Diagenetic processes and modeling in PISCES

Brief introduction
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Some preliminary comments

* This presentation is not a detailed course on diagenetic processes
* This presentation is also not a detailed course on diagenetic modeling
> It just gives some elements to have a basic understanding of the training session
Two parts :
1) A rapid description of the biogeochemical processes in the marine sediments

2) Some elements on the sediment module of PISCES



Transport in the sediments

* Transport in the sediments tends to be mainly 1D (vertical)

* Vertical advection w is given by the sedimentation rate : from ~ 0.1 cm/kyr in low
productive open ocean areas to > 1m/kyr in some coastal areas

* If no compaction and benthic reactions, w = deposition rate at the sediment water
interface

* Diffusion processes are related to two distinct processes

1) Solute diffusion in a porous medium, i.e. diffusion of dissolved species in interstitial
water

2) Mixing resulting from the activities of benthic organisms, i.e. mixing of solid species

* Irrigation which is pumped flow through animal burrows



Bioturbation, bio-irrigation

Both processes are associated to the activities of organisms living in the sediments
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Physical structure of the sediments

Porosity defines the relative volume of seawater in the sediment : ¢
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Some thoughts on the time scales

Time : Particles fall through the water column:
T < m ~ 70 days
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Reactions that are too slow to occur in the water column
can happen in surface sediments




Mechanisms for organic matter oxidation

Typical reactions but many of them never occur in the open ocean
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Oxygen penetration depth, some examples
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It highly depends on the POC sedimentation rate but not only !

> overlying water properties, temperature, biological activity, organic matter reactivity, ...



Higher order reactions : generally in coastal areas

High POC sedimentation rates and/or low oxygen overlying waters
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Secondary redox reactions

* Secondary redox reactions make the system much more complex
* Adsorption/desorption processes : NH4, PO4, Fe, ...

* Precipitation/dissolution reactions link solid and dissolved species
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Diagenetic module in PISCES

Basic description



Continuity equations

Continuity equation of the dissolved species
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Discretization, advection, diffusion

* Typical vertical discretization with varying layer thickness (increasing with depth, defined
in the namelist)

* Horizontal grid is identical to that of the ocean model and is made 1D. Land points are
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Primary and secondary redox reactions
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Numerical schemes for redox reactions

Necessary to keep the possibility to use long time steps due to the slow
characteristic time scales

Primary reactions are relatively slow (~ weeks to years).

An implicit scheme is used to allow large time steps

Secondary reactions can be extremely fast ( ~minutes)

> Necessary to use a solver suitable for stiff systems



Temporal schemes for secondary redox

* Use of a second order Strand splitting scheme which is based on operator splitting
(Wang et al., 2018; Nguyen et al., 2013)

* Each reaction (starting from the fastest) is successively solved assuming
equilibrium at t+1/2 and then the same is done in the reverse order at t+1
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A brief overview of the sediment module code (1)

* The module can be run offline (without PISCES running) and online either in 1-way

or 2-way modes.

* There are 8 solid phases : Biogenic silica (SedBSi), clay (SedClay), calcite
(SedCaCO03), Fe hydroxides (SedFeQ), Fe sulfide (SedFeS) and three lability
classes of POC : labile (SedPOC), semi-refractory (SedPOS) and refractory
(SedPOR)

* There are 10 dissolved species : O2 (SedO2), DIC (SedDIC), Alkalinity
(SedAlkalini), PO4 (SedP0O4), NO3 (SedNO3), NH4 (SedNH4), Fe (SedFe2), SO4
(SedS04), H2S (SedH2S),

* pH and organic ligands are diagnosed



A brief overview of the sediment module code (2)

sedstp.F90 : main sediment module, temporal loop

seddta.F90: Fluxes, boundary conditions for the sediments
sedchem.F90: computes the chemical constants
sedbtb.F90: 1% pass of bioturbation (t+1/2)

sedorg.F90: organic carbon related reactions
-~ seddiff.F90: 1* pass of solute diffusion (t+1/2)

— seddsr.F90: primary redox reactions (t+1)

sed_dsr_redoxb: secondary redox reactions
-~ seddiff.F90: 2™ pass of solute diffusion (t+1)

sedinorg.F90: inorganic reactions (Bsi, CaCO3, Clay) (t+1)

To continue on next slide



A brief overview of the sediment module code (3)

sedstp.F90 : main sediment module, temporal loop

sedbtbh.F90: 2" pass of bioturbation (t+1)

sedadv.F90: vertical advection, burial

sedco3.F90: DIC chemistry, pH computation

sedmbc.F90: mass balance computation

sedsfc.F90: updated bottom water concentrations (2-way)



Some important aspects of diagenetic modeling

In the open ocean, sediment exchanges at the interface are not first order for
timescales from < 1 yr to ~100 years for the carbon cycle/nutrient cycles

It is 1% order for trace metals such as Fe and Mn

In coastal areas, it plays a critical role and should ideally be considered (using a
full model or a metamodel)

Very slow to adjust (> 100 years to 100000 years) which is problematic for
most cases

* Equilibrate the diagnetic model in an offline mode using output from a
simulation with no sediments (not ideal when sediments play a critical role)

* Use an initial state coming from another simulation, potentially run at global
scale and at a potentially lower resolution (also not ideal)



Some reading to go beyond

Boudreau, Diagenetic Models and Their Implementation: Modelling Transport and
Reactions in Aquatic Sediments, 1997: the bible

Burdige, Geochemistry of marine sediments, 2020

Kristensen, Organic matter diagenesis at the oxic/anoxic interface in coastal marine
sediments, with emphasis on the role of burrowing animals, hydrobiologia, 2000

Boudreau, the mathematics of early diagnesis: From worms to waves, Reviews of
Geophysics, 2000

Archer et al., A model of suboxic sedimentary diagenesis suitable for automatic tuning
and gridded global domains, Global Biogeochemical Cycles, 2002

Paraska et al., Sediment diagenesis models: Review of approaches, challenges and
opportunities, Environmental Modelling & Software, 2014
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