
Diagenetic processes and modeling in PISCES

Brief introduction

Some preliminary comments

- This presentation is not a detailed course on diagenetic processes
- This presentation is also not a detailed course on diagenetic modeling
 - → It just gives some elements to have a basic understanding of the training session

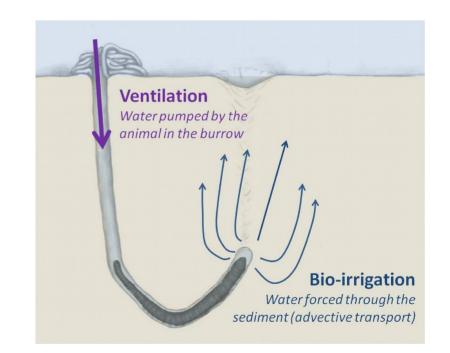
Two parts :

1) A rapid description of the biogeochemical processes in the marine sediments

2) Some elements on the sediment module of PISCES

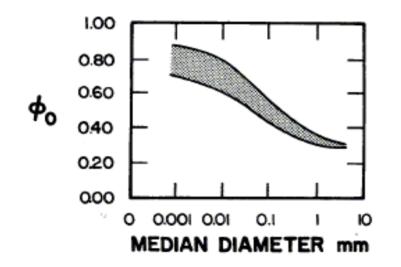
Transport in the sediments

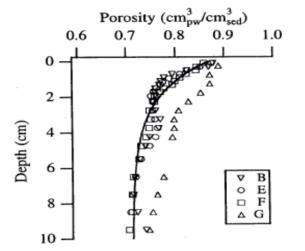
- Transport in the sediments tends to be mainly 1D (vertical)
- Vertical advection w is given by the sedimentation rate : from ~ 0.1 cm/kyr in low productive open ocean areas to > 1m/kyr in some coastal areas
- If no compaction and benthic reactions, w = deposition rate at the sediment water interface
- Diffusion processes are related to two distinct processes :
 - 1) Solute diffusion in a porous medium, i.e. diffusion of dissolved species in interstitial water


2) Mixing resulting from the activities of benthic organisms, i.e. mixing of solid species

• Irrigation which is pumped flow through animal burrows

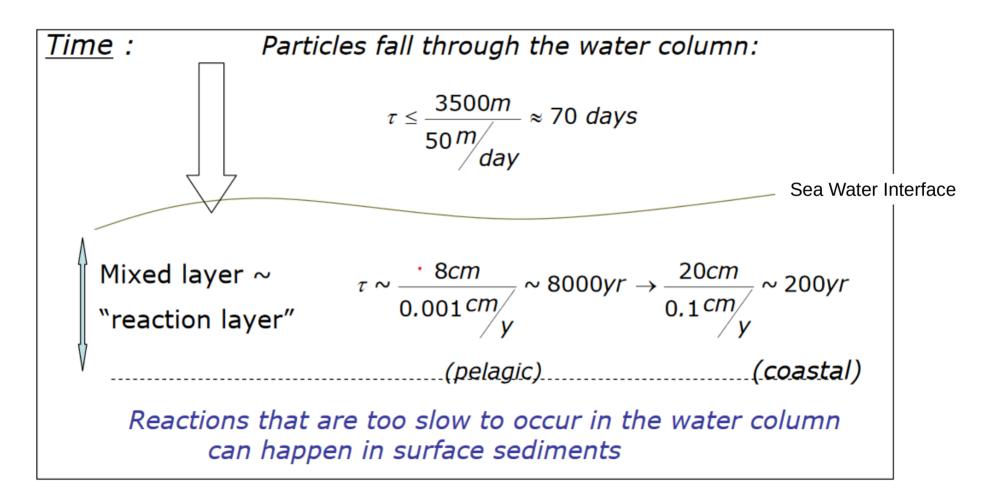
Bioturbation, bio-irrigation


Both processes are associated to the activities of organisms living in the sediments

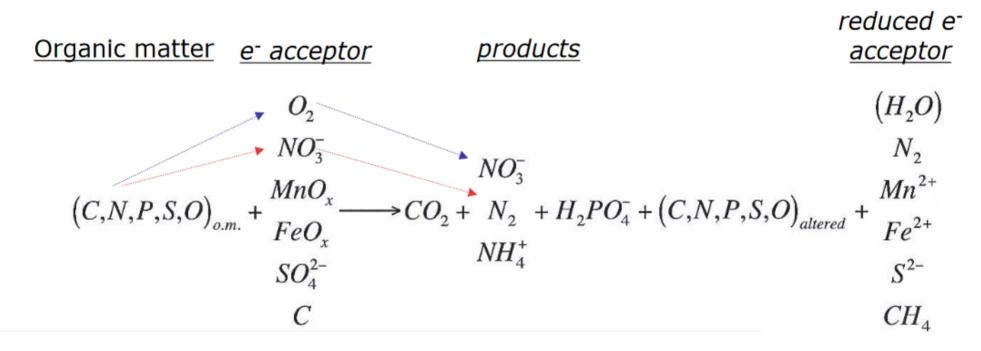

BI Value	Visual Representation	Description
0		Bioturbation absent
1		Sparse bioturbation, bedding distinct, few discrete traces
2		Uncommon bioturbation, bedding distinct, low trace density
3		Moderate bioturbation, bedding boundaries sharp, traces discrete with rare overlap
4		Common bioturbation, bedding boundaries indistinct, high trace density with common overlap
5		Abundant bioturbation, bedding just visible, though completely disturbed
6		Complete bioturbation, total biogenic homogenization of sediment

Physical structure of the sediments

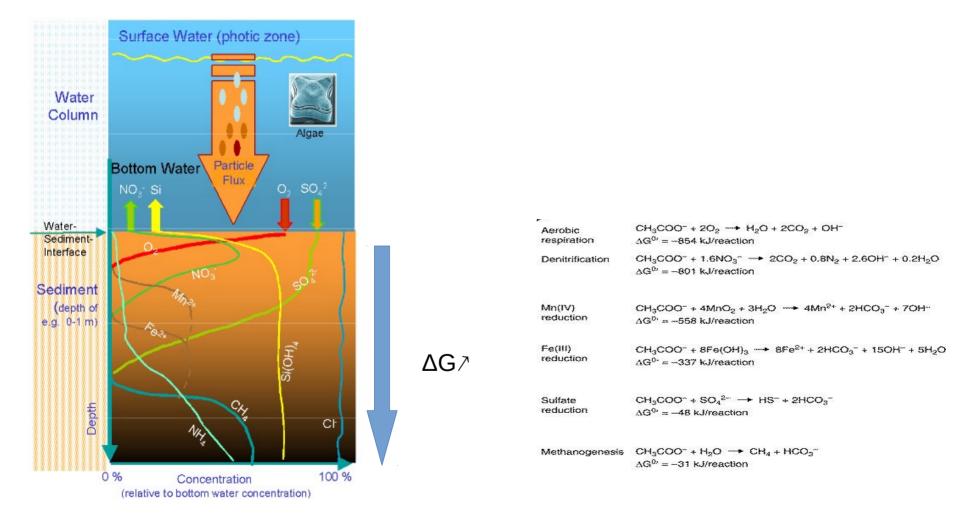
Porosity defines the relative volume of seawater in the sediment : ϕ



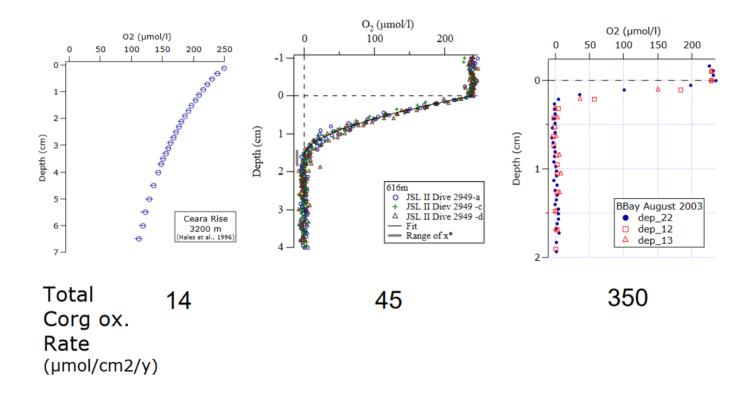
Initial (uncompacted) porosity increases as grain size decreases and as sorting decreases


Porosity decreases with depth as a consequence of compaction

Some thoughts on the time scales


Mechanisms for organic matter oxidation

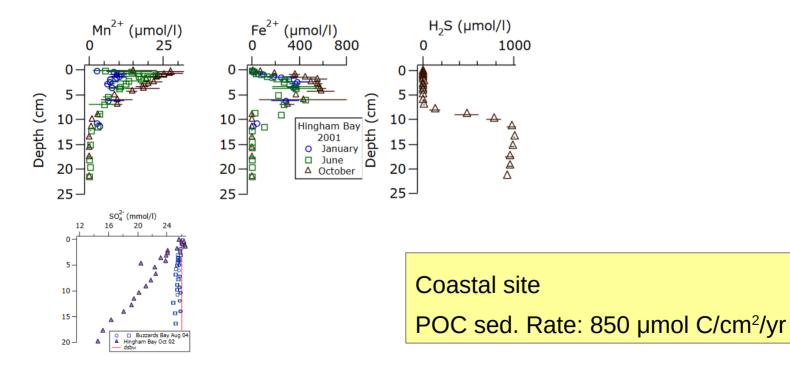
Typical reactions but many of them never occur in the open ocean



Order : decreasing $-\Delta G$ (Gibbs free energy)

Vertical ordering of the reactions

Oxygen penetration depth, some examples



It highly depends on the POC sedimentation rate but not only !

→ overlying water properties, temperature, biological activity, organic matter reactivity, ...

Higher order reactions : generally in coastal areas

High POC sedimentation rates and/or low oxygen overlying waters

Secondary redox reactions

- Secondary redox reactions make the system much more complex
- Adsorption/desorption processes : NH4, PO4, Fe, ...
- Precipitation/dissolution reactions link solid and dissolved species

```
Other reactions<sup>†</sup>
                                        2O_2 + NH_4^+ + 2HCO_3^- \rightarrow NO_3^- + 2CO_2 + 3H_2O_3^+
                                       O_2 + 2Mn^{2+} + 4HCO_3^- \rightarrow 2MnO_2^{\alpha} + 4CO_2 + 2H_2O_3^{\ddagger}
         O_2 + 4Fe^{2+} + 8HCO_3^- + H_2O + 4\chi H_2PO_4^- \rightarrow 4Fe(OH)_3^{\alpha} + 4\chi Fe - P^{\alpha} + 8CO_2
                                                            2O_2 + FeS \rightarrow SO_4^{=} + Fe^{2+}
                                           7O_2 + 2FeS_2 + 2H_2O \rightarrow 4SO_4^{=} + 2Fe^{2+} + 4H^{+}
                                          2O_2 + H_2S + 2HCO_3 \rightarrow SO_4 = +2CO_2 + 2H_2O_3
                                                             O_2 + CH_4 \rightarrow CO_2 + H_2O^{\ddagger}
MnO_{2}^{\alpha,\beta} + 2Fe^{2+} + 2\chi H_{2}PO_{4}^{-} + 2H_{2}O + 2HCO_{3}^{-} \rightarrow 2Fe(OH)_{3}^{\alpha} + 2\chi Fe - P^{\alpha} + Mn^{2+} + 2CO_{2}
                                         MnO_2^{\alpha,\beta} + H_2S + 2CO_2 \rightarrow Mn^{2+} + S_0 + 2HCO_3^{-}
            2Fe(OH)_{3}^{\alpha,\beta} + 2\chi Fe - P^{\alpha,\beta} + H_2S + 4CO_2 \rightarrow 2Fe^{2+} + 2\chi H_2PO_4^- + S_0 + 4HCO_3^- + 2H_2O_3^-
                                                         Fe^{2+} + H_2S \rightarrow FeS + 2H^+
                                               SO_4^{=}+CH_4+CO_2\rightarrow 2HCO_3^{-}+H_2S^{\ddagger}
                                                         4S_0 + 4H_2O \rightarrow 3H_2S + SO_4^{=} + 2H^+
                                                              FeS + S_0 \rightarrow FeS_2
                                            Fe(OH)_{3}^{\alpha} + \gamma Fe - P^{\alpha} \rightarrow Fe(OH)_{3}^{\beta} + \gamma Fe - P^{\beta}
                                                                  MnO_2^{\alpha} \rightarrow MnO_2^{\beta}
```

Diagenetic module in PISCES Basic description

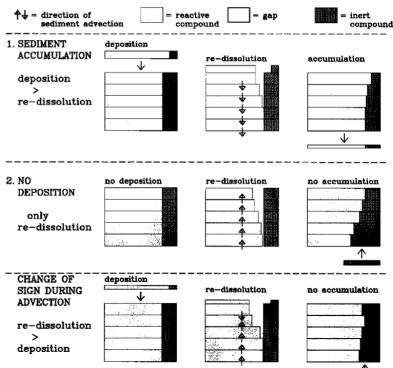
Continuity equations

Continuity equation of the dissolved species

$$\varphi \frac{\partial C_i}{\partial t} = \frac{\partial}{\partial z} \left(\varphi D_i \frac{\partial C_i}{\partial z} - \varphi v C_i \right) + \varphi \alpha(z) (C_{i,ow} - C_i(z)) + \sum_k v_{i,k} R_k$$

Solute diffusion Advection Bioirrigation Biogeochemical reactions

Continuity equation of the solid species


$$(1 - \varphi)\frac{\partial S_i}{\partial t} = \frac{\partial}{\partial z} \left((1 - \varphi)D_B(z)\frac{\partial S_i}{\partial z} - (1 - \varphi)wS_i \right) + \sum_k v_{i,k}R_k$$

bioturbation Advection Biogeochemical reactions

Discretization, advection, diffusion

- Typical vertical discretization with varying layer thickness (increasing with depth, defined in the namelist)
- Horizontal grid is identical to that of the ocean model and is made 1D. Land points are removed

 t = direction of sediment advection
 sediment advection i = reactive sediment advection
 sediment advection i = reactive sediment advection
 sediment advection i = reactive sediment advection
 i = sediment advection

- Advection scheme Heinze et al. (1999)
- Diffusion is solved using an implicit temporal scheme
- Important notice : the first sediment layer = the bottom of the water column

Primary and secondary redox reactions

Primary reactions

Secondary reactions

		$2O_2 + NH_4^+ + 2HCO_3^- \rightarrow NO_3^- + 2CO_2 + 3H_2O^+$
Aerobic respiration	CH ₃ COO ⁻ + 2O ₂ → H ₂ O + 2CO ₂ + OH ⁻ Δ G ⁰ = ~854 kJ/reaction	$O_2 + 2Mn^{2+} + 4HCO_3 \rightarrow 2MnO_2^{*} + 4CO_2 + 2H_2O_2^{*}$
		$O_2 + 4Fe^{2+} + 8HC\overline{O_3^-} + H_2O + 4\chi H_2PO_4^- \rightarrow 4Fe(OH)_3^{\alpha} + 4\chi Fe - P^{\alpha} + 8CO_2$
Denitrification	$CH_3COO^{-} + 1.6NO_3^{-} \longrightarrow 2CO_2 + 0.6N_2 + 2.6OH^{-} + 0.2H_2O$ $\Delta G^{0} = -801 \text{ kJ/reaction}$	$2O_2 + FeS \rightarrow SO_4^= + Fe^{2+}$
		$7O_2 + 2FeS_2 \pm 2H_2O \rightarrow 4SO_4^= + 2Fe^{2+} \pm 4H^+$
Mn(IV) reduction	CH ₃ COO ⁻ <u>→ 4MnO₂ + 3H₂O</u> → 4Mn²⁺ + 2HCO₃⁻ → 7OH ⁻ <u>AG⁶ = -558</u> kJ/reaction	$2O_2 + H_2S + 2HCO_3 \rightarrow SO_4 = +2CO_2 + 2H_2O_2$
		$O_2 + CH_4 \rightarrow CO_2 + H_2O_2^*$
Fe(III) reduction	CH ₃ COO ⁻ + 8Fe(OH) ₃ → 8Fe ²⁺ + 2HCO ₃ ⁻ + 15OH ⁻ + 5H ₂ O Δ G ⁰⁺ = ~337 kJ/reaction	$MnO_{2}^{\alpha,\beta} + 2Fe^{2+} + 2\chi H_{2}\overline{PO_{4}^{-}} + 2H_{2}O + 2HCO_{3}^{-} \rightarrow 2Fe(OH)_{3}^{\alpha} + 2\chi Fe - P^{\alpha} + Mn^{2+} + 2CO_{2}$
		$MnO_2^{\alpha,\beta} + H_2S + 2CO_2 \rightarrow Mn^{2+} + S_0 + 2HCO_3^{-}$
		$2Fe(OH)_{3}^{\alpha,\beta} + 2\chi Fe - P^{\alpha,\beta} + H_2S + 4CO_2 \rightarrow 2Fe^{2+} + 2\chi H_2PO_4^- + S_0 + 4HCO_3^- + 2H_2O_3^-$
Suifate reduction	$CH_3COO^{-} + SO_4^{2-} \rightarrow HS^{-} + 2HCO_3^{-}$ $\Delta G^{0} = -48 \text{ kJ/reaction}$	$Fe^{2+} + H_2S \rightarrow FeS + 2H^+$
		$SO_4^= + CH_4 + CO_2 \rightarrow 2HCO_3^- + H_2S_2^*$
Methanogenesis	$CH_3COO^* + H_2O \rightarrow CH_2 + HCO_3^*$	$4S_0 + 4H_2O \rightarrow 3H_2S + SO_4^{=} + 2H^{+}$
	$\Delta G^{(b)} = -31$ kJ/reaction	$FeS \rightarrow FeS_2$
		$Fe(OH)_3^{\alpha} + \chi Fe - P^{\alpha} \rightarrow Fe(OH)_3^{\beta} + \chi Fe - P^{\beta}$
		$MnO_2^{\alpha} \rightarrow MnO_2^{\beta}$

Numerical schemes for redox reactions

- Necessary to keep the possibility to use long time steps due to the slow characteristic time scales
- Primary reactions are relatively slow (~ weeks to years).
- An implicit scheme is used to allow large time steps
- Secondary reactions can be extremely fast (~minutes)

→ Necessary to use a solver suitable for stiff systems

Temporal schemes for secondary redox

- Use of a second order Strand splitting scheme which is based on operator splitting (Wang et al., 2018; Nguyen et al., 2013)
- Each reaction (starting from the fastest) is successively solved assuming equilibrium at t+1/2 and then the same is done in the reverse order at t+1

$$R_{2nd}^{(\Delta t)} = R_1^{(\frac{\Delta t}{2})} \circ R_2^{(\frac{\Delta t}{2})} \circ \dots \circ R_{N_r-1}^{(\frac{\Delta t}{2})} \circ R_{N_r}^{(\frac{\Delta t}{2})} \circ R_{N_r-1}^{(\frac{\Delta t}{2})} \circ R_{N_r-1}^{(\frac{\Delta t}{2})} \circ R_2^{(\frac{\Delta t}{2})} \circ R_1^{(\frac{\Delta t}{2})} \circ$$

- This scheme is unconditionally stable
- A similar scheme is used for diffusion/bioturbation and redox reactions

$$U^{n+1} = S_c^{\left(\frac{\Delta t}{2}\right)} \circ S_r^{\left(\Delta t\right)} \circ S_c^{\left(\frac{\Delta t}{2}\right)} U^{n}$$

A brief overview of the sediment module code (1)

- The module can be run offline (without PISCES running) and online either in 1-way or 2-way modes.
- There are 8 solid phases : Biogenic silica (SedBSi), clay (SedClay), calcite (SedCaCO3), Fe hydroxides (SedFeO), Fe sulfide (SedFeS) and three lability classes of POC : labile (SedPOC), semi-refractory (SedPOS) and refractory (SedPOR)
- There are 10 dissolved species : O2 (SedO2), DIC (SedDIC), Alkalinity (SedAlkalini), PO4 (SedPO4), NO3 (SedNO3), NH4 (SedNH4), Fe (SedFe2), SO4 (SedSO4), H2S (SedH2S),
- pH and organic ligands are diagnosed

A brief overview of the sediment module code (2)

sedstp.F90 : main sediment module, temporal loop

- seddta.F90: Fluxes, boundary conditions for the sediments
- sedchem.F90: computes the chemical constants
- sedbtb.F90: 1st pass of bioturbation (t+1/2)
- sedorg.F90: organic carbon related reactions
 - seddiff.F90: 1st pass of solute diffusion (t+1/2)
 - seddsr.F90: primary redox reactions (t+1)
 - sed_dsr_redoxb: secondary redox reactions

seddiff.F90: 2nd pass of solute diffusion (t+1)

sedinorg.F90: inorganic reactions (Bsi, CaCO3, Clay) (t+1)

To continue on next slide

A brief overview of the sediment module code (3)

sedstp.F90 : main sediment module, temporal loop

- sedbtb.F90: 2nd pass of bioturbation (t+1)
- sedadv.F90: vertical advection, burial
- sedco3.F90: DIC chemistry, pH computation
- sedmbc.F90: mass balance computation
- sedsfc.F90: updated bottom water concentrations (2-way)

Some important aspects of diagenetic modeling

- In the open ocean, sediment exchanges at the interface are not first order for timescales from < 1 yr to ~100 years for the carbon cycle/nutrient cycles
- It is 1st order for trace metals such as Fe and Mn
- In coastal areas, it plays a critical role and should ideally be considered (using a full model or a metamodel)
- Very slow to adjust (> 100 years to 100000 years) which is problematic for most cases
 - Equilibrate the diagnetic model in an offline mode using output from a simulation with no sediments (not ideal when sediments play a critical role)
 - Use an initial state coming from another simulation, potentially run at global scale and at a potentially lower resolution (also not ideal)

Some reading to go beyond

Boudreau, Diagenetic Models and Their Implementation: Modelling Transport and Reactions in Aquatic Sediments, 1997: **the bible**

Burdige, Geochemistry of marine sediments, 2020

Kristensen, Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals, hydrobiologia, 2000

Boudreau, the mathematics of early diagnesis: From worms to waves, Reviews of Geophysics, 2000

Archer et al., A model of suboxic sedimentary diagenesis suitable for automatic tuning and gridded global domains, Global Biogeochemical Cycles, 2002

Paraska et al., Sediment diagenesis models: Review of approaches, challenges and opportunities, Environmental Modelling & Software, 2014