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Abstract. We calculate the automorphism group of certain Enriques sur-

faces. The Enriques surfaces that we investigate include very general n-nodal
Enriques surfaces and very general cuspidal Enriques surfaces. We also de-

scribe the action of the automorphism group on the set of smooth rational

curves and on the set of elliptic fibrations.

1. Introduction

A central theme in algebraic geometry is to study varieties using convex geome-
try. The cone of curves of a variety is the convex hull of the numerical equivalence
classes of curves. Its dual is the cone of nef line bundles. Much of the birational ge-
ometry of a variety is encoded in these cones and their interplay with the canonical
divisor. While for Fano varieties the nef cone is rational polyhedral [15, Theo-
rem 3.7], in general the nef cone is not well understood. For instance it can have
infinitely many faces or be round.

The Morrison-Kawamata cone conjecture [20, 12] gives a clear picture of the
effective nef cone of a Calabi-Yau variety. It predicts that the action of the auto-
morphism group on the effective nef cone admits a fundamental domain which is a
rational polyhedral cone.

The conjecture is wide open in dimension three and beyond [18]. But it has been
verified for K3 surfaces by Sterk [33], and for Enriques surfaces by Namikawa [21].
It follows that an Enriques surface admits up to the action of the automorphism
group only finitely many smooth rational curves, finitely many elliptic fibrations,
finitely many projective models of a given degree and its automorphism group is
finitely generated and in fact finitely presented [19, Corollaries 4.15, 4.16].

Naturally, enumerative questions arise:

• Can one explicitly describe a fundamental domain?
• How many smooth rational curves, elliptic fibrations or projective models
are there up to the action of the automorphism group?

• Can one give generators for the automorphism group?

This has been answered for very general Enriques surfaces by Barth–Peters [2]
and for very general nodal Enriques surfaces by Cossec–Dolgachev [8] (see also the
works of Allcock [1] and Peters–Sterk [25]).

To generalize the aforementioned results of Barth, Peters, Cossec and Dolgachev
to Enriques surfaces with more nodes, we introduce the notion of (τ, τ̄)-generic
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Enriques surfaces. This notion is closely related to the root invariant introduced
by Nikulin [24]. See the next subsection for the precise definition. For instance
the very general Enriques surface is (0, 0)-generic, a very general nodal Enriques
surface is (A1, A1)-generic and if Y is very general in the moduli of Enriques surfaces
containing n disjoint smooth rational curves, then Y is (nA1, nA1)-generic. If Y
is very general in the moduli of Enriques surfaces containing two smooth rational

curves whose dual graph is c c (that is, Y is a very general cuspidal Enriques
surface), then Y is (A2, A2)-generic.

In this work we consider enumerative aspects of the Morrison-Kawamata cone
conjecture for complex Enriques surfaces. Our first main result is Theorem 3.3. It
provides a general formula for the volume of the fundamental domain of the action
on the nef cone on an Enriques surface Y under mild genericity assumptions on
Y . Next we give algorithms to compute generators for the automorphism group
Aut(Y ), a fundamental domain for Aut(Y ) on the nef and big cone Nef(Y ) and
orbit representatives for its action on

R(Y ) := the set of smooth rational curves on Y ,

E(Y ) := the set of elliptic fibrations Y → P1.

We apply Theorem 3.3 and the aforementioned algorithms to (τ, τ̄)-generic Enriques
surfaces. This results in our second, series of main results: Theorem 1.15 expresses
the volume of the fundamental domain of Aut(Y ) on the nef cone Nef(Y ) in terms
of the Weyl group of τ , Theorem 1.16 relates the orbits of Aut(Y ) on the set of
smooth rational curves R(Y ) to the connected components of the Dynkin diagram
τ and Theorem 1.18 counts the Aut(Y )-orbits of the set of elliptic fibrations E(Y )
and their fiber types.

Our new idea is the lattice theoretic result obtained in [6] (see also Dolgachev–
Kondo [9, Chapter 10]). For a lattice L with the intersection form 〈−,−〉, let
L(m) denote the lattice with the same underlying Z-module as L and with the
intersection form m 〈−,−〉. A lattice L of rank n > 1 is said to be hyperbolic if the
signature is (1, n− 1). For a positive integer n with n mod 8 = 2, let Ln denote an
even unimodular hyperbolic lattice of rank n, which is unique up to isomorphism.
Borcherds [4], [5] developed a method to calculate the orthogonal group of an even
hyperbolic lattice S by embedding S primitively into L26 and using the result of
Conway [7]. This method has been applied to the study of automorphism groups of
K3 surfaces by many authors. This method, however, often requires impractically
heavy computation (see, for example, [11] and [28]).

On the other hand, in [6], we have classified all primitive embeddings of L10(2)
into L26 and showed that they have a remarkable property (see Theorems 4.2
and 4.3). This property enables us to calculate the automorphism group Aut(Y )
efficiently and explicitly for (τ, τ̄)-generic Enriques surfaces Y . See Remark 6.1.

1.1. Definition of (τ, τ̄)-generic Enriques surfaces. First, we define (τ, τ̄)-
generic Enriques surfaces. Let L be a lattice. We let the group O(L) of isometries
of L act on L from the right, and write the action as v 7→ vg for v ∈ L ⊗ R and
g ∈ O(L). We have a natural identification O(L) = O(L(m)) for any non-zero
integer m. A vector v of a lattice is called a k-vector if 〈v, v〉 = k. A (−2)-vector
is called a root.
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Definition 1.1. An ADE-lattice is an even negative definite lattice generated by
roots. An ADE-lattice R has a basis consisting of roots whose dual graph is a
Dynkin diagram of an ADE-type. This ADE-type is denoted by τ(R).

A positive half-cone of a hyperbolic lattice L is one of the two connected com-
ponents of {x ∈ L⊗ R | 〈x, x〉 > 0 }. Let P be a positive half-cone of a hyperbolic
lattice L. We put

OP(L) := { g ∈ O(L) | Pg = P }.
In [29], we classified the ADE-sublattices of L10 up to the action of OP(L10). Let
R be an ADE-sublattice of L10, and R the primitive closure of R in L10. It turned
out that R is also an ADE-sublattice of L10.

Proposition 1.2 ([29]). (1) Let R′ be another ADE-sublattice of L10 with the

primitive closure R
′
. Then R and R′ are in the same orbit under the action of

OP(L10) if and only if (τ(R), τ(R)) = (τ(R′), τ(R
′
)).

(2) The pair (τ, τ̄) of ADE-types is equal to (τ(R), τ(R)) of an ADE-sublattice
R of L10 if and only if (τ, τ̄) is one of the 184 pairs in Table 1.1. □

Let R be an ADE-sublattice of L10. We denote by ιR : R ↪→ L10 the inclu-
sion. We define MR to be the Z-submodule of (L10(2) ⊕ R(2)) ⊗ Q generated by
L10(2) and (ιR(v),±v)/2 ∈ (L10 ⊕ R) ⊗ Q, where v runs through R, and equip
MR with an intersection form by extending the intersection form of L10(2)⊕R(2).
By definition, MR is an even hyperbolic lattice with a canonical primitive em-
bedding $R : L10(2) ↪→ MR. If R′ is another ADE-sublattice of L10 such that

(τ(R′), τ(R
′
)) = (τ(R), τ(R)), then, by Proposition 1.2, we have an isometry

g : L10
∼−→ L10 that induces an isometry g|R : R

∼−→ R′, and hence we obtain an

isometry g̃ : MR
∼−→ MR′ induced by g ⊕ g|R, which makes the following diagram

commutative:

L10(2)
ϖR
↪→ MR

g ↓≀ g̃ ↓≀
L10(2)

ϖR′
↪→ MR′ .

By an explicit calculation, we obtain the following:

Proposition 1.3. Let R be an ADE-sublattice of L10. Then the orthogonal com-

plement of $R : L10(2) ↪→ MR is isomorphic to R̃(2) for some ADE-lattice R̃. In

the 4th column of Table 1.1, we give the ADE-type τ(R̃) of R̃. □
Let Y be an Enriques surface. We denote by SY the lattice of numerical equiv-

alence classes of divisors of Y . It is well-known that SY is isomorphic to L10. Let
π : X → Y be the universal covering of Y , and let SX denote the lattice of nu-
merical equivalence classes of divisors of the K3 surface X. Then the étale double
covering π induces a primitive embedding

π∗ : SY (2) ↪→ SX .

Definition 1.4. Let (τ, τ̄) be one of the 184 pairs in Table 1.1. An Enriques surface
Y is said to be (τ, τ̄)-generic if the following conditions are satisfied.

(i) Let TX be the transcendental lattice of X, and ω a non-zero holomorphic
2-form of X, so that we have Cω = H2,0(X) ⊂ TX ⊗ C. Then the group

O(TX , ω) := { g ∈ O(TX) | g preserves Cω ⊂ TX ⊗ C }
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No. τ(R) τ(R) τ(R̃) exist c(τ,τ̄) rat irec

1 A1 A1 A1 1 1 96C
2 2A1 2A1 2A1 1 2 96C
3 A2 A2 A2 1 1 96C
4 3A1 3A1 3A1 1 3 96C
5 A2 + A1 A2 + A1 A2 + A1 1 2 96C
6 A3 A3 A3 1 1 96C
7 4A1 4A1 4A1 1 4 96C
8 4A1 D4 D4 1 4 96C
9 A2 + 2A1 A2 + 2A1 A2 + 2A1 1 3 96C
10 A3 + A1 A3 + A1 A3 + A1 1 2 96C
11 2A2 2A2 2A2 1 2 96C
12 A4 A4 A4 1 1 40E
13 D4 D4 D4 1 1 96A
14 5A1 5A1 5A1 1 5 96C
15 5A1 D4 + A1 D4 + A1 1 5 96C
16 A2 + 3A1 A2 + 3A1 A2 + 3A1 1 4 96C
17 A3 + 2A1 A3 + 2A1 A3 + 2A1 1 3 96C
18 A3 + 2A1 D5 D5 1 3 96C
19 2A2 + A1 2A2 + A1 2A2 + A1 1 3 96C
20 A4 + A1 A4 + A1 A4 + A1 1 2 40E
21 D4 + A1 D4 + A1 D4 + A1 1 2 96A
22 A3 + A2 A3 + A2 A3 + A2 1 2 96C
23 A5 A5 A5 1 1 40E
24 D5 D5 D5 1 1 40A
25 6A1 D4 + 2A1 D4 + 2A1 1 6 96C
26 6A1 D6 D6 × 1 6 96C
27 A2 + 4A1 A2 + 4A1 A2 + 4A1 1 5 96C
28 A2 + 4A1 D4 + A2 D4 + A2 1 5 96C
29 A3 + 3A1 A3 + 3A1 A3 + 3A1 1 4 96C
30 A3 + 3A1 D5 + A1 D5 + A1 1 4 96C
31 2A2 + 2A1 2A2 + 2A1 2A2 + 2A1 1 4 96C
32 A4 + 2A1 A4 + 2A1 A4 + 2A1 1 3 40E
33 D4 + 2A1 D4 + 2A1 D4 + 2A1 1 3 96A
34 D4 + 2A1 D6 D6 1 3 96A
35 A3 + A2 + A1 A3 + A2 + A1 A3 + A2 + A1 1 3 96C
36 A5 + A1 A5 + A1 A5 + A1 1 2 40E
37 A5 + A1 E6 E6 1 2 40E
38 D5 + A1 D5 + A1 D5 + A1 1 2 40A
39 3A2 3A2 3A2 1 3 96C
40 3A2 E6 3A2 1 3 96C
41 A4 + A2 A4 + A2 A4 + A2 1 2 40E
42 D4 + A2 D4 + A2 D4 + A2 1 2 96A
43 2A3 2A3 2A3 1 2 96A
44 2A3 D6 D6 1 2 96C
45 A6 A6 A6 1 1 40C
46 D6 D6 D6 1 1 40A
47 E6 E6 E6 1 1 20E
48 7A1 D6 + A1 D6 + A1 × 1 7 96C
49 7A1 E7 E7 × 1 7 96A
50 A2 + 5A1 D4 + A2 + A1 D4 + A2 + A1 1 6 96C
51 A3 + 4A1 D5 + 2A1 D5 + 2A1 1 5 96C
52 A3 + 4A1 D4 + A3 D4 + A3 1 5 96A
53 A3 + 4A1 D7 D7 × 1 5 96C
54 2A2 + 3A1 2A2 + 3A1 2A2 + 3A1 1 5 96C
55 A4 + 3A1 A4 + 3A1 A4 + 3A1 1 4 40E
56 D4 + 3A1 D6 + A1 D6 + A1 1 4 96A
57 D4 + 3A1 E7 E7 × 1 4 96A
58 A3 + A2 + 2A1 A3 + A2 + 2A1 A3 + A2 + 2A1 1 4 96C
59 A3 + A2 + 2A1 D5 + A2 D5 + A2 1 4 96C
60 A5 + 2A1 A5 + 2A1 A5 + 2A1 1 3 40E
61 A5 + 2A1 E6 + A1 E6 + A1 1 3 40E
62 D5 + 2A1 D5 + 2A1 D5 + 2A1 1 3 40A
63 D5 + 2A1 D7 D7 1 3 40A
64 3A2 + A1 3A2 + A1 3A2 + A1 1 4 96C
65 3A2 + A1 E6 + A1 3A2 + A1 1 4 96C
66 A4 + A2 + A1 A4 + A2 + A1 A4 + A2 + A1 1 3 40E
67 D4 + A2 + A1 D4 + A2 + A1 D4 + A2 + A1 1 3 96A
68 2A3 + A1 2A3 + A1 2A3 + A1 1 3 96A
69 2A3 + A1 D6 + A1 D6 + A1 1 3 96C
70 2A3 + A1 E7 D6 + A1 1 3 96C

Table 1.1. ADE-sublattices of L10 (continues)
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No. τ(R) τ(R) τ(R̃) exist c(τ,τ̄) rat irec

71 A6 + A1 A6 + A1 A6 + A1 1 2 40C
72 D6 + A1 D6 + A1 D6 + A1 1 2 40A
73 D6 + A1 E7 E7 1 2 40A
74 E6 + A1 E6 + A1 E6 + A1 1 2 20E
75 A3 + 2A2 A3 + 2A2 A3 + 2A2 1 3 96C
76 A5 + A2 A5 + A2 A5 + A2 1 2 40E
77 A5 + A2 E7 A5 + A2 1 2 40E
78 D5 + A2 D5 + A2 D5 + A2 1 2 40A
79 A4 + A3 A4 + A3 A4 + A3 1 2 40E
80 D4 + A3 D4 + A3 D4 + A3 1 2 20F
81 D4 + A3 D7 D7 1 2 96A
82 A7 A7 A7 1 1 20D
83 A7 E7 E7 1 1 40C
84 D7 D7 D7 1 1 20B
85 E7 E7 E7 1 ×2 20A
86 8A1 E7 + A1 E7 + A1 × 1 8 96A
87 8A1 D8 D8 × 1 8 96B
88 8A1 E8 E8 × 2 − −
89 A2 + 6A1 D6 + A2 D6 + A2 × 1 7 96C
90 A3 + 5A1 D7 + A1 D7 + A1 × 1 6 96C
91 A4 + 4A1 D4 + A4 D4 + A4 1 5 40E
92 D4 + 4A1 E7 + A1 E7 + A1 × 1 5 96A
93 D4 + 4A1 D8 D8 × 1 5 96A
94 D4 + 4A1 E8 E8 × 2 5 96A
95 A3 + A2 + 3A1 D5 + A2 + A1 D5 + A2 + A1 1 5 96C
96 A5 + 3A1 E6 + 2A1 E6 + 2A1 1 4 40E
97 D5 + 3A1 D7 + A1 D7 + A1 1 4 40A
98 3A2 + 2A1 E6 + 2A1 3A2 + 2A1 1 5 96C
99 A4 + A2 + 2A1 A4 + A2 + 2A1 A4 + A2 + 2A1 1 4 40E
100 D4 + A2 + 2A1 D6 + A2 D6 + A2 1 4 96A
101 2A3 + 2A1 E7 + A1 D6 + 2A1 1 4 96C
102 2A3 + 2A1 D5 + A3 D5 + A3 1 4 96A
103 2A3 + 2A1 D8 D8 × 1 4 96C
104 2A3 + 2A1 E8 D8 × 1 4 96C
105 A6 + 2A1 A6 + 2A1 A6 + 2A1 1 3 40C
106 D6 + 2A1 E7 + A1 E7 + A1 1 3 40A
107 D6 + 2A1 D8 D8 1 3 40A
108 D6 + 2A1 E8 E8 × 2 3 40A
109 E6 + 2A1 E6 + 2A1 E6 + 2A1 1 3 20E
110 A3 + 2A2 + A1 A3 + 2A2 + A1 A3 + 2A2 + A1 1 4 96C
111 A5 + A2 + A1 A5 + A2 + A1 A5 + A2 + A1 1 3 40E
112 A5 + A2 + A1 E7 + A1 A5 + A2 + A1 1 3 40E
113 A5 + A2 + A1 E6 + A2 E6 + A2 1 3 40E
114 A5 + A2 + A1 E8 E6 + A2 1 3 40E
115 D5 + A2 + A1 D5 + A2 + A1 D5 + A2 + A1 1 3 40A
116 A4 + A3 + A1 A4 + A3 + A1 A4 + A3 + A1 1 3 40E
117 D4 + A3 + A1 D7 + A1 D7 + A1 1 3 96A
118 A7 + A1 A7 + A1 A7 + A1 1 2 20D
119 A7 + A1 E7 + A1 E7 + A1 1 2 40C
120 A7 + A1 E8 E7 + A1 1 2 40C
121 D7 + A1 D7 + A1 D7 + A1 1 2 20B
122 E7 + A1 E7 + A1 E7 + A1 1 ×3 20A
123 E7 + A1 E8 E8 2 ×3 20A
124 4A2 E6 + A2 4A2 1 4 96C
125 4A2 E8 4A2 1 4 96C
126 A4 + 2A2 A4 + 2A2 A4 + 2A2 1 3 40E
127 2A3 + A2 D6 + A2 D6 + A2 1 3 96C
128 A6 + A2 A6 + A2 A6 + A2 1 2 40C
129 D6 + A2 D6 + A2 D6 + A2 1 2 40A
130 E6 + A2 E6 + A2 E6 + A2 1 2 20E
131 E6 + A2 E8 E6 + A2 1 2 20E
132 A5 + A3 A5 + A3 A5 + A3 1 2 40E
133 D5 + A3 D5 + A3 D5 + A3 1 2 20F
134 D5 + A3 D8 D8 1 2 40A
135 D5 + A3 E8 D8 1 2 40A
136 2A4 2A4 2A4 1 2 40E
137 2A4 E8 2A4 1 2 40E
138 D4 + A4 D4 + A4 D4 + A4 1 2 20F
139 A8 A8 A8 1 1 20D
140 A8 E8 A8 1 1 20D

Table 1.1. ADE-sublattices of L10 (continued and continues)
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No. τ(R) τ(R) τ(R̃) exist c(τ,τ̄) rat irec

141 2D4 D8 D8 1 2 20F
142 2D4 E8 E8 × 1 ×1 96A
143 D8 D8 D8 1 1 12B
144 D8 E8 E8 2 ×2 20B
145 E8 E8 E8 2 ×4 12A
146 9A1 E8 + A1 E8 + A1 × 2 − −
147 A2 + 7A1 E7 + A2 E7 + A2 × 1 8 96A
148 A3 + 6A1 D9 D9 × 1 7 96B
149 D4 + 5A1 E8 + A1 E8 + A1 × 2 6 96A
150 D5 + 4A1 D9 D9 × 1 5 40A
151 D4 + A2 + 3A1 E7 + A2 E7 + A2 × 1 5 96A
152 2A3 + 3A1 E8 + A1 D8 + A1 × 1 5 96C
153 D6 + 3A1 E8 + A1 E8 + A1 × 2 4 40A
154 A5 + A2 + 2A1 E8 + A1 E6 + A2 + A1 1 4 40E
155 A4 + A3 + 2A1 D5 + A4 D5 + A4 1 4 40E
156 D4 + A3 + 2A1 D9 D9 × 1 4 96A
157 A7 + 2A1 E8 + A1 E7 + 2A1 1 3 40C
158 D7 + 2A1 D9 D9 1 3 20B
159 E7 + 2A1 E8 + A1 E8 + A1 2 ×4 20A
160 4A2 + A1 E8 + A1 4A2 + A1 × 1 5 40E
161 2A3 + A2 + A1 E7 + A2 D6 + A2 + A1 1 4 96C
162 A6 + A2 + A1 A6 + A2 + A1 A6 + A2 + A1 1 3 40C
163 D6 + A2 + A1 E7 + A2 E7 + A2 1 3 40A
164 E6 + A2 + A1 E8 + A1 E6 + A2 + A1 1 3 20E
165 A5 + A3 + A1 E6 + A3 E6 + A3 1 3 40E
166 D5 + A3 + A1 E8 + A1 D8 + A1 1 3 40A
167 2A4 + A1 E8 + A1 2A4 + A1 1 3 40E
168 A8 + A1 A8 + A1 A8 + A1 1 2 20D
169 A8 + A1 E8 + A1 A8 + A1 1 2 20D
170 2D4 + A1 E8 + A1 E8 + A1 × 1 ×2 96A
171 D8 + A1 E8 + A1 E8 + A1 2 ×3 20B
172 E8 + A1 E8 + A1 E8 + A1 2 ×5 12A
173 A3 + 3A2 E6 + A3 A3 + 3A2 1 4 96C
174 A5 + 2A2 E7 + A2 A5 + 2A2 1 3 40E
175 A7 + A2 E7 + A2 E7 + A2 1 2 40C
176 E7 + A2 E7 + A2 E7 + A2 1 ×3 20A
177 3A3 D9 D9 × 1 3 96C
178 D6 + A3 D9 D9 1 2 40A
179 E6 + A3 E6 + A3 E6 + A3 1 2 20E
180 A5 + A4 A5 + A4 A5 + A4 1 2 40E
181 D5 + A4 D5 + A4 D5 + A4 1 2 20F
182 A9 A9 A9 1 1 20D
183 D5 +D4 D9 D9 1 2 20F
184 D9 D9 D9 1 ×2 12B

Table 1.1. ADE-sublattices of L10 (continued)

is equal to {±1}.
(ii) Let R be an ADE-sublattice of L10 with (τ(R), τ(R)) = (τ, τ̄). Then there

exist isometries g : L10
∼−→ SY and g̃ : MR

∼−→ SX that make the following
commutative diagram

(1.1)

L10(2)
ϖR
↪→ MR

g ↓≀ g̃ ↓≀
SY (2)

π∗

↪→ SX .

The numbering of the ADE-types in Table 1.1 of the present article is the same
as the numbering in Table 1.1 of our previous paper [29], and hence the 1st-3rd
columns of the two tables are identical. By definition, a (τ, τ̄)-generic Enriques
surface exists if and only if the 4th column of the corresponding row of Table
1.1 of [29] contains 0. Hence we obtain the following:
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Proposition 1.5. A (τ, τ̄)-generic Enriques surface exists if and only if the 5th
column of the corresponding row in Table 1.1 is not marked by ×. □

Let PY (resp. PX) be the positive half-cone of SY (resp. SX) containing an
ample class. We regard PY as a subspace of PX by the embedding π∗ ⊗R. We put

NefX := {x ∈ PX | 〈x, [C̃]〉 ≥ 0 for all curves C̃ on X },
NefY := { y ∈ PY | 〈y, [C]〉 ≥ 0 for all curves C on Y } = PY ∩NefX ,

where [D] is the class of a divisor D. The following will be proved in Section 3.2.

Proposition 1.6. Let Y and Y ′ be (τ, τ̄)-generic Enriques surfaces with the univer-
sal coverings π : X → Y and π′ : X ′ → Y ′, respectively. Then there exist isometries
ψX : SX

∼−→ SX′ and ψY : SY
∼−→ SY ′ that make the diagram

(1.2)

SY (2)
π∗

−→ SX

ψY ↓ ↓ ψX

SY ′(2)
π′∗

−→ SX′

commutative and that induce NefX ∼= NefX′ and NefY ∼= NefY ′ .

We denote by aut(Y ) the image of the natural representation Aut(Y ) → OP(SY ).
We embed the set R(Y ) of smooth rational curves C on Y into SY by C 7→ [C],
and the set E(Y ) of elliptic fibrations φ : Y → P1 into SY by φ 7→ [F ]/2, where F is
a general fiber of φ. In Section 6, we will see that aut(Y ) and its actions on NefY ,
R(Y ), E(Y ) depend only on the data π∗ : SY (2) ↪→ SX and NefX . Therefore we
obtain the following:

Corollary 1.7. Let Y and Y ′ be as in Proposition 1.6. Then there exist an iso-
morphism aut(Y ) ∼= aut(Y ′) and bijections R(Y ) ∼= R(Y ′) and E(Y ) ∼= E(Y ′) that
are compatible with aut(Y ) ∼= aut(Y ′). □

Remark 1.8. The root invariant of a (τ, τ̄)-generic Enriques surface (defined by
Nikulin [24]) is equal to (τ,Ker ξ), where ξ : R ⊗ F2 → L10 ⊗ F2 is the linear
homomorphism induced by the inclusion R ↪→ L10 of the ADE-sublattice R of L10

such that (τ, τ̄) = (τ(R), τ(R)).

1.2. Chambers. Before we state our geometric results, we define the notion of
chambers of hyperbolic lattices, and recall the classical result of Vinberg [35].

A root r of an even lattice L defines the reflection sr : x 7→ x+ 〈x, r〉r of L with
respect to r. The Weyl group W (L) of L is the subgroup of O(L) generated by
all the reflections sr with respect to the roots of L. Let L be an even hyperbolic
lattice with a positive half-cone P. For v ∈ L⊗ R with 〈v, v〉 < 0, let (v)⊥ denote
the hyperplane of P defined by 〈x, v〉 = 0. Then we have W (L) ⊂ OP(L), and the
action of sr on P is the reflection into the mirror (r)⊥. A closed subset D of P is
called a chamber if D contains a non-empty open subset of P and D is defined by
inequalities

〈x, vi〉 ≥ 0 (i ∈ I),

where {(vi)⊥}i∈I is a locally finite family of hyperplanes of P. A wall of a chamber
D is a closed subset of D of the form D ∩ (v)⊥ such that (v)⊥ is disjoint from the
interior of D and that D∩ (v)⊥ contains a non-empty open subset of (v)⊥. We say
that a vector v ∈ L⊗R defines a wall D ∩ (v)⊥ of D if D ∩ (v)⊥ is a wall of D and
〈x, v〉 > 0 holds for one (and hence any) point x in the interior of D. We say that
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c c c c c c c c c
Figure 1.1. The basis e1, . . . , e10 of L10

a closed subset A of P is tessellated by a set {Dj}j∈J of chambers if A is the union
of Dj (j ∈ J) and the interiors of two distinct chambers Dj and Dj′ in the family
{Dj}j∈J have no common points.

Definition 1.9. Let L be an even hyperbolic lattice with a positive half-cone P.
An L-chamber is the closure in P of a connected component of

P \
⋃
r

(r)⊥,

where r runs through the set of roots of L. For an L-chamber D, we denote the
stabilizer of D by

O(L,D) := { g ∈ OP(L) | Dg = D }.

Remark 1.10. In Section 2.4, we extend the notion of L-chambers to the notion of
L/M -chambers in the positive-half cone PM of a primitive lattice M of L.

The group OP(L) acts on the set of L-chambers. The action of the subgroup
W (L) of OP(L) on this set is free and transitive. Hence an L-chamber is a standard
fundamental domain of the Weyl group W (L). Let D be an L-chamber. Then we
have OP(L) =W (L)⋊O(L,D), and moreover,W (L) is generated by the reflections
sr with respect to the roots r that define the walls of D.

Recall that L10 is an even unimodular hyperbolic lattice of rank 10. Then L10

has a basis e1, . . . , e10 consisting of roots whose dual graph is given in Figure 1.1.
Let P10 be the positive half-cone of L10 containing e

∨
1 +· · ·+e∨10, where {e∨1 , . . . , e∨10}

is the basis of L∨
10 = L10 dual to {e1, . . . , e10}.

Theorem 1.11 (Vinberg [35]). The chamber D0 in P10 defined by 〈x, ei〉 ≥ 0 for
i = 1, . . . , 10 is an L10-chamber, and {e1, . . . , e10} is the set of roots defining walls
of D0. □

Definition 1.12. We call an L10-chamber a Vinberg chamber.

Let D0 be a Vinberg chamber. Since the dual graph in Figure 1.1 has no non-
trivial symmetries, we have O(L10, D0) = {1} and hence

(1.3) OP(L10) =W (L10).

1.3. Main results. We investigate the geometry of a (τ, τ̄)-generic Enriques sur-
face Y . In particular, we calculate a finite generating set of aut(Y ) and the action
of aut(Y ) on NefY , R(Y ) and E(Y ).

Remark 1.13. Since our approach relies on the interplay beetween lattice theory
and hyperbolic geometry, we can, except for the cases Nos. 88 and 146 in Table 1.1,
calculate the geometric data of a hypothetical (τ, τ̄)-generic Enriques surface even
when it is not realized by an actual complex Enriques surface. (See Remark 4.7).
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Let Y be an Enriques surface. Recall that aut(Y ) ⊂ OP(SY ) is the image of
the natural homomorphism Aut(Y ) → OP(SY ). Since SY is isomorphic to L10,
we have Vinberg chambers in the positive half-cone PY . Since NefY is bounded
by ([C])⊥, where C runs through R(Y ), and 〈[C], [C]〉 = −2, the cone NefY is
tessellated by Vinberg chambers. We put

V(NefY ) := the set of Vinberg chambers contained in NefY ,

on which aut(Y ) acts, and define

vol(NefY /aut(Y )) := the number of orbits of the action of aut(Y ) on V(NefY ).

An Enriques surface that is very general in the sense of Barth–Peters [2] is (0, 0)-
generic, and its automorphism group was determined by Barth–Peters [2] and
Nikulin [23, Theorem 10.1.2 (c)] independently.

Theorem 1.14 (Barth–Peters [2], Nikulin [23]). Let Y0 be a (0, 0)-generic Enriques
surface. Then aut(Y0) ⊂ OP(SY0

) is equal to the kernel of the reduction homomor-
phism OP(SY0

) → O(SY0
) ⊗ F2. In particular, the index of aut(Y0) in OP(SY0

) is
equal to

221 · 35 · 52 · 7 · 17 · 31 = 46998591897600.

Since a (0, 0)-generic Enriques surface Y0 contains no smooth rational curves, we
have PY0

= NefY0
. Combining this with (1.3), we obtain bijections

OP(SY0
) =W (SY0

) ∼= V(NefY0
).

We define the unit 1BP (BP stands for Barth–Peters) of volume to be

1BP := vol(NefY0
/aut(Y0)) = [OP(SY0

) : aut(Y0)] = 221 · 35 · 52 · 7 · 17 · 31.

Our first main result is as follows. For an ADE-type τ , let W (Rτ ) denote the Weyl
group of the ADE-lattice Rτ with τ(Rτ ) = τ , that is, the finite Coxeter group
defined by the Dynkin diagram of type τ .

Theorem 1.15. Let Y be a (τ, τ̄)-generic Enriques surface. Then we have

vol(NefY /aut(Y )) =
c(τ,τ̄)

|W (Rτ )|
· 1BP,

where c(τ,τ̄) ∈ {1, 2} is as given in Table 1.1.

See Section 3.4 for an explanation of the factor c(τ,τ̄). Theorem 1.15 is obtained
from a more general result Theorem 3.3 on vol(NefY /aut(Y )). To obtain Theo-
rem 3.3, we prove a result (Proposition 2.1) of the theory of discriminant forms
in the spirit of Nikulin [22]. The proof of these theorems does not involve any
machine-aided computation. Nevertheless the ability to compute examples played
a crucial role in finding the correct statement.

Next, we calculate explicitly a finite generating set of aut(Y ) and a complete set
of representatives of the orbits of the action of aut(Y ) on NefY . The algorithms
we use for this purpose are variations of a simple algorithm given in Section 4.1,
which is an abstraction of the generalized Borcherds’ method described in [28]. By
means of these computational data, we analyze the action of aut(Y ) on R(Y ) and
E(Y ). (Recall that R(Y ) and E(Y ) are embedded into SY .)

Our second main result is as follows.



10 S. BRANDHORST AND I. SHIMADA

Theorem 1.16. Let Y be a (τ, τ̄)-generic Enriques surface.
(1) There exist smooth rational curves C1, . . . , Cm on Y whose dual graph Γ is a

Dynkin diagram of type τ . Under the action of aut(Y ), any smooth rational curve
C on Y is in the same orbit as one of C1, . . . , Cm.

(2) The size of R(Y )/aut(Y ) is given in the 7th column rat of Table 1.1. Except
for the cases marked by × in this column, two curves Ci and Cj are in the same
orbit if and only if the vertices of the dual graph Γ corresponding to Ci and Cj
belong to the same connected component of Γ, and hence |R(Y )/aut(Y )| is equal to
the number of connected components of the Dynkin diagram of type τ .

In [2], Barth and Peters also proved the following.

Theorem 1.17 (Barth–Peters [2]). Let Y0 be a (0, 0)-generic Enriques surface.
Then Y0 has exactly 17 · 31 = 527 elliptic fibrations modulo aut(Y0).

We calculate E(Y )/aut(Y ) for (τ, τ̄)-generic Enriques surfaces. Since the tables
span 7 pages, we relegate a part of it to the ancillary files.

Theorem 1.18. Let Y be a (τ, τ̄)-generic Enriques surface. Then the orbits of
the action of aut(Y ) on the set E(Y ) of elliptic fibrations of Y are indicated in
Section 6.5 for rank τ ≤ 7 and in the ancillary files [32] for rank τ ≥ 8.

1.4. The plan of the paper. This paper is organized as follows. In Section 2,
we prepare basic notions about finite quadratic forms, discriminant forms, lattices
and chambers. Proposition 2.1 in Section 2.1 plays a crucial role in the proof of
the volume formula in the next section. The notion of L/M -chambers given in
Section 2.4 is the main tool of our computation. In Section 3, we investigate the
nef-and-big cone NefY of an Enriques surface Y from the point of view of L/M -
chambers, and prove Proposition 1.6. Then, by means of Proposition 2.1, we prove
a formula (Theorem 3.3) for the volume of NefY /aut(Y ), and in Section 3.4, we
deduce Theorem 1.15 from Theorem 3.3.

In Section 4, we present a computational procedure on a graph (Procedure 4.1),
which is an abstraction of the generalized Borcherds’ method formulated in [28].
Then we recall the classification of primitive embeddings L10(2) ↪→ L26 obtained
in [6], and construct primitive embeddings SY (2) ↪→ SX ↪→ L26 for (τ, τ̄)-generic
Enriques surfaces Y . In Section 5, we prepare some geometric algorithms used
in the application of the generalized Borcherds’ method to (τ, τ̄)-generic Enriques
surfaces. In Section 6, we calculate aut(Y ) and NefY /aut(Y ), and prove Theo-
rems 1.16 and 1.18. The table of elliptic fibrations is given in Section 6.5.

In Section 7, we exhibit some examples. In particular, we treat an (E6, E6)-
generic Enriques surface (No. 47 of Table 1.1) in detail, because we investigated
this surface in [31]. Section 7.1 contains a correction of a wrong assertion made
in [31].

In the second author’s webpage [32], we put a detailed computation data made
by GAP [34].

Thanks are due to Professor Igor Dolgachev for his comments on the manuscript
of this paper.

2. Finite quadratic forms, lattices and chambers

We fix notions and terminologies about finite quadratic forms, discriminant
forms, lattices and chambers.
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2.1. Finite quadratic forms. A finite quadratic form is a finite abelian group A
with a quadratic form

qA : A→ Q/2Z.
We say that a finite quadratic form is non-degenerate if the bilinear form

bA : A×A→ Q/Z
associated with qA is non-degenerate. The automorphism group of a finite quadratic
form A is denoted by O(A), and we let it act on A from the right. For a subgroup
D ⊂ A, let D⊥ denote the orthogonal complement of D with respect to bA, and let
O(A,D) denote the subgroup { g ∈ O(A) | Dg = D } of O(A).

The following proposition will play a crucial role in the proof of the volume
formula (Theorem 3.3).

Proposition 2.1. Let (A, qA) and (B, qB) be non-degenerate finite quadratic forms,
and let DA ⊂ A and DB ⊂ B be subgroups. Suppose that we have an isomorphism
φ : DA

∼−→ DB that induces an isometry (DA,−qA|DA) ∼= (DB , qB |DB) of finite
quadratic forms. Let Γ ⊂ A ⊕ B be the graph of φ, which is an isotropic subgroup
with respect to qA ⊕ qB. We put C := Γ⊥/Γ. Then qA ⊕ qB induces a quadratic
form qC on C, and we have a natural homomorphism

{ (g, h) ∈ O(A)×O(B) | Γ(g,h) = Γ } → O(C).

We denote by K the kernel of this homomorphism. Then the homomorphism

iA : K ↪→ O(A)×O(B) → O(A), (g, h) 7→ g

is injective, and the image of iA is equal to the kernel of the natural homomorphism

O(A,DA) → O(D⊥
A).

Proof. First we prove that the natural projection Γ⊥ → B is surjective. Since qA
and qB are non-degenerate, we have natural isomorphisms A ∼= Hom(A,Q/Z) and
B ∼= Hom(B,Q/Z) induced by bA and bB . Hence we have natural isomorphisms
Hom(DA,Q/Z) ∼= A/D⊥

A and Hom(DB ,Q/Z) ∼= B/D⊥
B . We have an isomorphism

−φ∗ : Hom(DB ,Q/Z) ∼= Hom(DA,Q/Z)

induced by −φ : DA
∼−→ DB . Combining them, we obtain a homomorphism

(2.1) ψ : B→→B/D⊥
B
∼= Hom(DB ,Q/Z) ∼= Hom(DA,Q/Z) ∼= A/D⊥

A .

For α ∈ A, we put

ᾱ := α mod D⊥
A ∈ A/D⊥

A .

Then, for α ∈ A and β ∈ B, we have

(2.2) ᾱ = ψ(β) ⇐⇒ bA(α, x) = −bB(β, φ(x)) for all x ∈ DA ⇐⇒ (α, β) ∈ Γ⊥.

In particular, for any β ∈ B, we have α ∈ A such that (α, β) ∈ Γ⊥.
Next we prove that iA : K → O(A) is injective. Let (1, h) ∈ K be an element of

Ker iA. For β ∈ B, we choose α ∈ A such that (α, β) ∈ Γ⊥. Since (1, h) acts on
C = Γ⊥/Γ trivially, we have (α, β) − (α, βh) = (0, β − βh) ∈ Γ. Since Γ ∩ B = 0,
we have βh = β. Since β ∈ B is arbitrary, we have h = 1.

Now we determine the image of iA. “⊂”: Suppose that (g, h) ∈ K. Since (g, h)
preserves Γ, we see that g = iA(g, h) preserves the image DA of the projection Γ →
A. For any α ∈ D⊥

A , we have (α, 0) ∈ Γ⊥. Since (g, h) acts on C = Γ⊥/Γ trivially, we
have αg−α ∈ Γ∩A = 0. Therefore Im iA is contained in Ker(O(A,DA) → O(D⊥

A)).
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“⊃”: To show the opposite inclusion, we fix g ∈ Ker(O(A,DA) → O(D⊥
A)) and

construct h ∈ O(B) such that (g, h) ∈ K. Since g acts on D⊥
A trivially, the linear

map

lg : A/D
⊥
A → A, ᾱ 7→ αg − α

is well-defined. The image of lg is contained in DA = (D⊥
A)

⊥: indeed, for any α ∈ A
and y ∈ D⊥

A , we have

bA(lg(ᾱ), y) = bA(α
g, y)− bA(α, y) = bA(α

g, yg)− bA(α, y) = 0.

We define h : B → B by

βh := β + φlgψ(β),

where ψ is given in (2.1). We show that h ∈ O(B). We put ᾱ = ψ(β). Then we
have

qB(β
h)−qB(β) = 2bB(β, φlg(ᾱ))+qB(φlg(ᾱ)) = −2bA(α, α

g−α)−qA(αg−α) = 0,

because g ∈ O(A). It only remains to show that (g, h) ∈ O(A) × O(B) preserves
Γ and acts on C = Γ⊥/Γ trivially. Using (2.2) and Γ ⊂ Γ⊥, we see that for any
α ∈ DA, we have ᾱ = ψφ(α), and therefore

φ(α)h = φ(α) + φlg(ᾱ) = φ(α) + φ(αg)− φ(α) = φ(αg).

Since g preserves DA, we have (α, φ(α))(g,h) = (αg, φ(αg)) ∈ Γ for any α ∈ DA.
Therefore (g, h) preserves Γ. Suppose that (α, β) ∈ Γ⊥. Then we have ᾱ = ψ(β)
by (2.2), and

(αg, βh)− (α, β) = (lg(ᾱ), φlg(ᾱ)) ∈ Γ.

Therefore (g, h) acts on Γ⊥/Γ trivially. □

Remark 2.2. Proposition 2.1 holds for non-degenerate finite bilinear forms (A, bA)
and (B, bB) as well.

2.2. Discriminant forms and overlattices. Let L be an even lattice. We put

L∨ := {x ∈ L⊗Q | 〈x, v〉 ∈ Z for all v ∈ L },

on which O(L) acts naturally. The finite abelian group L∨/L is called the discrim-
inant group of L. Then

q(x̄) = 〈x, x〉 mod 2Z for x ∈ L∨ and x̄ = x mod L

defines a finite quadratic form q : L∨/L → Q/2Z, which is called the discriminant
form of L. An even lattice L′ is an overlattice of L if we have L ⊂ L′ ⊂ L∨ and
the intersection form of L′ is the extension of that of L. See Nikulin [22] for the
details of the theory of discriminant forms and its application to the enumeration
of even overlattices of a given even lattice.

To illustrate Proposition 2.1, we apply it to two known extreme cases.

Example 2.3. Let M,N ⊂ L be primitive sublattices of an even lattice L such
that M ⊥ N and rankM + rankN = rankL. Then we have

M ⊕N ⊂ L ⊂ L∨ ⊂M∨ ⊕N∨,

and L is an overlattice of M ⊕ N . Let (A, qA) = (M∨/M, qM ) and (B, qB) =
(N∨/N, qN ) be the respective discriminant forms. Then Γ = L/(M ⊕ N) is the
graph of an anti-isometry φ : A ⊃ DA → DB ⊂ B and Γ⊥/Γ ∼= L∨/L.
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First suppose that L is unimodular. Then, by a result of Nikulin [22], DA = A
and DB = B. Since L∨/L ∼= Γ⊥/Γ is trivial, we have

K = {(g, h) ∈ O(A)×O(B) : h ◦ φ = φ ◦ g}.

We see that iA : K → O(A) is an isomorphism as predicted by Proposition 2.1.
Indeed, since D⊥

A = A⊥ = 0, the homomorphism O(A,DA) → O(D⊥
A) is trivial.

For the other extreme suppose that M ⊕N = L. Then DA = 0, DB = 0, K = 1
and D⊥

A = A.

2.3. Faces of a chamber. Let L be a hyperbolic lattice with a positive half-cone
P, and D a chamber in P. A face of D is a closed subset of D that is an intersection
of some walls of D. Let f be a face of D. The dimension dim f of f is the dimension
of the minimal linear subspace of L⊗ R containing f , and the codimension of f is
rankL− dim f . The walls of D are exactly the faces of D with codimension 1.

Let P and D be the closures of P and D in L ⊗ R, respectively. A half-line
contained in (P \ P) ∩D is called an isotropic ray of D.

Suppose that D has only finitely many walls, that they are defined by vectors
in L ⊗ Q, and that the list of defining vectors of these walls in L ⊗ Q is available.
Then we can make the list of faces of D by means of linear programming. For each
isotropic ray R≥0v, we have a unique primitive vector v ∈ L that generates R≥0v,
which we call a primitive isotropic ray of D. We can also make the list of primitive
isotropic rays of D.

2.4. L/M-chambers. Let (L, 〈 , 〉L) and (M, 〈 , 〉M ) be even hyperbolic lattices
with fixed positive half-cones PL and PM , respectively. Suppose that we have an
embedding M ↪→ L that maps PM into PL. We regard PM as a subspace of PL
by this embedding. The notion of L-chambers was introduced in Section 1.2. The
following class of chambers plays an important role in this paper.

Definition 2.4. A chamber DM in PM is called an L/M -chamber if there exists
an L-chamber DL ⊂ PL such that DM = PM ∩DL. In this case, we say that DM

is induced by DL.

In particular, an L-chamber is an L/L-chamber.

Definition 2.5. Let N be a negative definite even lattice. For a root r of N ,
let [r]⊥ denote the hyperplane of N ⊗ R defined by 〈x, r〉 = 0. The connected
components of (N ⊗ R) \

⋃
[r]⊥, where r runs through the set of roots of N , are

called the Weyl-chambers of N . The Weyl group W (N) acts simply transitively on
the set of Weyl-chambers.

Remark 2.6. Let DM be an L/M -chamber. Then the number of L-chambers that
induce DM is equal to the number of Weyl-chambers of the orthogonal complement
(M ↪→ L)⊥ of M in L. In particular, if (M ↪→ L)⊥ contains no roots, then each
L/M -chamber is induced by a unique L-chamber.

Definition 2.7. Two distinct L/M -chambers D1 and D2 are adjacent if there
exists a hyperplane (v)⊥ of PM such that D1 ∩ (v)⊥ is a wall of D1, that D2 ∩ (v)⊥

is a wall of D2, and that D1 ∩ (v)⊥ = D2 ∩ (v)⊥ holds. In this case, we say that
D2 is adjacent to D1 across the wall D1 ∩ (v)⊥.
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Let pr : L→M ⊗Q be the orthogonal projection. Then an L/M -chamber is the
closure in PM of a connected component of

PM \
⋃
r

(pr(r))⊥,

where r runs through the set of roots r of L such that 〈pr(r),pr(r)〉M < 0 holds,
and (pr(r))⊥ = PM ∩ (r)⊥ is the hyperplane of PM defined by pr(r). Hence, for
each wall DM ∩ (v)⊥ of an L/M -chamber DM , there exists a unique L/M -chamber
adjacent to DM across the wall DM ∩ (v)⊥.

Since a root of M is mapped to a root of L by the embedding M ↪→ L, an
M -chamber is tessellated by L/M -chambers. More generally, we have the following
proposition, which is easy to prove:

Proposition 2.8. Suppose that M1 ↪→ M2 ↪→ L is a sequence of embeddings of
even hyperbolic lattices that induces a sequence of embeddings PM1

↪→ PM2
↪→ PL

of fixed positive half-cones. Then each M2/M1-chamber is tessellated by L/M1-
chambers. □

If g̃ ∈ OP(L) satisfies M g̃ = M , then g̃|M ∈ OP(M) preserves the tessellation
of PM by L/M -chambers.

In general, two distinct L/M -chambers are not isomorphic to each other. See [11]
and [28] for examples of K3 surfaces X with a primitive embedding SX ↪→ L26 such
that PX is tessellated by L26/SX -chambers of various shapes.

Definition 2.9. We say that the tessellation of PM by L/M -chambers is reflexively
simple if, for each wall DM∩(v)⊥ of an L/M -chamber DM , there exists an isometry
g̃ of L preserving M such that the restriction g̃|M of g̃ to M is an involution
that fixes every point of the hyperplane (v)⊥. Note that, if this is the case, the
isometry g̃|M ofM maps DM to the L/M -chamber adjacent to DM across the wall
DM ∩ (v)⊥.

The tessellation of PL by L/L-chambers is obviously reflexively simple.

3. The cone NefY

Let Y be an Enriques surface with the universal covering π : X → Y . Let
ε ∈ Aut(X) be the deck-transformation of π : X → Y , and we put

SX+ := { v ∈ SX | vε = v }, SX− := { v ∈ SX | vε = −v }.

Then SX+ is equal to the image of π∗ : SY (2) ↪→ SX , and SX− is the orthogonal
complement of SX+. We regard PY as a subspace of PX by π∗ ⊗ R.

3.1. SX/SY (2)-chambers. It is well-known that NefX is an SX -chamber. There-
fore the chamber NefY = PY ∩NefX is an SX/SY (2)-chamber. Since π is étale, the
lattice SX− contains no roots, and hence each SX/SY (2)-chamber DY is induced
by a unique SX -chamber DX , that is, DY contains an interior point of DX .

Proposition 3.1. The tessellation of PY by SX/SY (2)-chambers is reflexively sim-
ple. More precisely, every wall of an SX/SY (2)-chamber DY is defined by a root r
of SY , and the reflection sr ∈ OP(SY ) with respect to the root r is the restriction
sr̃+sr̃− |SY (2) of the product of two reflections with respect to roots r̃+, r̃− of SX .
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Proof. Let 〈−,−〉X and 〈−,−〉Y be the intersection forms of SX and SY , respec-
tively. We denote by (u)⊥X the hyperplane of PX defined by u ∈ SX⊗R, and by (v)⊥Y
the hyperplane of PY defined by v ∈ SY ⊗ R. Let DY be an SX/SY (2)-chamber,
and let DY ∩ (v)⊥Y be a wall of DY .

By the definition of SX/SY (2)-chambers, there exists a root r̃ of SX such that
(v)⊥Y = PY ∩ (r̃)⊥X . We first prove that 〈r̃, r̃ε〉X = 0. Let r̃ be written as vL + vR,
where vL ∈ SY (2)

∨ and vR ∈ S∨
X−. We have 〈vL, vL〉X + 〈vR, vR〉X = −2. Since

r̃ε = vL − vR, it is enough to show that 〈vL, vL〉X = −1. Since

PY ∩ (r̃)⊥X = (vL)
⊥
Y

is non-empty, we have 〈vL, vL〉Y < 0. Note that 2vL ∈ SY because 2SY (2)
∨ =

SY (2). Since SY is even, 〈vL, vL〉X = 2〈vL, vL〉Y must be an integer. Since SX−
is negative definite, we have 〈vR, vR〉X ≤ 0 and hence 〈vL, vL〉X is −2 or −1. If
〈vL, vL〉X = −2, then vR = 0 and r̃ = vL ∈ SY (2), which is absurd.

Let s and s′ be the reflections with respect to the roots r̃ and r̃ε of SX , re-
spectively. By 〈r̃, r̃ε〉X = 0, we have ss′ = s′s. Since s′ = εsε, we see that ss′

commutes with ε and hence ss′ preserves PY . The vector r := r̃ + r̃ε is contained
in SY . Moreover we have 〈r, r〉Y = −2 and

(v)⊥Y = PY ∩ (r̃)X = (vL)
⊥
Y = (r)⊥Y .

Therefore the wall DY ∩ (v)⊥Y of DY is defined by a root r or −r of SY . It is easy
to confirm that the restriction of ss′ to SY is equal to the reflection with respect to
the root r of SY and therefore maps DY to the SX/SY (2)-chamber D′

Y adjacent
to DY across the wall DY ∩ (v)⊥Y = DY ∩ (r)⊥Y . □

3.2. Proof of Proposition 1.6. We prove Proposition 1.6. By Proposition 1.2,
we have isomorphisms ψX and ψY that make the diagram (1.2) commutative. By
Proposition 3.1, we have g̃ ∈ OP(SX) commuting with ε such that g̃|SY (2) maps

NefY to the inverse image of NefY ′ by ψY . Then the isometries g̃ ◦ψX : SX′
∼−→ SX

and g̃|SY (2) ◦ ψY : SY ′
∼−→ SY satisfy the required properties. □

3.3. The volume of NefY /aut(Y ). In this subsection, we give a formula (Theo-
rem 3.3) for vol(NefY /aut(Y )) under the assumption that

(3.1) the group O(TX , ω) in Definition 1.4 is {±1}.

We put

(3.2) GX := { g̃ ∈ OP(SX) | g̃ commutes with ε and acts on S∨
X/SX trivially }.

Then g̃ 7→ (g̃|SX+, g̃|SX−) embeds GX into OP(SX+) × O(SX−). Let GX+ and
GX− denote the images of the projections GX → OP(SX+) and GX → O(SX−),
respectively. When we regard GX+ as a subgroup of OP(SY ) via the identification
SX+ = SY (2) induced by π∗, we write GY instead of GX+. Recall that the set
R(Y ) of smooth rational curves on Y is embedded into SY by C 7→ [C]. The
correspondence

C 7→ NefY ∩ ([C])⊥

gives a bijection from R(Y ) to the set of walls of the SX/SY (2)-chamber NefY .
We denote by W (R(Y )) the subgroup of OP(SY ) generated by the reflections s[C]

with respect to the roots [C] ∈ R(Y ). Recall also that aut(Y ) is the image of the
natural representation Aut(Y ) → OP(SY ).
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Proposition 3.2. Suppose that Y satisfies (3.1).
(1) The action of GY on PY preserves the set of SX/SY (2)-chambers, and aut(Y )

is equal to the stabilizer subgroup of NefY in GY .
(2) The group W (R(Y )) is contained in GY as a normal subgroup, and we have

GY =W (R(Y ))⋊ aut(Y ).

Proof. Since every g ∈ GY lifts to an element g̃ of GX ⊂ OP(SX), the action of
GY on PY preserves the tessellation of PY by SX/SY (2)-chambers.

Let aut(X) be the image of the natural representation Aut(X) → OP(SX). By
the Torelli theorem for complex K3 surfaces ([3, Chapter VIII]), we have a natural
embedding

(3.3) Aut(X) ↪→ OP(SX)×O(TX , ω),

and an element (g̃, f) of OP(SX)×O(TX , ω) belongs to Aut(X) if and only if (g̃, f)
preserves the overlattice H2(X,Z) of SX ⊕ TX and g̃ preserves NefX . The even
unimodular overlattice H2(X,Z) of SX ⊕ TX induces an isomorphism

iH(X) : S
∨
X/SX

∼= T∨
X/TX

of discriminant groups, and (g̃, f) preserves H2(X,Z) if and only if the action of
g̃ on S∨

X/SX is compatible with the action of f on T∨
X/TX via iH(X) (see [22]).

Therefore, by assumption (3.1), an isometry g̃ ∈ OP(SX) belongs to aut(X) if and
only if g̃ preserves NefX and acts on S∨

X/SX as ±1.
Let Aut(X, ε) denote the centralizer of ε in Aut(X). We have a natural identi-

fication Aut(Y ) ∼= Aut(X, ε)/〈ε〉. Suppose that g ∈ aut(Y ). We will show that g
belongs to the stabilizer subgroup of NefY in GY . It is obvious that g preserves
NefY . Let γ̃ be an element of Aut(X, ε) that induces g on SY . We write γ̃ as (g̃, f)
by (3.3). Note that ε acts on TX as −1. Hence, replacing γ̃ with γ̃ε if f = −1, we
can assume f = 1. Then the action g̃ ∈ OP(SX) of γ̃ on SX induces the trivial
action on S∨

X/SX , which means g̃ ∈ GX . Hence g = g̃|SY belongs to GY .
Conversely, suppose that g is an element of the stabilizer subgroup of NefY in

GY . We will show that g ∈ aut(Y ). Let g̃ be an element of GX such that g = g̃|SY .
Since NefY contains an interior point of NefX , g̃ preserves NefX , and hence g̃
belongs to aut(X). Let γ̃ = (g̃, f) be an element of Aut(X) that induces g̃. Since
g̃ ∈ GX commutes with the action of ε on SX , the first factor of the commutator
[γ̃, ε] ∈ Aut(X) is 1. Since O(TX , ω) = {±1} is abelian, the second factor of [γ̃, ε] is
also 1. Hence γ̃ ∈ Aut(X, ε), and therefore g is induced by an element of Aut(Y ).
Thus assertion (1) is proved.

By Proposition 3.1, for each r ∈ R(Y ), the reflection sr = sr̃+sr̃− |SY (2) belongs
to GY , because the reflections sr̃+ and sr̃− act on S∨

X/SX trivially and hence
sr̃+sr̃− ∈ GX . Therefore we have W (R(Y )) ⊂ GY . Moreover, by Proposition 3.1
again, we see that W (R(Y )) acts on the set of SX/SY (2)-chambers transitively.

If C1, C2 ∈ R(Y ) satisfy 〈C1, C2〉Y > 1, then the walls NefY ∩ ([C1])
⊥ and

NefY ∩([C2])
⊥ of NefY do not intersect. Hence each face of NefY with codimension

2 is of the form

NefY ∩ ([C1])
⊥ ∩ ([C2])

⊥ with 〈C1, C2〉Y ∈ {0, 1},

and we have (s[C1]s[C2])
m = 1, where m = 2 if 〈C1, C2〉Y = 0 and m = 3 if

〈C1, C2〉Y = 1. Therefore, by the standard method of geometric group theory (see,
for example, Section 1.5 of [36]), we see that NefY is a standard fundamental domain
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of the action of W (R(Y )) on PY , and W (R(Y )) acts on the set of SX/SY (2)-
chambers simply-transitively. Recalling that aut(Y ) is the stabilizer subgroup of
NefY in GY , we have W (R(Y ))∩ aut(Y ) = {1}. Moreover GY is generated by the
union of W (R(Y )) and aut(Y ).

It remains to show thatW (R(Y )) is a normal subgroup of GY . Let r be a root in
R(Y ) and g an arbitrary element of GY . It is enough to show that g−1srg belongs to
W (R(Y )). Note that g−1srg = srg and rg defines a wall of the SX/SY (2)-chamber
DY := NefY

g. We have an element w ∈ W (R(Y )) such that DY = NefY
w. Then

r′ := rgw
−1

defines a wall of NefY , and wsrgw
−1 = sr′ is an element of W (R(Y )).

Hence g−1srg = srg = w−1sr′w ∈W (R(Y )). □
Let (A+, q+) and (A−, q−) be the discriminant forms of SX+ = SY (2) and SX−,

respectively. We put

ΓX := SX/(SX+ ⊕ SX−) ⊂ A+ ⊕A−,

and let D+ ⊂ A+ and D− ⊂ A− be the image of the projections of ΓX . Then ΓX
is the graph of an isometry (D+, q+|D+) ∼= (D−,−q−|D−), and the discriminant
group of SX is canonically isomorphic to Γ⊥

X/ΓX . We denote by GX+ and GX−
the images of GX+ and GX− by the natural homomorphisms OP(SX+) → O(A+)
and O(SX−) → O(A−), respectively, and by GX the image of GX by the natural
homomorphism to O(A+)×O(A−).

Theorem 3.3. Suppose that Y satisfies (3.1). Let O(SX−, D−) be the subgroup
of O(SX−) consisting of isometries g whose action on A− preserves D−. Then we
have

(3.4) GX− = Ker(O(SX−, D−) → O(D⊥
−)).

Moreover we have

vol(NefY /aut(Y )) =
1BP

|GX−|
.

Proof. Note that GX is a subgroup of the kernel K of the natural homomorphism

{ (g, h) ∈ O(A+)×O(A−) | Γ(g,h)
X = ΓX } → O(Γ⊥

X/ΓX) = O(S∨
X/SX).

Applying Proposition 2.1(1) to (A,B) = (A+, A−) and (A,B) = (A−, A+), we
have |GX | = |GX+| = |GX−|. Let GBP be the kernel of the natural homomorphism
OP(SX+) = OP(SY (2)) → O(A+). Then GBP is equal to aut(Y0) by Theorem 1.14
and hence the index of GBP in OP(SX+) = OP(SY ) is 1BP. If g ∈ GBP, then
(g, 1) ∈ OP(SX+)×O(SX−) acts trivially on A+⊕A−, and hence preserves ΓX and
acts on Γ⊥

X/ΓX trivially. Therefore the action of (g, 1) on SX+⊕SX− preserves the
overlattice SX , and (g, 1)|SX is an element of GX . Thus GBP is contained in GX+ =
GY . Since the natural homomorphism OP(SY (2)) → O(A+) is surjective (see [2]),
the index of GBP in GY is equal to |GX+| = |GX−|.

Applying Proposition 2.1 (2) to (A,B) = (A−, A+), we see that

GX− ⊂ Im iA− = Ker(O(A−, D−) → O(D⊥
−)).

Hence the inclusion ⊂ in (3.4) is proved. Conversely, let f be an element of the
right-hand side of (3.4), and denote by f̄ ∈ O(A−) the action of f on A−. By
Proposition 2.1, we have f̄ ∈ Im iA− and hence there exists a unique element h̄ ∈ K

such that iA−(h̄) = f̄ . We put ḡ := iA+
(h̄). Since the natural homomorphism

OP(SX+) → O(A+) is surjective, we have g ∈ OP(SX+) that maps to ḡ. Since
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h̄ = (ḡ, f̄) ∈ K, we have (g, f) ∈ GX , which implies f ∈ GX−. Thus (3.4) is proved.
Moreover we have

vol(NefY /aut(Y )) = vol(PY /GY ) =
1

[GY : GBP]
· vol(PY /GBP) =

1BP

|GX−|
,

where the first equality follows from Proposition 3.2. □

Since SX− is negative definite, O(SX−) is a finite group and can be computed
easily. Thus this formula enables us to calculate vol(NefY /aut(Y )).

3.4. Proof of Theorem 1.15. In what follows we calculate the finite group GX−
of a (τ, τ̄)-generic Enriques surface. It is closely related to the Weyl group W (Rτ ).

For a sublattice L′ of a lattice L, we denote by O(L,L′) the group of isometries
of L preserving L′. When L is an overlattice of L′, then O(L,L′) is the group
of isometries of L′ preserving the overlattice L, or equivalently the intersection
O(L)∩O(L′) in O(L⊗Q) = O(L′⊗Q), and hence sometimes is written as O(L′, L).

Lemma 3.4. Let Y be (τ, τ̄)-generic. Recall the commutative diagram (1.1)

L10(2)
ϖR
↪→ MR

g ↓≀ g̃ ↓≀
SY (2)

π∗

↪→ SX .

Denote by π− : SX → S∨
X− the orthogonal projection. Identify MR with SX via g̃.

Then the following equalities hold:

(1) R̃ = SX−,
(2) R = π−(2SX),

(3) 1
2 R̃

∨/R̃ = A−,

(4) 1
2R/R̃ = D−,

(5) R∨/R̃ = D⊥
−,

(6) O(R̃, R) = O(SX−, D−).

Note that we neglect the quadratic forms in (1)–(5) and just consider them as
equalities of abelian groups.

Proof. The equality (1) is by the definition.
(2) Note that MR is spanned by Im$R and {(iR(v) ± v)/2 | v ∈ R}. Hence

π−(MR) is spanned by 0 and 1
2R.

(3) As lattices we have R̃(2) = SX−, and (R̃(2))∨ = 1
2 R̃

∨ yields the claim.
(4) By definition, we have π−(SX)/SX− = D−.

(5) Let x ∈ 1
2R and y ∈ R∨. Then 〈x, y〉MR

= 2〈x, y〉R ≡ 0 mod Z and x+ R̃ ∈
D−. This shows that R

∨/R̃ ⊂ D⊥
−. Conversely let x+ R̃ ∈ D⊥

−. For y ∈ R we have

〈x, y〉R = 1
2 〈x, y〉MR

= 〈x, 12y〉MR
≡ 0 mod Z because y

2 + R̃ ∈ D− = 1
2R/R̃. This

shows that x ∈ R∨.
(6) O(R̃, 12R/R̃) = O(R̃, 12R) = O(R̃, R). □

Let R be an ADE-lattice and Φ the set of its roots. We fix a subset Φ+ ⊂ Φ
of positive roots. There exists a unique Weyl-chamber C of R (see Definition 2.5)
such that for all r ∈ Φ+ and c ∈ C we have 〈r, c〉 > 0. We call C the fundamental
chamber. The positive roots perpendicular to the walls of C are the so-called simple
roots. The simple roots form a basis of R whose Dynkin diagram is of ADE-type
τ(R). As before we have O(R) =W (R)⋊O(R,C), where O(R,C) is the stabilizer
of C in O(R). Via the action of O(R,C) on the vertices of the Dynkin diagram,
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we identify O(R,C) with the symmetry group Aut(τ(R)) of the Dynkin diagram
τ(R), that is, we have

O(R) =W (R)⋊Aut(τ(R)).

A lattice is called irreducible if it cannot be written as a non-trivial orthogonal
sum of two sublattices. Definite lattices admit an orthogonal decomposition into
irreducible sublattices which is unique up to reordering (cf. [14, 27.1]).

Lemma 3.5. Let R be an ADE-lattice, and let O0(R) be the kernel of the natural
homomorphism O(R) → O(R∨/R). Then we have

[O0(R) :W (R)] = n!,

where n is the number of E8 components of τ(R).

Proof. Since reflections with respect to roots act trivially on the discriminant group,
we have W (R) ⊆ O(R)0. Thus it suffices to compute the kernel of

ψ : Aut(τ(R)) → O(R∨/R).

If τ(R) is irreducible, a case by case analysis shows that this map is injective: indeed
for A1, E7 and E8, Aut(τ(R)) = 1; for Ak with k ≥ 1, Dk with k > 4 and E6 the
group Aut(τ(R)) is of order two. A direct computation shows that it acts faithfully
on the discriminant group.

Suppose that the root system τ(R) is reducible. The decomposition of τ(R) into
connected components corresponds to a decomposition of R into an orthogonal sum
of irreducible ADE-lattices, which in turn induces a corresponding decomposition
of the discriminant group R∨/R. The action of Aut(τ(R)) preserves the three
decompositions. Hence the elements of Kerψ must preserve the components which
have a non-trivial discriminant group, that is, all components which are not of type
E8. By the first part, they must act trivially on these components. Finally, since
the E8 diagram has no symmetry, the elements in the kernel act as a permutation
of the connected components of τ(R) of type E8. □

Lemma 3.6. Let R be an ADE-lattice of rank at most 10 and R̃ an even overlattice.
Consider the homomorphism

(3.5) O(R, R̃) → O(R∨/R̃).

If there is a component R̃j of R̃ with τ(R̃j) = E8 and τ(R̃j ∩ R) = 2D4, then the

kernel of (3.5) is W (R)⋊ 〈h〉 where h ∈ Aut(τ(R), R̃) is an involution. Otherwise
the kernel is just the Weyl group W (R).

Proof. Let Aut(τ(R), R̃) ≤ Aut(τ(R)) be the stabilizer of R̃. Since the elements of

W (R) act trivially on R∨/R, they preserve R̃ and

O(R̃, R) =W (R)⋊Aut(τ(R), R̃) ≤W (R)⋊Aut(τ(R)).

The elements of W (R) act trivially on the domain of R∨/R ↠ R∨/R̃, so they lie
in the kernel of (3.5). Thus it suffices to compute the kernel of

ϕ : Aut(τ(R), R̃) → O(R∨/R̃).

Indeed, the kernel of (3.5) is given by W (R)⋊Kerϕ.

First we suppose that τ(R) is irreducible. If R = R̃, then W (R) = O0(R)
by Lemma 3.5, and hence ϕ is injective. Otherwise (as rankR ≤ 10) the pair

(τ(R), τ(R̃)) ∈ {(A7, E7), (A8, E8), (D8, E8)}. Suppose we are in the case (A7, E7).
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Then R∨/R ∼= Z/8Z and R̃/R = 4(R∨/R). Then Aut(τ(R)) is of order two and

acts as ±1 on R∨/R which is non-trivial in R∨/R̃ ∼= Z/4Z. A similar argument
applies to (A8, E8). Finally the symmetry of the D8 diagram exchanges the two
isotropic vectors of its discriminant. In particular it does not fix any non-trivial

even overlattice which implies that Aut(τ(R), R̃) = 1 in the (D8, E8) case. In any
case ϕ is injective.

Now suppose that R =
⊕
Ri has several irreducible components Ri and let

h ∈ Kerϕ. Note that h preserves the decomposition R∨ =
⊕
R∨
i . Let x ∈ R∨

i be
a non-zero element.

If xh lies in the same component R∨
i as x, then h must preserve it. Hence we

may restrict h to this component and the previous paragraph yields xh = x.
If x and xh lie in different components R∨

i and R∨
j , then these components are

isomorphic and q(xh − x) = q(xh) + q(x) = 2q(x). Since h ∈ Kerϕ, we have

xh − x ∈ R̃ Further R̃/R is totally isotropic with respect to the discriminant form.
Thus q(xh − x) = 2q(x) ≡ 0 mod 2Z, i.e. q(x) ≡ 0 mod Z. If y is any non-trivial
element of R∨

i , then x
h and yh lie in the same connected component R∨

j and the
same reasoning applies. In particular

∀y ∈ R∨
i : q(y) ≡ 0 mod Z

which implies that Ri is 2-elementary and qRi
has values in Z/2Z. Under the

constraint rankR ≤ 10, this is possible only if τ(Ri) = τ(Rj) = D4. To sum up ϕ
is injective, except possibly if τ(R) has two D4 components. We analyse this case
in detail.

We may assume that R = R1 ⊕ R2 is of type 2D4 and R̃ an overlattice of R.

If R̃ = R, then ϕ is injective by Lemma 3.5. Hence we may further assume that

R ⊊ R̃. Suppose there exists a non-trivial element h in the kernel of ϕ. By the
previous part this implies that Rh1 = R2.

Let e1, e2, e3, e4 be the simple roots of R1 with e4 giving the central vertex of the
Dynkin diagram of type D4, i.e. 〈e4, ei〉 = 1 for i = 1, 2, 3. Let (e∨1 , . . . e

∨
4 ) ∈ R∨

1 be
the dual basis. The four elements of R∨

1 /R1 are represented by e∨1 , e
∨
2 , e

∨
3 and e∨4

representing 0. Set fi = ehi ∈ R2. Then fhi = eσ(i) for some permutation σ ∈ S4

with σ(4) = 4. Since h ∈ Kerϕ, we have ti := e∨i − f∨i ∈ R̃ for i ∈ {1, 2, 3}.
Now the cosets of 0, t1, t2 and t3 constitute a maximal totally isotropic subspace

of R∨/R contained in R̃/R. Since R̃/R is totally isotropic as well, the subspaces

must be equal. We conclude that τ(R̃) = E8. By the same reasoning we have

f∨i − e∨σ(i) ∈ R̃. As R̃/R has only four elements, this is possible only if σ = 1.

Hence h is an involution and uniquely determined by R̃/R. This shows that the
kernel of ϕ is of order 2. □

Lemma 3.7. Let R̃ be an ADE-lattice and Φ+ the set of its positive roots. Then

the natural map Φ+ → R̃/2R̃ is injective.

Proof. We may assume that R̃ is irreducible. In what follows we explicitly compute

η : Φ+ → R̃/2R̃ for each case using classical constructions of the ADE-lattices (see
e.g. [10, Theorem 1.2]).
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Let (ε1, . . . , εn+1) be the standard basis of Zn+1. The n(n+1) roots of the lattice

An =

{
(xi) ∈ Zn+1 :

n+1∑
i=1

xi = 0

}
are given by

Φ(An) = {αij = εi − εj | 1 ≤ i 6= j ≤ n+ 1}.
Suppose that αij ≡ αlk mod 2An ⊆ 2Zn+1. Then we have that εi− εj+ εk− εl ≡ 0
mod 2Zn+1. This is possible only if each standard basis vector appears twice, i.e.
(i, j) = (k, l) or (i, j) = (l, k) which means that αij = ±αlk. Since either αlk ∈ Φ+

or −αlk ∈ Φ+, the map η is injective.
Let (ε1, . . . , εn) be the standard basis of Zn, n ≥ 4. The 2n(n − 1) roots of the

lattice

Dn =

{
(xi) ∈ Zn :

n∑
i=1

xi ≡ 0 mod 2

}
are given by ±(εi + εj) and ±(εi − εj) for 1 ≤ i < j ≤ n. Suppose that ±εi ± εj ≡
±εk ± εl mod 2Dn. As before this implies that {i, j} = {k, l}. Since

(εi + εj)− (εi − εj) = 2εj /∈ 2D4,

the map η is injective. We leave the exceptional cases E6, E7, E8 to the reader. □

Lemma 3.8. Let R̃ =
⊕

j∈J R̃j be an ADE-lattice with R̃j irreducible. Then the
kernel of the natural homomorphism

ψ : O(R̃) = O(R̃(2)) → O( 12 R̃
∨/R̃),

where 1
2 R̃

∨/R̃ is the discriminant form of R̃(2), is generated by the elements ⊕j∈Jgj
with gj = ±1R̃j

if R̃j is unimodular and gj = 1R̃j
otherwise.

Proof. We identify 1
2 R̃

∨/R̃ and R̃∨/2R̃. Let g ∈ Kerψ. Since R̃ ⊆ R̃∨, g acts triv-

ially on R̃∨/2R̃∨. The action of O(R̃) preserves the decomposition R̃ =
⊕

j∈J R̃j .

In particular g acts on the set J . As R̃∨/2R̃∨ =
⊕

j∈J R̃
∨
j /2R̃

∨
j and g is in Kerψ

we have jg = j. Hence g must fix each connected component of R̃ and we may and

will assume that R̃ is irreducible.
We tensor the perfect pairing R̃∨ × R̃ → Z with F2, to obtain a perfect pairing

R̃∨/2R̃∨ × R̃/2R̃ → F2. Since g acts trivially on the first factor, so does it on the

second factor R̃/2R̃. By Lemma 3.7 Φ(R̃)/{±1} ∼= Φ+(R̃) injects into R̃/2R̃, which

implies that g(r) = ±r for every root r ∈ Φ(R̃). As any simple root system of R̃ is
connected, the sign is the same for each simple root. Since the simple roots form a
basis, g = ±1.

Set R̃± = Ker(g ∓ 1) ⊂ R̃. We apply Proposition 2.1 to the primitive extension

R̃+(2)⊕ R̃−(2) ⊆ R̃(2).

Since g acts trivially on the discriminant group 1
2 R̃

∨/R̃ of R̃(2), the implication

(3.6) g| 1
2 R̃

∨
+/R̃+

= 1 =⇒ g| 1
2 R̃

∨
−/R̃−

= 1

holds. By definition g|R̃−
= −1R̃−

and then by the right hand side of (3.6), the

lattice R̃−(2) must be 2-elementary, i.e. R̃− is unimodular. In particular R̃− is
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a direct summand of R̃. But we assumed the latter to be irreducible, so that

R̃ ∈ {0, R̃−}. Thus g = ±1 if R̃ is unimodular and g = 1 else. □

Remark 3.9. Let R be an irreducible ADE-lattice. By [10, Proposition 1.5], we
have −1 ∈W (R) if and only if R contains rankR pairwise orthogonal roots, if and
only if τ(R) is one of An (n ≥ 1), Dn (n ≥ 4, n even), E7, E8.

Theorem 3.10. Let Y be a (τ, τ̄)-generic Enriques surface, and let R, R, R̃ be

as in Table 1.1. Let R̃ =
⊕

j R̃j be the decomposition into irreducible components.
Then we have

|GX−| = |W (R)|
d(τ,τ̄)

e(τ,τ̄)
,

where d(τ,τ̄), e(τ,τ̄) are given as follows.

d(τ,τ̄) :=

{
2 ∃ j such that τ(R̃j) = E8 and τ(R̃j ∩R) = 2D4,

1 otherwise,

e(τ,τ̄) :=

{
2 ∃ j such that τ(R̃j) = E8 and R̃j ∩R contains 8 orthogonal roots,

1 otherwise.

Hence the value of c(τ,τ̄) in Table 1.1 is equal to e(τ,τ̄)/d(τ,τ̄).

Proof. By Theorem 3.3 and Lemma 3.4, we have

GX− = Ker(O(R̃, R) → O(R∨/R̃)),

which, by Lemma 3.6, is given by W (R), or by W (R) ⋊ 〈h〉 for some involution

h ∈ Aut(τ(R), R̃) if there is some component R̃j with τ(R̃j) = E8 and τ(R̃j ∩R) =
2D4. Consider the natural homomorphism ψ : O(R̃) → O( 12 R̃

∨/R̃) in Lemma 3.8.

By our dictionary in Lemma 3.4, we have GX− = ψ(GX−). By Lemma 3.8, the

kernel of ψ consists of those g = ⊕j∈Jgj with gj = ±1R̃j
if R̃j is unimodular and

gj = 1R̃j
else. Further |Kerψ ∩W (R)| consists of those g with gj = ±1 if R̃j is

unimodular and −1 ∈ W (R ∩ R̃j) and gj = 1 else. Now Remark 3.9 yields the
condition for e(τ,τ̄). Since the gj = ±1 do not preserve any positive root system,
the involution h is not in Kerψ. This explains the presence of d(τ,τ̄). □

Remark 3.11. The contribution e(τ,τ̄) is due to the presence of semi-symplectic
numerically trivial automorphisms.

4. Borcherds’ method

4.1. An algorithm on a graph. The algorithms to prove our main results are
variations of the following computational procedure.

Let (V,E) be a simple non-oriented connected graph, where V is the set of
vertices and E is the set of edges, which is a set of non-ordered pairs of distinct
elements of V . The set V may be infinite. Suppose that a group G acts on (V,E)
from the right. We assume the following.

(VE-1) For any vertex v ∈ V , the set { v′ ∈ V | {v, v′} ∈ E } of vertices adjacent
to v is finite and can be calculated effectively.
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(VE-2) For any vertices v, v′ ∈ V , we can determine effectively whether the set

(4.1) TG(v, v
′) := { g ∈ G | vg = v′ }

is empty or not, and when it is non-empty, we can calculate an element of
TG(v, v

′).
(VE-3) For any v ∈ V , the stabilizer subgroup TG(v, v) of v in G is finitely gener-

ated, and a finite set of generators of TG(v, v) can be calculated effectively.

We define the G-equivalence relation ∼ on V by

v ∼ v′ ⇐⇒ TG(v, v
′) 6= ∅.

Suppose that V0 is a non-empty finite subset of V with the following properties.

(V0-1) If v, v′ ∈ V0 are distinct, then v 6∼ v′.

(V0-2) We put Ṽ0 := { v ∈ V | v is adjacent to a vertex belonging to V0 }. Then,

for each v ∈ Ṽ0, there exists a vertex v′ ∈ V0 such that v ∼ v′.

For each v ∈ Ṽ0, we choose an element h(v) ∈ TG(v, v
′), where v′ is the unique

vertex in V0 such that v ∼ v′, and put

H := {h(v) | v ∈ Ṽ0 }.

We fix an element v0 ∈ V0.

Proposition 4.1. The natural mapping

(4.2) V0 ↪→ V →→ V/∼ = V/G

is a bijection, and the group G is generated by the union of TG(v0, v0) and H.

Proof. Let 〈H〉 be the subgroup of G generated by H. First we prove that, for any
v ∈ V , there exists an element h ∈ 〈H〉 such that vh ∈ V0. Let an element v ∈ V
be fixed. A sequence

(4.3) v(0), v(1), . . . , v(l)

of vertices is said to be a path from V0 to v⟨H⟩ if v(i−1) and v(i) are adjacent for
i = 1, . . . , l, the starting vertex v(0) is in V0, and the ending vertex v(l) belongs

to the orbit v⟨H⟩ of the fixed vertex v under the action of 〈H〉. Since (V,E) is
connected and V0 is non-empty, there exists at least one path from V0 to v⟨H⟩.
Suppose that the sequence (4.3) is a path from V0 to v⟨H⟩ of length l > 0. Since

v(1) is adjacent to the vertex v(0) in V0, we have v(1) ∈ Ṽ0 and there exists an
element h1 := h(v(1)) ∈ H that maps v(1) to an element of V0. Then

vh1

(1), . . . , v
h1

(l)

is a path from V0 to v⟨H⟩ of length l − 1. Thus we obtain a path from V0 to v⟨H⟩

of length 0, which implies the claim.
The injectivity of (4.2) follows from property (V0-1) of V0. The surjectivity

follows from the claim above. Suppose that g ∈ G. By the claim, there exists

an element h ∈ 〈H〉 such that vgh0 ∈ V0. By property (V0-1) of V0, we have

v0 = vgh0 and hence gh ∈ TG(v0, v0). Therefore G is generated by the union of H
and TG(v0, v0). □

To obtain V0 and H, we employ Procedure 4.1. This procedure terminates if and
only if |V/G| <∞.
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Initialize V0 := [v0], H := {}, and i := 0.
while i < |V0| do

Let vi be the (i+ 1)st entry of the list V0.
Let A(vi) be the set of vertices adjacent to vi.
for each vertex v′ in A(vi) do

Set flag := true.
for each v′′ in V0 do

if TG(v
′, v′′) 6= ∅ then

Add an element h of TG(v
′, v′′) to H.

Replace flag by false.
Break from the innermost for–loop.

if flag = true then
Append v′ to the list V0 as the last entry.

Replace i by i+ 1.

Procedure 4.1. A computational procedure on a graph

4.2. 17 primitive embeddings. Recall that L26 is an even unimodular hyperbolic
lattice of rank 26. The L26-chamber (that is, the standard fundamental domain
of W (L26)) was studied by Conway [7]. He constructed a bijection between the
set of walls of an L26-chamber D and the set of vectors of the Leech lattice, and
showed that the automorphism group O(L26, D) of D is isomorphic to the group of
affine isometries of the Leech lattice. Using this result, Borcherds [4], [5] developed
a method to calculate the orthogonal group of an even hyperbolic lattice S by
embedding S primitively into L26 and investigating the tessellation of an S-chamber
(that is, a standard fundamental domain of W (S)) by L26/S-chambers.

In [6], we apply this method to S = L10(2). We fix positive half-cones P10 of
L10 and P26 of L26. In [6], we have proved the following.

Theorem 4.2 ([6]). Up to the action of O(L10) and O(L26), there exist exactly 17
primitive embeddings of L10(2) into L26. □

These 17 primitive embeddings of L10(2) into L26 are named as

12A, 12B, 20A, . . . , 20F, 40A, . . . , 40E, 96A, 96B, 96C, infty.

Recall the notion of being reflexively simple from Definition 2.9.

Theorem 4.3 ([6]). Suppose that a primitive embedding L10(2) ↪→ L26 is not of
type infty, Then each L26/L10(2)-chamber has only finitely many walls, and they
are defined by roots of L10. Moreover the tessellation of P10 by L26/L10(2)-chambers
is reflexively simple. □

The explicit description of the 17 primitive embeddings and L26/L10(2)-chambers
is given in [6] and [30]. From these data, we see the following. Let L10(2) ↪→ L26

be a primitive embedding whose type is not infty, and D an L26/L10(2)-chamber.
The automorphism group of D is denoted by

O(L10, D) := { g ∈ OP(L10) | Dg = D }.
Since the walls of D are defined by roots of L10, the chamber D is tessellated by
Vinberg chambers. The volume of D is defined by

vol(D) := the number of Vinberg chambers contained in D.
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Let f be a face of D with codimension k. Then the defining roots of the walls
of D containing f form a configuration whose dual graph is a Dynkin diagram of
an ADE-type. The ADE-type of f is the ADE-type of this Dynkin diagram. The
closure D of D in SX ⊗ R contains only a finite number of isotropic rays. Let
v ∈ SX ∩D be a primitive isotropic ray (see Section 2.3). Then the defining roots
r of walls of D such that 〈r, v〉 = 0 form a configuration whose dual graph is a
Dynkin diagram of an affine ADE-type. The affine ADE-type of the isotropic ray
R>0v is the affine ADE-type of this Dynkin diagram.

Example 4.4. Let L10(2) ↪→ L26 be the primitive embedding of type 96C, and D0

an L26/L10(2)-chamber. Then D0 has exactly 96 walls. The group O(L10, D0) is
of order 110592 = 212 ·33, and this group acts on the set of walls of D0 transitively.
We have

vol(D0) =
1BP

72
= 652758220800.

The L26/L10(2)-chamber D0 has 1728+768+144 faces of codimension 2, which are
decomposed into orbits of size 1728, 768, 144 under the action of O(L10, D0). Hence
each wall of D0 is bounded by 36 + 16 + 3 = 55 faces of codimension 2 of D0. The
ADE-types of faces in these orbits are 2A1, 2A1, A2, respectively. The L26/L10(2)-
chamber D0 has 18 + 256 + 256 + 864 isotropic rays, which are decomposed into
orbits of size 18, 256, 256, 864 by the action of O(L10, D0). The affine ADE-types
of isotropic rays of these orbits are 8A1, 4A2, 4A2, 2A1 + 2A3, respectively.

4.3. Constructing SX . Let Y be an Enriques surface with the universal covering
π : X → Y . We consider the following assumption:

(4.4)

we have a primitive embedding SX ↪→ L26 such that the composite
SY (2) ∼= L10(2) ↪→ L26 of π∗ : SY (2) ↪→ SX and SX ↪→ L26 is not of
type infty, and we have the list of walls of an L26/SY (2)-chamber
D0 that is contained in NefY .

Suppose that (4.4) holds. Then PY has the following three tessellations, each of
which is a refinement of the one below.

• by Vinberg chambers,
• by L26/SY (2)-chambers, each of which has only finite number of walls, and
• by SX/SY (2)-chambers, one of which is NefY .

The tessellation of NefY by L26/SY (2)-chambers is very useful in analyzing NefY .
Recall that GY ⊂ OP(SY ) is the image of the projection of GX ⊂ OP(SX) defined
by (3.2).

Proposition 4.5. Suppose that Y satisfies (3.1) and (4.4). Then the action of
GY on PY preserves the tessellation of PY by L26/SY (2)-chambers. In particular,
the action of aut(Y ) on NefY preserves the tessellation of NefY by L26/SY (2)-
chambers.

Proof. It is enough to prove that the action of g̃ ∈ GX on PX preserves the tes-
sellation of PX by L26/SX -chambers. Let idP be the identity of the orthogonal
complement P of SX in L26. Since the action of g̃ on S∨

X/SX is 1, the action of
(g̃, idP ) on SX ⊕P preserves the even unimodular overlattice L26 of SX ⊕P . Thus
g̃ extends to an isometry of L26, and hence its action on PX preserves the L26/SX -
chambers. The second assertion follows from the fact that aut(Y ) is the stabilizer
subgroup of NefY in GY . □
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The purpose of this section is to construct a primitive embedding SX ↪→ L26 for
a (τ, τ̄)-generic Enriques surface Y , so that we can assume (4.4). We start from
a primitive embedding ι : L10(2) ↪→ L26 whose type is not infty and which has a
fixed L26/L10(2)-chamber D0, and then proceed to the construction of SX between
L10(2) ∼= SY (2) and L26 such that the inclusion of L10(2) ∼= SY (2) into SX is the
embedding π∗, and that the fixed L26/L10(2)-chamber D0 is contained in NefY .

Recall that, for a (τ, τ̄)-generic Enriques surface Y , the lattice SX is obtained
from SY (2) by adding roots of the form (r + v)/2, where r is a root of SY and v
is a (−4)-vector in SX−. To find roots in L26 that yield an appropriate extension
from SY (2) to SX , we search for pairs α = (r, v) of a root r of L10 defining a
wall of D0 and a (−4)-vector v of Qι such that (r + v)/2 is in L26, where Qι is
the orthogonal complement of L10(2) in L26. For a finite set p = {α1, . . . , αm}
of such pairs, we consider the sublattice Mp of L26 generated by L10(2) and the
roots (r1 + v1)/2, . . . , (rm + vm)/2 of L26, where αi = (ri, vi). Suppose that p =
{α1, . . . , αm} satisfies the following:

(i) The dual graph of r1, . . . , rm is a Dynkin diagram of some ADE-type τ . By
Proposition 1.2, the primitive closure R of the ADE-sublattice R of L10 gen-
erated by r1, . . . , rm is also an ADE-sublattice of L10. Let τ̄ denote the ADE-
type of R.

By Proposition 1.2, the embedding L10(2) ↪→ Mp is isomorphic to L10(2) ↪→ MR,
and hence, by Proposition 1.3, we see that L10(2) is a primitive sublattice of Mp,
and the orthogonal complement of L10(2) in Mp contains no roots. We consider
the following condition:

(ii) Mp can be embedded primitively into the K3 lattice (an even unimodular lat-
tice of rank 22 with signature (3, 19)). This condition is checked by calculating
the discriminant form of Mp and applying the theory of genera (see [22]).

Suppose that Mp satisfies condition (ii). Since 22 − rankMp = 12 − m > 2,
the surjectivity of the period mapping of complex K3 surfaces ([3, Chapter VIII])
implies that there exists aK3 surfaceX withMp

∼= SX such that O(TX , ω) = {±1}.
Moreover, by [13], the K3 surface X has a fixed point free involution ε with the
quotient morphism π : X → Y = X/〈ε〉 to the Enriques surface Y such that, under
suitable choices of isometries Mp

∼= SX , the embedding L10(2) ↪→ Mp is identified
with π∗ : SY (2) ↪→ SX . By the construction ofMp, this Enriques surface Y is (τ, τ̄)-
generic. Thanks to Proposition 3.1, we can further assume that D0 is contained in
NefY by changing the isometry Mp

∼= SX .
Except for the type (τ, τ̄) of Nos 88 and 146, we can find a set p = {α1, . . . , αm}

satisfying condition (i) above using the primitive embedding ι : L10(2) ↪→ L26 given
in the 8th column (irec) of Table 1.1. If the 5th column (exist) is not marked by
×, then Mp satisfies condition (ii).

Example 4.6. Let ι : L10(2) ↪→ L26 be the primitive embedding of type 96C (see
Example 4.4). Then the even negative definite lattice Qι contains 2208 vectors v
of square-norm −4, and we have 192 pairs α = (r, v) such that (r + v)/2 ∈ L26.
Choosing appropriate subsets from these 192 pairs, we can construct SX for many
types (τ, τ̄) (Nos. 1, 2, . . . ).

Remark 4.7. Even when Mp does not satisfy condition (ii), we can use Mp as the
Néron-Severi lattice SX of a “non-existing K3 surface” X and run the geometric
algorithms below.
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5. Geometric algorithms

We prepare some algorithms that will be used in the application of the general-
ized Borcherds’ method to geometric situations.

Let Y be an Enriques surface with the universal covering π : X → Y . We
assume (3.1) and (4.4). First we prepare the following computational data:

(i) an integral interior point aY 0 ∈ SY of D0, which is an ample class of Y ,
(ii) the list of roots defining the walls of D0,
(iii) the finite group OP(SY , D0) = { g ∈ OP(SY ) | Dg

0 = D0 },
(iv) the finite group O(SX−), and
(v) the list of (−4)-vectors of SX−.

5.1. Separating roots.

Definition 5.1. Let L be an even hyperbolic lattice with a positive half-cone P,
and let a1, a2 be elements of P ∩ L. We say that a hyperplane (v)⊥ of P separates
a1 and a2 if 〈v, a1〉 and 〈v, a2〉 are non-zero and have different signs. We say that
a vector v ∈ L⊗Q with 〈v, v〉 < 0 separates a1 and a2 if (v)⊥ separates a1 and a2.

By an algorithm given in [27], we can calculate, for any a1, a2 ∈ P ∩ L, the set
of roots of L that separate a1 and a2.

5.2. Splitting roots.

Definition 5.2. We say that a root r of SY splits in SX if there exists a root r̃ of
SX such that π∗(r) = r̃ + r̃ε.

A root r of SY splits in SX if and only if there exists a (−4)-vector v of SX−
such that (π∗(r) + v)/2 ∈ SX . Hence we can effectively determine whether a given
root r of SY splits in SX or not. Moreover, when r splits, we can calculate the
roots r̃ = (π∗(r) + v)/2 and r̃ε = (π∗(r)− v)/2 of SX such that π∗(r) = r̃ + r̃ε.

Suppose that a root r of SY satisfies that NefY ∩ (r)⊥ contains a non-empty
open subset of (r)⊥ and that 〈r, aY 〉 > 0 for an ample class aY of Y . Then the
following are equivalent:

• NefY ∩ (r)⊥ is a wall of NefY (that is, the hyperplane (r)⊥ is disjoint from
the interior of NefY ),

• r splits in SX , and
• r is the class of a smooth rational curve C on Y .

In this case, the roots r̃ and r̃ε of SX are the classes of the smooth rational curves

C̃ and C̃ε on X such that π−1(C) = C̃ + C̃ε.

5.3. Membership criterion of GY in OP(SY ). An element g of OP(SY ) belongs
to GY if and only if there exists an isometry h ∈ O(SX−) such that the action of
(g, h) on SX+ ⊕ SX− preserves the overlattice SX and that g̃ := (g, h)|SX acts on
S∨
X/SX trivially. Since we have the list of elements of the finite group O(SX−),

we can determine whether an element g ∈ OP(SY ) belongs to GY or not, and if
g ∈ OP(SY ), we can calculate a lift g̃ ∈ GX of g.

5.4. Membership criterion of aut(Y ) in GY . Suppose that g ∈ GY , and let
g̃ ∈ GX be a lift of g. Recall from Proposition 3.2 that g belongs to aut(Y ) if
and only if g preserves NefY , or equivalently g̃ preserves NefX . Hence g ∈ aut(Y )
holds if and only if one of the following conditions that are mutually equivalent is
satisfied:
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• For any ample classes aX and a′X of X, there exist no root of SX separating

ag̃X and a′X .
• For any ample classes aY and a′Y of Y , any roots of SY separating agY and
a′Y does not split in SX .

• There exist ample classes aX and a′X of X such that there exist no roots

of SX separating ag̃X and a′X .
• There exist ample classes aY and a′Y of Y such that any root of SY sepa-
rating agY and a′Y does not split in SX .

Thus we can determine effectively whether a given isometry g ∈ GY belongs to
aut(Y ) or not, because we have at least one ample class aY 0 of Y .

5.5. Criterion for aut(Y )-equivalence. Recall from Theorem 4.3 that, for every
L26/SY (2)-chamberD, we have an isometry g ∈ OP(SY ) such thatD = Dg

0 . LetD1

and D2 be L26/SY (2)-chambers. Suppose that we have isometries g1, g2 ∈ OP(SY )
such that D1 = Dg1

0 and D2 = Dg2
0 . Then the set

isoms(D1, D2) := { g ∈ OP(SY ) | Dg
1 = D2 } = g−1

1 ·OP(SY , D0) · g2
is finite, and can be explicitly calculated. Therefore we can calculate the set

isoms(Y,D1, D2) := aut(Y ) ∩ isoms(D1, D2)

explicitly, and in particular, we can calculate the group aut(Y,D) := isoms(Y,D,D)
for an L26/SY (2)-chamber D.

6. Proofs of main theorems

We present algorithms that prove Theorems 1.16 and 1.18. Let Y be an Enriques
surface with the universal covering π : X → Y . Suppose that Y is (τ, τ̄)-generic,
where (τ, τ̄) is not equal to No. 88 nor No. 146 in Table 1.1, so that we can as-
sume (3.1) and (4.4).

6.1. Generators of aut(Y ) and representatives of NefY /aut(Y ). We calcu-
late a finite generating set of aut(Y ) and a complete set of representatives of
NefY /aut(Y ). This calculation affirms Theorem 1.15 computationally. Moreover
the results will be used in the proofs of Theorems 1.16 and 1.18 below.

Let (V,E) be the graph where V is the set of L26/SY (2)-chambers contained in
NefY and E is defined by the adjacency relation of L26/SY (2)-chambers. Let G
be the group aut(Y ), and let v0 ∈ V be the L26/SY (2)-chamber D0 in NefY . Let
D = Dg

0 be an L26/SY (2)-chamber contained in NefY , where g ∈ OP(SY ). Then
we can calculate the set of roots defining the walls of D by mapping the set of roots
defining the walls of D0 by the isometry g. For each root r defining a wall of D, the
chamber Dsr = Dgsr

0 adjacent to D across the wall D ∩ (r)⊥ of D is contained in
NefY if and only if r does not split in SX . Therefore we can determine Dsr ⊂ NefY
or not by the method in Section 5.2. Therefore condition (VE-1) in Section 4.1

is satisfied. Since we can calculate isom(Y,Dg
0 , D

g′

0 ) for any g, g′ ∈ OP(SY ) by
Section 5.5, conditions (VE-2) and (VE-3) are also satisfied. Therefore we can
apply Procedure 4.1 to the graph (V,E) and the group G, and obtain a complete
set V0 of representatives of orbits of the action of G on V , the stabilizer subgroups
isom(Y,D,D) = aut(Y,D) of these representatives D ∈ V0, and a generating set

G := H ∪ aut(Y,D0)
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of aut(Y ). Then we have

(6.1) vol(NefY /aut(Y )) = vol(D0)
∑
D∈V0

1

|aut(Y,D)|
.

Thus Theorem 1.15 is computationally affirmed.

Remark 6.1. The amount of computation of Procedure 4.1 grows quadratically as
|V/G| becomes large, because we have to check TG(v, v

′) = ∅ for all pairs of distinct
v, v′ ∈ V0. We could calculate a finite generating set of aut(Y ) by using, naively,
the graph (V ′, E′), where V ′ is the set of Vinberg chambers contained in NefY and
E′ is the adjacency relation of Vinberg chambers. However, the size of V ′/aut(Y )
is approximately vol(D0) times the size of V/aut(Y ). Thus, very roughly speaking,
using the primitive embedding SY (2) ↪→ L26 of type 96C gives us computational
advantage of multiplicative factor the square of vol(D0) = 652758220800.

6.2. Calculating Rtemp, Etemp and GX . From V0 and G calculated above, we
compute the following data, which will be used in Sections 6.3 and 6.4.

Recall that R(Y ) is embedded in SY by C 7→ [C]. For each D ∈ V0, let R(Y,D)
be the set of roots r = [C] in R(Y ) such that D ∩ (r)⊥ is a wall of D. Since
D ⊂ NefY , a root r defining a wall of D belongs to R(Y ) if and only if r splits in
SX . Therefore we can calculate R(Y,D) by the method in Section 5.2. We put

Rtemp :=
⋃
D∈V0

R(Y,D).

Then the mapping
Rtemp ↪→ R(Y )→→R(Y )/aut(Y )

is surjective. Via the generating set G, we can generate (pseudo-)random elements
of aut(Y ) = 〈G〉. For [C], [C ′] ∈ Rtemp, if we find g ∈ aut(Y ) such that [C]g = [C ′],
then we remove [C ′] from Rtemp. Repeating this process many times, we obtain a
smaller subset R′

temp of R(Y ) that is mapped to R(Y )/aut(Y ) surjectively.

Let φ : Y → P1 be an elliptic fibration of Y , and F a general fiber of φ. Then
fϕ := [F ]/2 ∈ SY is a primitive isotropic ray (see Section 2.3 for the definition)

contained in the closure of NefY in PY . For each D ∈ V0, let E(Y,D) be the set of
primitive isotropic rays contained in the closure D of D in PY . We put

Etemp :=
⋃
D∈V0

E(Y,D).

Then the mapping
Etemp ↪→ E(Y )→→E(Y )/aut(Y )

is surjective. As above, from Etemp and using G, we obtain a smaller subset E ′
temp

of E(Y ) that is mapped to E(Y )/aut(Y ) surjectively.
Let Aut(X, ε) be the centralizer of ε ∈ Aut(X) in Aut(X), and let aut(X, ε)

be the image of Aut(X, ε) in aut(X). We write an element γ̃ ∈ Aut(X) as (g̃, f)
by (3.3). Since O(TX , ω) = {±1} is abelian, we see that γ̃ commutes with ε ∈
Aut(X) if and only if g̃ commutes with ε ∈ aut(X). Hence aut(X, ε) is equal to
the centralizer of ε ∈ aut(X) in aut(X). By the Torelli theorem (see the proof of
Proposition 3.2), an element g̃ of OP(SX) belongs to aut(X, ε) if and only if g̃ acts
on S∨

X/SX as ±1, preserves NefX , and commutes with ε ∈ OP(SX). Let aut(X, ε)0
be the group consisting of elements g̃ ∈ aut(X, ε) that act on S∨

X/SX as 1. We
have aut(X, ε)0 = aut(X, ε) ∩GX .
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The restriction homomorphism g̃ 7→ g̃|SY gives a surjective homomorphism
aut(X, ε) → aut(Y ). We calculate the kernel

K := Ker(aut(X, ε) → aut(Y )).

The kernel K is naturally embedded into O(SX−) by g̃ 7→ g̃|SX−. We put

K0 := Ker(aut(X, ε)0 → aut(Y )) ⊂ GX .

By definition K0 acts trivially on S∨
X+/SX+ and by Proposition 2.1 it must act

trivially on S∨
X−/SX− as well. Hence, regarded as a subgroup of GX− ⊂ O(SX−),

K0 is contained in the kernel of

ψ : GX− → O(S∨
X−/SX−).

Conversely the elements of Kerψ can be extended by the identity on SX+ to ele-
ments of GX which trivially preserve NefY . Hence they are induced by automor-
phisms of Y and we have K0 = Kerψ. The kernel of ψ is explicitly computed in the
proof of Theorem 3.10. Its order is given by eτ,τ̄ ∈ {1, 2}. Suppose that eτ,τ̄ = 2. If

ε ∈ K0, then K = K0 = 〈ε〉. This is the case if in addition τ(R̃) = E8. Otherwise
K = K0 × 〈ε〉 is of order 4.

For each g in the generating set G of aut(Y ), we calculate a lift g̃ ∈ aut(X, ε) of
g, and put

GX := { g̃ | g ∈ G } ∪ K.

Then aut(X, ε) is generated by GX .

6.3. Rational curves on Y . We prove Theorem 1.16. By the construction of
SX given in Section 4.3, we have a set of splitting roots that define some walls of
D0 ⊂ NefY and form the dual graph of ADE-type τ . Therefore the existence of
C1, . . . , Cm in assertion (1) is proved.

Let C be a smooth rational curve on Y , and r := [C] the class of C. Let ṼC be
the set of L26/SY (2)-chambers D such that D ∩ (r)⊥ is a wall of D and that D is

located on the same side of (r)⊥ as NefY . Let D be an element of ṼC , and suppose
that F := D ∩ (r)⊥ ∩ (r′)⊥ is a face of codimension 2 of D that is a boundary of
the wall D ∩ (r)⊥, where r′ is a root of SY defining a wall of D. Then there exists

a unique element D′ of ṼC such that D ∩D′ = F holds. We say that this chamber

D′ is adjacent in ṼC to D across F . This L26/SY (2)-chamber D′ is calculated as
follows. As is seen from the set of faces of L26/SY (2)-chambers (see [30]), we have
〈r, r′〉 = 0 or 〈r, r′〉 = 1. Let s and s′ be the reflections with respect to the roots
r = [C] and r′, respectively. Then

D′ =

{
Ds′ if 〈r, r′〉 = 0,

Dss′ if 〈r, r′〉 = 1.

Suppose that D is contained in NefY . Then D
′ is contained in NefY if and only if r′

is not the class of a smooth rational curve on Y , or equivalently, r′ does not split in
SX . We consider the graph (VC , EC), where VC is the set of L26/SY (2)-chambers

D ∈ ṼC contained in NefY , and EC is the restriction to VC ⊂ ṼC of the adjacency

relation on ṼC defined above. Then the stabilizer subgroup

GC := aut(Y,C) = { g ∈ aut(Y ) | rg = r }
of C in aut(Y ) acts on (VC , EC). For D,D

′ ∈ VC , we have

TG(D,D
′) = { g ∈ isoms(Y,D,D′) | rg = r },
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where TG(D,D
′) ⊂ GC is defined by (4.1), and isoms(Y,D,D′) is defined in Sec-

tion 5.5. Therefore (VC , EC) and GC satisfy conditions (VE-1), . . . , (VE-3) in
Section 4.1. We apply Procedure 4.1 to every C ∈ R′

temp and obtain a complete
set VC,0 of representatives of orbits of the action of GC on VC .

Two elements C and C ′ of R′
temp are contained in the same orbit under the

action of aut(Y ) on R(Y ) if and only if we have one of the following conditions
that are mutually equivalent.

• Let D be an arbitrary element of VC,0. Then there exists an L26/SY (2)-
chamber D′ in VC′,0 such that isoms(Y,D,D′) contains an isometry g such
that [C]g = [C ′].

• There exist a pair of L26/SY (2)-chambers D ∈ VC,0 and D′ ∈ VC′,0 and an
isometry g ∈ isoms(Y,D,D′) such that [C]g = [C ′].

Applying this method to all pairs C,C ′ of distinct elements of R′
temp, we obtain

a complete set of representatives C ′
1, . . . , C

′
k of orbits of the action of aut(Y ) on

R(Y ). We then apply this method to the representatives C ′
1, . . . , C

′
k and the smooth

rational curves C1, . . . , Cm in assertion (1), and complete the proof of Theorem 1.16.
The algorithm given above is a priori guaranteed to work. A posteriori, Theo-

rem 1.16 can be verified by the following simple strategy. Let aut(X, ε)|SX− be the
image of the homomorphism

aut(X, ε) → O(SX−)

given by g̃ 7→ g̃|SX−. Since we have calculated a finite generating set GX of
aut(X, ε), we can calculate the elements of the finite group aut(X, ε)|SX−. Let
C,C ′ be elements of R(Y ). If the orbit of {±vC} ⊂ SX− by aut(X, ε)|SX− and
that of {±vC′} are disjoint, then the orbits of C and C ′ by aut(Y ) are disjoint.
Even though the converse does not necessarily hold, we know a posteriori that once
the size of R′

temp is small enough, this separates the orbits of R′
temp.

6.4. Elliptic fibrations of Y . Let φ : Y → P1 be an elliptic fibration of Y . We
consider the following graph (Vϕ, Eϕ). We define Vϕ to be the set of L26/SY (2)-

chambers D contained in NefY such that the closure D of D in SY ⊗ R contains
the primitive isotropic ray fϕ = [F ]/2, where F is a general fiber of φ, and Eϕ to
be the set of pairs of adjacent L26/SY (2)-chambers in Vϕ. The stabilizer subgroup

Gϕ := aut(Y, φ) := { g ∈ aut(Y ) | fgϕ = fϕ }

of φ in aut(Y ) acts on (Vϕ, Eϕ). Then condition (VE-1) is satisfied. Indeed, the
set of L26/SY (2)-chambers in Vϕ adjacent to D ∈ Vϕ is the set of all Dsr , where
r runs through the set of non-splitting roots of SY defining walls of D such that
〈r, fϕ〉 = 0. For D,D′ ∈ Vϕ, the subset TG(D,D

′) of Gϕ is the set of isometries
belonging to isoms(Y,D,D′) that fixes fϕ. Therefore (VE-2) and (VE-3) are also
satisfied.

We apply Procedure 4.1 to every φ ∈ E ′
temp and obtain a complete set Vϕ,0 of

representatives of orbits of the action ofGϕ on Vϕ. We also obtain a finite generating
set Gϕ of the stabilizer subgroup aut(Y, φ).

The set Σϕ of classes of smooth rational curves C contained in some fiber of φ is
calculated as follows. Let aY be an ample class of Y . Every class [C] ∈ Σϕ satisfies
〈[C], fϕ〉 = 0 and 0 < 〈[C], aY 〉 < 2〈fϕ, aY 〉. We calculate the set Σ′ of all roots r of
SY satisfying 〈r, fϕ〉 = 0 and 0 < 〈r, aY 〉 < 2〈fϕ, aY 〉. Then r ∈ Σ′ belongs to Σϕ
if and only if r splits in SX (see Section 5.2) and there exist no roots r′ ∈ Σϕ such
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that 〈r′, aY 〉 < 〈r, aY 〉 and 〈r, r′〉 < 0. Therefore we can calculate Σϕ by sorting
the elements r of Σ′ according to 〈r, aY 〉 and applying the above criterion to r ∈ Σ′

in this order.
Each connected component of the dual graph of roots in Σϕ corresponds to a

reducible fiber of φ, and is the Dynkin diagram of an affine ADE-type. Let Γ be
a connected component. The weighted sum of roots in Γ with appropriate weights
according to the ADE-type of Γ (see, for example, [26, Theorem 5.12]) is either fϕ
or 2fϕ. The former case occurs when the corresponding reducible fiber is a multiple
fiber, while the latter occurs when the fiber is non-multiple.

Let φ′ : Y → P1 be another element of E ′
temp. Then φ and φ′ are contained in the

same orbit under the action of aut(Y ) on E(Y ) if and only if the following holds.
Let D be an element of Vϕ,0. Then there exists D′ ∈ Vϕ′,0 such that isoms(Y,D,D′)
contains an isometry that maps fϕ to fϕ′ . Note that D′ can be computed explicitly.
Applying this method to all pairs φ, φ′ of distinct elements of E ′

temp, we obtain a
complete set of representatives of the action of aut(Y ) on E(Y ).

6.5. Table of elliptic fibrations. Let φ : Y → P1 be an elliptic fibration of an
Enriques surface Y . Then φ has exactly two multiple fibers, and both of them
are of multiplicity 2. In the table below, the first column shows the ADE-types
of non-multiple reducible fibers, and the second column shows the ADE-types of
multiple reducible fibers. The third column gives the number of elliptic fibrations
modulo aut(Y ). See [32] for the cases with rank τ ≥ 8.

No. 1: (A1, A1)

none none 136
A1 none 255

No. 2: (2A1, 2A1)

none none 36
none A1 1
A1 none 128
2A1 none 126

No. 3: (A2, A2)

A1 none 136
A2 none 119

No. 4: (3A1, 3A1)

none none 10
A1 none 48
A1 A1 3
2A1 none 96
3A1 none 60

No. 5: (A2 + A1, A2 + A1)

none A1 1
A1 none 36
A2 + A1 none 63
2A1 none 63
A2 none 28

No. 6: (A3, A3)

none A2 1
2A1 none 36
A2 none 64
A3 none 54

No. 7: (4A1, 4A1)

none none 3
A1 none 16
2A1 none 48
2A1 A1 6
3A1 none 64
4A1 none 25

No. 8: (4A1, D4)

none none 10
none 2A1 3
2A1 none 96
4A1 none 60

No. 9: (A2 + 2A1, A2 + 2A1)

A1 none 10
A1 A1 2
A2 + A1 none 32
2A1 none 32
A2 + 2A1 none 30
3A1 none 30
A2 none 6
A2 A1 1

No. 10: (A3 + A1, A3 + A1)

A1 A1 1
A1 A2 1
A2 + A1 none 32
A3 + A1 none 30
2A1 none 10
3A1 none 15
A2 none 16
A3 none 12

No. 11: (2A2, 2A2)

none A1 1
A2 + A1 none 56
2A1 none 35
2A2 none 35

No. 12: (A4, A4)

none A2 1
A2 + A1 none 36
A3 none 27
A4 none 27

No. 13: (D4, D4)

none A3 3
4A1 none 10
A3 none 48
D4 none 20

No. 14: (5A1, 5A1)

none none 1
A1 none 5
2A1 none 20
3A1 none 40
3A1 A1 10
4A1 none 40
5A1 none 5

No. 15: (5A1, D4 + A1)

none none 3
A1 none 4
A1 2A1 3
2A1 none 24
3A1 none 48
3A1 A1 4
4A1 none 16
5A1 none 24

No. 16: (A2 + 3A1, A2 + 3A1)

A1 none 3
A2 + A1 none 12
A2 + A1 A1 3
2A1 none 12
2A1 A1 3
A2 + 2A1 none 24
3A1 none 24
A2 + 3A1 none 12
4A1 none 13
A2 none 1

No. 17: (A3 + 2A1, A3 + 2A1)

A2 + A1 none 16
A3 + A1 none 16
2A1 none 3
2A1 A1 2
2A1 A2 1
A2 + 2A1 none 16
A3 + 2A1 none 13
3A1 none 8
4A1 none 6
A2 none 4
A3 none 2
A3 A1 1
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No. 18: (A3 + 2A1, D5)

none A2 + A1 1
none 2A1 1
A2 + A1 none 32
2A1 none 10
A3 + 2A1 none 30
4A1 none 15
A3 none 6

No. 19: (2A2 + A1, 2A2 + A1)

A1 A1 1
A2 + A1 none 12
2A2 + A1 none 15
2A1 none 10
A2 + 2A1 none 30
3A1 none 15
A2 A1 2
2A2 none 10

No. 20: (A4 + A1, A4 + A1)

A1 A2 1
A2 + A1 none 10
A3 + A1 none 15
A4 + A1 none 15
A2 + 2A1 none 15
A2 A1 1
A3 none 6
A4 none 6

No. 21: (D4 + A1, D4 + A1)

A1 A3 3
A3 + A1 none 24
D4 + A1 none 12
3A1 A1 1
4A1 none 3
5A1 none 3
A3 none 12
D4 none 4

No. 22: (A3 + A2, A3 + A2)

A1 A1 1
A2 + A1 none 16
A3 + A1 none 12
A2 + 2A1 none 6
3A1 none 9
A2 A2 1
A3 + A2 none 18
2A2 none 16

No. 23: (A5, A5)

A1 A2 1
A3 + A1 none 15
2A2 none 10
A4 none 12
A5 none 15

No. 24: (D5, D5)

none A3 1
none A4 1
A3 + 2A1 none 10
A4 none 16
D4 none 5
D5 none 10

No. 25: (6A1, D4 + 2A1)

none none 1
A1 none 2
2A1 none 8
2A1 2A1 3
3A1 none 24
4A1 none 28
4A1 A1 9
5A1 none 16
6A1 none 3

No. 27: (A2 + 4A1, A2 + 4A1)

A1 none 1
A2 + A1 none 4
2A1 none 4
A2 + 2A1 none 12
A2 + 2A1 A1 6
3A1 none 12
3A1 A1 4
A2 + 3A1 none 16
4A1 none 16
A2 + 4A1 none 1
5A1 none 4

No. 28: (A2 + 4A1, D4 + A2)

A1 none 3
A2 + 2A1 none 24
3A1 none 24
3A1 A1 4
A2 + 4A1 none 12
5A1 none 12
A2 none 1
A2 2A1 3

No. 29: (A3 + 3A1, A3 + 3A1)

A2 + A1 none 6
A3 + A1 none 6
A3 + A1 A1 3
2A1 none 1
A2 + 2A1 none 12
A3 + 2A1 none 12
3A1 none 3
3A1 A1 3
3A1 A2 1
A2 + 3A1 none 8
A3 + 3A1 none 3
4A1 none 6
5A1 none 1
A2 none 1

No. 30: (A3 + 3A1, D5 + A1)

A1 A2 + A1 1
A1 2A1 1
A2 + A1 none 8
A3 + A1 none 4
A3 + A1 A1 2
2A1 none 3
A2 + 2A1 none 16
A3 + 2A1 none 8
3A1 none 4
3A1 A1 1
A3 + 3A1 none 12
4A1 none 4
5A1 none 6
A3 none 1

No. 31: (2A2 + 2A1, 2A2 + 2A1)

A2 + A1 none 2
A2 + A1 A1 4
2A2 + A1 none 8
2A1 none 3
2A1 A1 1
A2 + 2A1 none 16
2A2 + 2A1 none 6
3A1 none 8
A2 + 3A1 none 12
4A1 none 7
2A2 none 3
2A2 A1 1

No. 32: (A4 + 2A1, A4 + 2A1)

A2 + A1 none 3
A2 + A1 A1 2
A3 + A1 none 8
A4 + A1 none 8
2A1 A2 1
A2 + 2A1 none 8
A3 + 2A1 none 7
A4 + 2A1 none 6
A2 + 3A1 none 6
A3 none 1
A4 none 1
A4 A1 1

No. 33: (D4 + 2A1, D4 + 2A1)

A3 + A1 none 12
D4 + A1 none 8
2A1 A3 3
A3 + 2A1 none 12
D4 + 2A1 none 3
4A1 none 1
4A1 A1 2
5A1 none 2
A3 none 3
D4 A1 1

No. 34: (D4 + 2A1, D6)

none A3 + A1 1
A3 + A1 none 16
2A1 2A1 1
2A1 A3 2
A3 + 2A1 none 8
D4 + 2A1 none 12
4A1 none 3
6A1 none 3
A3 none 4
D4 none 2

No. 35:

(A3 + A2 + A1, A3 + A2 + A1)

A2 + A1 none 4
A2 + A1 A1 1
A2 + A1 A2 1
A3 + A2 + A1 none 6
2A2 + A1 none 8
A3 + A1 none 2
2A1 A1 1
A2 + 2A1 none 9
A3 + 2A1 none 7
3A1 none 3
A2 + 3A1 none 3
4A1 none 3
A3 + A2 none 6
2A2 none 4
A3 A1 1

No. 36: (A5 + A1, A5 + A1)

2A2 + A1 none 4
A3 + A1 none 4
A4 + A1 none 8
A5 + A1 none 7
2A1 A2 1
A3 + 2A1 none 6
2A2 none 3
A3 A1 1
A4 none 2
A5 none 4

No. 37: (A5 + A1, E6)

none A2 + A1 1
A5 + A1 none 15
A3 + 2A1 none 15
2A2 none 10
A4 none 6

No. 38: (D5 + A1, D5 + A1)

A1 A3 1
A1 A4 1
A3 + A1 A1 1
A4 + A1 none 8
D4 + A1 none 3
D5 + A1 none 6
A3 + 2A1 none 3
A3 + 3A1 none 3
A4 none 4
D4 none 1
D5 none 2

No. 39: (3A2, 3A2)

2A2 + A1 none 30
A2 + 2A1 none 15
3A1 none 10
A2 A1 3
3A2 none 5
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No. 40: (3A2, E6)

2A2 + A1 none 30
A2 + 2A1 none 15
3A1 none 10
A2 A1 3
3A2 none 5

No. 41: (A4 + A2, A4 + A2)

2A2 + A1 none 6
A3 + A1 none 6
A4 + A1 none 6
A2 + 2A1 none 9
A2 A1 1
A2 A2 1
A3 + A2 none 9
A4 + A2 none 9

No. 42: (D4 + A2, D4 + A2)

A3 + A1 none 12
D4 + A1 none 4
3A1 A1 1
A2 + 4A1 none 1
5A1 none 2
A2 A3 3
A3 + A2 none 12
D4 + A2 none 8

No. 43: (2A3, 2A3)

2A1 A1 1
A2 + 2A1 none 8
A3 + 2A1 none 4
4A1 none 2
A3 + A2 none 16
2A2 none 8
A3 A2 2
2A3 none 9

No. 44: (2A3, D6)

none 2A1 1
none 2A2 1
A3 + 2A1 none 12
4A1 none 9
2A2 none 16
2A3 none 18

No. 45: (A6, A6)

A4 + A1 none 6
A2 A2 1
A3 + A2 none 9
A5 none 6
A6 none 9

No. 46: (D6, D6)

none A5 1
2A1 A3 1
D4 + 2A1 none 3
2A3 none 3
A5 none 8
D5 none 2
D6 none 6

No. 47: (E6, E6)

none A4 1
A5 + A1 none 10
D5 none 5
E6 none 5

No. 50:

(A2 + 5A1, D4 + A2 + A1)

A1 none 1
A2 + A1 none 1
A2 + A1 2A1 3
2A1 none 1
A2 + 2A1 none 6
3A1 none 6
A2 + 3A1 none 12
A2 + 3A1 A1 4
4A1 none 12
4A1 A1 5
A2 + 4A1 none 4
5A1 none 4
6A1 none 3

No. 51: (A3 + 4A1, D5 + 2A1)

A2 + A1 none 2
A3 + A1 none 2
2A1 none 1
2A1 A2 + A1 1
2A1 2A1 1
A2 + 2A1 none 8
A3 + 2A1 none 4
A3 + 2A1 A1 5
3A1 none 2
A2 + 3A1 none 8
A3 + 3A1 none 8
4A1 none 3
4A1 A1 2
A3 + 4A1 none 1
5A1 none 4
6A1 none 1

No. 52: (A3 + 4A1, D4 + A3)

2A1 none 1
A2 + 2A1 none 12
A3 + 2A1 none 12
4A1 none 6
4A1 A1 4
4A1 A2 1
A2 + 4A1 none 8
A3 + 4A1 none 3
A2 none 1
A3 2A1 3

No. 54: (2A2 + 3A1, 2A2 + 3A1)

2A2 + A1 none 3
2A2 + A1 A1 3
2A1 none 1
A2 + 2A1 none 6
A2 + 2A1 A1 6
2A2 + 2A1 none 6
3A1 none 3
3A1 A1 1
A2 + 3A1 none 12
4A1 none 6
A2 + 4A1 none 2
5A1 none 3
2A2 none 1

No. 55: (A4 + 3A1, A4 + 3A1)

A2 + A1 none 1
A3 + A1 none 3
A4 + A1 none 3
A4 + A1 A1 3
A2 + 2A1 none 3
A2 + 2A1 A1 3
A3 + 2A1 none 6
A4 + 2A1 none 6
3A1 A2 1
A2 + 3A1 none 6
A3 + 3A1 none 3
A2 + 4A1 none 1

No. 56: (D4 + 3A1, D6 + A1)

A1 A3 + A1 1
A3 + A1 none 6
D4 + A1 none 2
D4 + A1 A1 2
A3 + 2A1 none 10
D4 + 2A1 none 4
3A1 2A1 1
3A1 A3 2
A3 + 3A1 none 4
D4 + 3A1 none 2
4A1 none 1
5A1 none 1
5A1 A1 1
6A1 none 1
A3 none 1

No. 58:

(A3 + A2 + 2A1, A3 + A2 + 2A1)

A2 + A1 none 1
A3 + A2 + A1 none 4
2A2 + A1 none 4
A3 + A1 A1 2
A2 + 2A1 none 4
A2 + 2A1 A1 2
A2 + 2A1 A2 1
A3 + A2 + 2A1 none 1
2A2 + 2A1 none 4
A3 + 2A1 none 4
3A1 none 1
3A1 A1 1
A2 + 3A1 none 6
A3 + 3A1 none 2
4A1 none 2
5A1 none 1
A3 + A2 none 2
A3 + A2 A1 1
2A2 none 1

No. 59:

(A3 + A2 + 2A1, D5 + A2)

2A2 + A1 none 8
A3 + A1 none 1
A3 + A1 A1 2
A2 + 2A1 none 9
A3 + A2 + 2A1 none 6
3A1 none 3
3A1 A1 1
A3 + 3A1 none 6
A2 + 4A1 none 3
5A1 none 3
A2 A2 + A1 1
A2 2A1 1
A3 + A2 none 3

No. 60: (A5 + 2A1, A5 + 2A1)

2A2 + A1 none 2
A3 + A1 none 1
A3 + A1 A1 2
A4 + A1 none 4
A5 + A1 none 4
2A2 + 2A1 none 2
A3 + 2A1 none 4
A4 + 2A1 none 4
A5 + 2A1 none 2
3A1 A2 1
A3 + 3A1 none 1
2A2 none 1
A5 none 1
A5 A1 1

No. 61: (A5 + 2A1, E6 + A1)

A1 A2 + A1 1
2A2 + A1 none 4
A3 + A1 A1 1
A4 + A1 none 4
A5 + A1 none 4
A3 + 2A1 none 4
A5 + 2A1 none 6
A3 + 3A1 none 6
2A2 none 3
A4 none 1
A5 A1 1

No. 62: (D5 + 2A1, D5 + 2A1)

A4 + A1 none 4
D4 + A1 none 2
D5 + A1 none 4
2A1 A3 1
2A1 A4 1
A3 + 2A1 none 1
A3 + 2A1 A1 2
A4 + 2A1 none 4
D4 + 2A1 none 1
D5 + 2A1 none 1
A3 + 3A1 none 2
A4 none 1
D5 A1 1
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No. 63: (D5 + 2A1, D7)

none A4 + A1 1
A4 + A1 none 8
2A1 A3 1
A3 + 2A1 none 3
D4 + 2A1 none 3
D5 + 2A1 none 6
A3 + 4A1 none 3
A3 2A1 1
D4 none 1
D5 none 1

No. 64: (3A2 + A1, 3A2 + A1)

A2 + A1 A1 3
2A2 + A1 none 9
3A2 + A1 none 3
A2 + 2A1 none 3
2A2 + 2A1 none 9
3A1 none 3
A2 + 3A1 none 9
4A1 none 4
2A2 A1 3
3A2 none 1

No. 65: (3A2 + A1, E6 + A1)

A2 + A1 A1 3
2A2 + A1 none 9
3A2 + A1 none 3
A2 + 2A1 none 3
2A2 + 2A1 none 9
3A1 none 3
A2 + 3A1 none 9
4A1 none 4
2A2 A1 3
3A2 none 1

No. 66:

(A4 + A2 + A1, A4 + A2 + A1)

A2 + A1 A1 1
A2 + A1 A2 1
A3 + A2 + A1 none 3
A4 + A2 + A1 none 3
2A2 + A1 none 1
A3 + A1 none 1
A4 + A1 none 1
A2 + 2A1 none 3
2A2 + 2A1 none 3
A3 + 2A1 none 4
A4 + 2A1 none 3
A2 + 3A1 none 3
A3 + A2 none 3
A4 + A2 none 3
2A2 A1 1
A4 A1 1

No. 67:

(D4 + A2 + A1, D4 + A2 + A1)

A2 + A1 A3 3
A3 + A2 + A1 none 6
A3 + A1 none 3
A3 + 2A1 none 6
D4 + 2A1 none 3
A2 + 3A1 A1 1
4A1 A1 1
5A1 none 1
A3 + A2 none 3
D4 + A2 none 4
D4 A1 1

No. 68: (2A3 + A1, 2A3 + A1)

A3 + A2 + A1 none 8
2A2 + A1 none 4
A3 + A1 A1 2
A3 + A1 A2 2
2A3 + A1 none 1
A2 + 2A1 none 2
3A1 A1 1
A2 + 3A1 none 4
A3 + 3A1 none 2
4A1 none 1
A3 + A2 none 4
2A2 none 2
2A3 none 4

No. 69: (2A3 + A1, D6 + A1)

A1 2A1 1
A1 2A2 1
2A2 + A1 none 8
A3 + A1 A1 2
2A3 + A1 none 6
A3 + 2A1 none 2
A3 + 3A1 none 6
4A1 none 3
5A1 none 3
2A2 none 4
2A3 none 6

No. 70: (2A3 + A1, E7)

A1 2A1 1
A1 2A2 1
2A2 + A1 none 8
A3 + A1 A1 2
2A3 + A1 none 6
A3 + 2A1 none 2
A3 + 3A1 none 6
4A1 none 3
5A1 none 3
2A2 none 4
2A3 none 6

No. 71: (A6 + A1, A6 + A1)

A2 + A1 A2 1
A3 + A2 + A1 none 3
A4 + A1 none 1
A5 + A1 none 4
A6 + A1 none 3
A4 + 2A1 none 3
A3 + A2 none 3
A4 A1 1
A5 none 1
A6 none 3

No. 72: (D6 + A1, D6 + A1)

A1 A5 1
2A3 + A1 none 1
A5 + A1 none 4
D4 + A1 A1 1
D5 + A1 none 2
D6 + A1 none 2
D4 + 2A1 none 1
3A1 A3 1
2A3 none 1
A5 none 2
D6 none 2

No. 73: (D6 + A1, E7)

A1 A3 + A1 1
A1 A5 1
A5 + A1 none 4
D6 + A1 none 6
D4 + 3A1 none 3
2A3 none 3
A5 none 4
D5 none 1

No. 74: (E6 + A1, E6 + A1)

A1 A4 1
A5 + A1 none 3
D5 + A1 none 3
E6 + A1 none 3
A5 + 2A1 none 3
A5 A1 1
D5 none 1
E6 none 1

No. 75: (A3 + 2A2, A3 + 2A2)

A2 + A1 A1 2
A3 + A2 + A1 none 12
2A2 + A1 none 8
A2 + 2A1 none 4
2A2 + 2A1 none 3
A3 + 2A1 none 1
4A1 none 3
2A2 A2 1
3A2 none 4
A3 A1 1

No. 76: (A5 + A2, A5 + A2)

A2 + A1 A2 1
A3 + A2 + A1 none 3
2A2 + A1 none 3
A4 + A1 none 2
A5 + A1 none 4
A3 + 2A1 none 3
A4 + A2 none 6
A5 + A2 none 3
3A2 none 1
A3 A1 1

No. 77: (A5 + A2, E7)

A2 + A1 A2 1
A3 + A2 + A1 none 3
2A2 + A1 none 3
A4 + A1 none 2
A5 + A1 none 4
A3 + 2A1 none 3
A4 + A2 none 6
A5 + A2 none 3
3A2 none 1
A3 A1 1

No. 78: (D5 + A2, D5 + A2)

A3 + A1 A1 1
A4 + A1 none 4
D4 + A1 none 1
D5 + A1 none 2
A3 + A2 + 2A1 none 1
A3 + 3A1 none 2
A2 A3 1
A2 A4 1
A4 + A2 none 4
D4 + A2 none 2
D5 + A2 none 4

No. 79: (A4 + A3, A4 + A3)

A2 + A1 A1 1
A3 + A2 + A1 none 2
2A2 + A1 none 4
A3 + 2A1 none 1
A4 + 2A1 none 1
A2 + 3A1 none 2
A3 + A2 none 4
A4 + A2 none 4
A3 A2 1
A4 + A3 none 4
2A3 none 5
A4 A2 1

No. 80: (D4 + A3, D4 + A3)

A3 + 2A1 none 3
4A1 A1 1
A2 + 4A1 none 1
A3 + A2 none 6
D4 + A2 none 4
A3 A3 3
D4 + A3 none 3
2A3 none 6
D4 A2 1

No. 81: (D4 + A3, D7)

none A3 + A2 1
2A1 2A1 1
A3 + 2A1 none 4
D4 + 2A1 none 2
A3 + 4A1 none 1
6A1 none 2
A3 + A2 none 8
A3 A3 2
D4 + A3 none 8
2A3 none 4

No. 82: (A7, A7)

A5 + A1 none 2
A4 + A2 none 4
A3 A2 1
2A3 none 2
A6 none 4
A7 none 5
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ADE-type number

E6 1
A5 +A1 5
3A2 1
D5 1
A5 1

A4 +A1 1
A3 + 2A1 5
2A2 +A1 1

D4 1
A4 1

ADE-type number

A3 +A1 1
2A2 1

A2 + 2A1 1
4A1 5
A3 1

A2 +A1 1
3A1 2
A2 1
2A1 1
A1 1

Table 7.1. RDP-configurations on Y

No. 83: (A7, E7)

none 2A2 1
A5 + A1 none 6
2A3 none 9
A7 none 9

No. 84: (D7, D7)

none A6 1
D5 + 2A1 none 1
A3 A3 1
D4 + A3 none 2
A6 none 4
D6 none 1
D7 none 4

No. 85: (E7, E7)

A1 A5 1
D6 + A1 none 3
A7 none 3
E6 none 1
E7 none 3

7. Examples

7.1. An (E6, E6)-generic Enriques surface. In [31], we investigated an (E6, E6)-
generic Enriques surface (No. 47 of Table 1.1). We briefly review the result of [31].

Let X ⊂ P3 be a quartic Hessian surface associated with a very general cubic
homogeneous polynomial, and X the minimal resolution of X. Then X contains 10
lines and has 10 ordinary nodes, and the K3 surface X has a fixed-point free invo-
lution ε that interchanges the strict transforms of the 10 lines and the exceptional
curves over the 10 ordinary nodes. Let π : X → Y be the quotient morphism by ε.
Then the Enriques surface Y is (E6, E6)-generic (see Kondo [17]).

We can construct a sequence of primitive embeddings SY (2) ↪→ SX ↪→ L26

from the primitive embeddings L10(2) ↪→ L26 of type 20E. We see that D0 is a
fundamental domain of the action of aut(Y ) on NefY , and hence

vol(NefY /aut(Y )) = vol(D0) =
1BP

51840
=

1BP

|W (RE6)|
.

In fact, the L26/SY (2)-chamber D0 is equal to the chamber DY in [31]. We then
obtain the same result as Table 1.1 of [31] for E(Y )/aut(Y ). We also prove that
aut(Y ) acts on R(Y ) transitively.

The last result contradicts Theorem 1.5 of [31], because Table 1.2 of [31] says
that there exist 10 orbits of the action of aut(Y ) on R(Y ). In fact, the argument
in Section 7.6 of [31] for the calculation of the number of aut(Y )-orbits of RDP-
configurations is wrong, and Table 1.2 of [31] should be replaced by Table 7.1 below.

Here we present a correct method for the calculation of aut(Y )-orbits of RDP-
configurations. Let ψ : Y → Y be a birational morphism to a surface Y that has
only rational double points as its singularities, and let hψ be an ample class of Y .
Since the L26/SY (2)-chamber D0 is a fundamental domain of the action of aut(Y )
on NefY , we can assume that ψ∗(hψ) ∈ SY belongs to D0 by composing ψ with an
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automorphism of Y . Let f be the minimal face of D0 containing ψ∗(hψ). Then the
set of the classes of smooth rational curves C contracted by ψ is equal to

Γ(f) := { [C] | C is a smooth rational curve on Y such that f ⊂ ([C])⊥ }.

For a given face f of D0, we calculate the set of roots r of SY such that f ⊂ (r)⊥.
From this set, we can calculate Γ(f) by using the ample class aY and the set of
(−4)-vectors in SX−. We calculate Γ(f) for all faces f of D0, and obtain 750 RDP-
configurations of smooth rational curves. Every RDP-configuration on Y is equal
to one of them modulo the action of aut(Y ).

Let Γ be one of the 750 RDP-configurations. We put µ := |Γ|, that is, µ is the
total Milnor number of the singularities of the surface Y corresponding to Γ. The
sublattice 〈Γ〉 of SY generated by the classes in Γ is negative definite of rank µ,
and its orthogonal complement 〈Γ〉⊥ is hyperbolic of rank 10−µ. Let P⟨Γ⟩⊥ be the

positive half-cone of 〈Γ〉⊥ contained in PY . Composing the primitive embedding
〈Γ〉⊥ ↪→ SY with the primitive embedding SY (2) ↪→ L26 of type 20E, we have
L26/〈Γ〉⊥(2)-chambers of P⟨Γ⟩⊥ . The intersection f0 := P⟨Γ⟩⊥ ∩ D0 is one of the

L26/〈Γ〉⊥(2)-chambers, and it is the maximal face of D0 among all the faces f of D0

such that Γ(f) = Γ. Let (VΓ, EΓ) be the graph where VΓ is the set of L26/〈Γ〉⊥(2)-
chambers on P⟨Γ⟩⊥ contained in P⟨Γ⟩⊥∩NefY and EΓ is the usual adjacency relation
of chambers. Then D 7→ P⟨Γ⟩⊥ ∩D gives a bijection to the set VΓ of vertices from
the set of L26/SY (2)-chambers D contained in NefY such that P⟨Γ⟩⊥ ∩D is a face
of D of dimension 10−µ, or equivalently, such that P⟨Γ⟩⊥ ∩D contains a non-empty
open subset of P⟨Γ⟩⊥ . The group

GΓ := { g ∈ aut(Y ) | Γg = Γ }

acts on the graph (VΓ, EΓ). We apply Procedure 4.1 to (VΓ, EΓ) and GΓ, and
obtain a complete set VΓ,0 of representatives of VΓ/GΓ. Let Γ′ be one of the 750
RDP-configurations with the same ADE-type as Γ. Let VΓ′,0 be a complete set of
representatives of VΓ′/GΓ′ . Then the RDP-configurations Γ and Γ′ are in the same
orbit under the action of aut(Y ) if and only if there exists an L26/〈Γ′〉⊥(2)-chamber
f ′ = P⟨Γ′⟩⊥ ∩ D′ ∈ VΓ′,0 with D′ ⊂ NefY such that isoms(Y,D0, D

′) contains an
element g satisfying Γg = Γ′. Since |VΓ′,0| is finite, we can determine whether Γ and
Γ′ are in the same orbit or not. Applying this method to all pairs Γ and Γ′ with the
same ADE-type, we obtain a complete set of representatives of RDP-configurations
modulo aut(Y ).

7.2. (4A1, 4A1)-generic and (4A1, D4)-generic Enriques surfaces. Let Y be a
(4A1, 4A1)-generic Enriques surface (No. 7 of Table 1.1). We construct a sequence
SY (2) ↪→ SX ↪→ L26 from the primitive embedding L10(2) ↪→ L26 of type 96C. The
complete set V0 of representatives of orbits of the action of aut(Y ) on the set of
L26/SY (2)-chambers contained in NefY consists of 5 elements with the orders of
stabilizer subgroups 1, 1, 1, 2, 1. Since vol(D0) = 1BP/72, we have

vol(NefY /aut(Y )) = vol(D0)

(
1

1
+

1

1
+

1

1
+

1

2
+

1

1

)
=

1BP

16
=

1BP

|W (R4A1
)|
.

The set Rtemp is of size 56 and the set Etemp is of size 6270.
We also construct SY (2) ↪→ SX ↪→ L26 for a (4A1, D4)-generic Enriques surface

(No. 8 of Table 1.1) from the primitive embedding of type 96C. The set V0 consists of
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18 elements with the orders of stabilizer subgroups 4, . . . , 4. We have |Rtemp| = 154
and |Etemp| = 21452.

7.3. A (D5, D5)-generic Enriques surface. We have to use the primitive embed-
ding of type 40A to construct SY (2) ↪→ SX ↪→ L26 for a (D5, D5)-generic Enriques
surface (No. 24 of Table 1.1). The set V0 consists of 6 elements with the orders of
stabilizer subgroups 2, . . . , 2. In this case, we have vol(D0) = 1BP/5760 and

vol(NefY /aut(Y )) = vol(D0)

(
1

2
+

1

2
+

1

2
+

1

2
+

1

2
+

1

2

)
=

1BP

1920
=

1BP

|W (RD5)|
.

We have |Rtemp| = 15 and |Etemp| = 758.

7.4. Enriques surfaces with finite automorphism group. Let Y be an En-
riques surface with finite automorphism group of type I in Kondo’s classifica-
tion [16]. We assume that Y is chosen very general so that the covering K3
surface X is of Picard number 19 and satisfies O(TX , ω) = {±1}. Then Y is
(E8+A1, E8+A1)-generic (No. 172 of Table 1.1). The automorphism group Aut(Y )
is a dihedral group of order 8, and its image aut(Y ) in OP(SY ) is order 4. The
Enriques surface Y has exactly 12 smooth rational curves, and their dual graph
is given in [16, Fig. 1.4]. The chamber NefY is isomorphic to an L26/L10(2)-
chamber D0 of the primitive embedding L10(2) ↪→ L26 of type 12A, and hence
vol(D0) = 1BP/174182400 (see [6]). Therefore

vol(NefY /aut(Y )) =
vol(D0)

4
=

1BP

21435527
=

2BP

|W (RE8+A1)|
.

The group aut(Y ) decomposes R(Y ) as 2 + 2 + 2 + 2 + 4.
For a very general Enriques surface Y with finite automorphism group of type

II, the chamber NefY is isomorphic to an L26/L10(2)-chamber D0 of the primitive
embedding L10(2) ↪→ L26 of type 12B. We have vol(D0) = 1BP/3870720. Note that
3870720 · |S4| = |W (RD9

)|. The Enriques surface Y is (D9, D9)-generic (No. 184
of Table 1.1), and we have Aut(Y ) ∼= aut(Y ) ∼= S4. The group aut(Y ) decomposes
R(Y ) as 6 + 6.

References

[1] Daniel Allcock. Congruence subgroups and Enriques surface automorphisms. J. Lond. Math.

Soc. (2), 98(1):1–11, 2018.
[2] W. Barth and C. Peters. Automorphisms of Enriques surfaces. Invent. Math., 73(3):383–411,

1983.

[3] Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven. Compact complex

surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer-
Verlag, Berlin, second edition, 2004.

[4] Richard Borcherds. Automorphism groups of Lorentzian lattices. J. Algebra, 111(1):133–153,

1987.
[5] Richard E. Borcherds. Coxeter groups, Lorentzian lattices, and K3 surfaces. Internat. Math.

Res. Notices, 1998(19):1011–1031, 1998.

[6] Simon Brandhorst and Ichiro Shimada. Borcherds’ method for Enriques surfaces, 2019. To
appear in Michigan Math. J., arXiv:1903.01087.

[7] J. H. Conway. The automorphism group of the 26-dimensional even unimodular Lorentzian
lattice. J. Algebra, 80(1):159–163, 1983.

[8] F. Cossec and I. Dolgachev. On automorphisms of nodal Enriques surfaces. Bull. Amer. Math.

Soc. (N.S.), 12(2):247–249, 1985.
[9] Igor Dolgachev and Shigeyuki Kondo. Enriques surfaces II (a manuscript of a book). http:

//www.math.lsa.umich.edu/~idolga/lecturenotes.html, 2020.

http://www.math.lsa.umich.edu/~idolga/lecturenotes.html
http://www.math.lsa.umich.edu/~idolga/lecturenotes.html


AUTOMORPHISM GROUPS OF ENRIQUES SURFACES 39

[10] Wolfgang Ebeling. Lattices and codes. Advanced Lectures in Mathematics. Springer Spek-
trum, Wiesbaden, third edition, 2013. A course partially based on lectures by Friedrich

Hirzebruch.
[11] Toshiyuki Katsura, Shigeyuki Kondo, and Ichiro Shimada. On the supersingular K3 surface

in characteristic 5 with Artin invariant 1. Michigan Math. J., 63(4):803–844, 2014.

[12] Yujiro Kawamata. On the cone of divisors of Calabi-Yau fiber spaces. Internat. J. Math.,
8(5):665–687, 1997.

[13] Jong Hae Keum. Every algebraic Kummer surface is the K3-cover of an Enriques surface.

Nagoya Math. J., 118:99–110, 1990.
[14] Martin Kneser. Quadratische Formen. Springer-Verlag, Berlin, 2002. Revised and edited in

collaboration with Rudolf Scharlau.
[15] János Kollár and Shigefumi Mori. Birational geometry of algebraic varieties, volume 134 of

Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998. With the

collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
[16] Shigeyuki Kondo. Enriques surfaces with finite automorphism groups. Japan. J. Math. (N.S.),

12(2):191–282, 1986.
[17] Shigeyuki Kondo. The moduli space of Hessian quartic surfaces and automorphic forms. J.

Pure Appl. Algebra, 216(10):2233–2240, 2012.
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