MAR website: mar.cnrs.fr

Agosta et al. (2019), The Cryosphere

Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes

Cécile Agosta^{D1,2,3}, Charles Amory^{D1}, Christoph Kittel^{D1}, Anais Orsi^{D2}, Vincent Favier^{D3}, Hubert Gallée³, Michiel R. van den Broeke^{D4}, Jan T. M. Lenaerts^{D4,5}, Jan Melchior van Wessem^{D4}, Willem Jan van de Berg^{D4}, and Xavier Fettweis^{D1}

MAR vs. reanalyses: added value of a polar RCM

The interannual variability is reanalyse-dependent

Interannual variability of precipitation (MAR 1979-2015)

Cécile AGOSTA – AGU100 – C34A

Reanalyses (1979-2017)

ΔSurface height: Reanalyses – bedmap2

100 (kg m⁻² yr⁻¹)

SMB along transect (kg m⁻² yr⁻¹)

MAR advects precipitation further inland

- **Clouds-precipitation conversion**
- Precipitation fall speed

Medley et al. (2014) radar transects

Cécile AGOSTA – AGU100 – C34A

REANmean – MARmean ▲ 150 ∆SMB

SMB along transect (kg m⁻² yr⁻¹

50

0

-50

-100

-150

REANmean – MARmean ▲ 150 ∆SMB

100 (kg m⁻² yr⁻¹)

50

0

-50

Effect of elevation on precipitation Clausius-Clapeyron

12

Snowfall pattern: cloud/precipitation conversion and precipitation advection

(MAR-RACMO2) max. snowfall before sublimation in the atmosphere

Agosta et al. (2019), The Crysophere

Snowfall pattern: cloud/precipitation conversion and precipitation advection

(MAR-RACMO2) max. snowfall before sublimation in the atmosphere

