The Pan-SL-CoV/GD sequences may be from contamination.

Daoyu Zhang.

ABSTRACT

Recently, There were much hype about an alleged SARS-like coronavirus being found in samples of Malayan pangolins (Manis Javanica) possessing nearly identical RBD to the SARS-CoV-2 coronavirus. Prominent journals cite the alleged discovery to claim that pangolins may be one of a possible intermediate host for the zoonotic transmission of SARS-CoV-2 to humans.

Here, we report that all databases used to support such a claim, upon which metagenomic analysis was possible, contained unexpected reads and was in serious risk of contamination. Here we also report that the presence of unexpected reads are directly related to the presence of coronavirus reads. Finally, we deduced the actual causative agent of the death of the pangolins sampled in GuangDong 2019 where the claim of coronavirus detections was made.

METHODS

The NCBI Trace tool

The NCBI SRA archive come with it's own tool called Trace, which identifies the origin or reads within the SRA dataset through the recognition of unique K-mers within the nucleotide sequence. Multiple reads of 32 nucleotides is taken from each read to identify the reads toward an origin by comparison with a large database of reference sequences, which produces a classification signal. Then read of 64 nucleotides are taken from each of the read for definitive mapping toward species in the reference database. If any one of the 32nt or 64nt K-mers are found in more than one reference sequence, the reads are instead classified at the lowest phylogenetic classification node where reference sequences containing such a K-mer is found.

The 32nt TRACE generate a "strong signal" classification of sequence origin useful for the deduction of the content of the sample by organism of origin, accessed via the NCBI Krona charting tool,

While the 64nt TRACE generate a definitive classification signal used for the exact tracing of reads to the origin from a specific Species/Taxon, used for the exact classification of reads.

Both the 32nt and 64nt TRACE analysis classify their reads according to the lowest common taxonomical node where K-mers from said read are present in the reference sequence database, a strategy known as "lowest non-ambiguous mapping". Such a strategy avoids the problem with RNA degradation or sequencing errors by excluding potential errors in reads, without introducing potential ambiguous classification by clustering ambiguous reads under the lowest common classification node such ambiguity is found.

Therefore, if TRACE gives an identification to a specific taxonomical node for a sequence read, it could be from any of the taxonomical nodes and species classified under the node, but it could not be from a taxonomical node or species that is not under said node. E.g. if TRACE says hominoidea which was classified under Catarrhini; Simiiformes; Haplorrhini; Primates; Euarchontoglires, Then it can't be from a pangolin since pangolins (Manis Spp.) are classified under Pholidota; Laurasiatheria. The lowest common classification node between Primates and Pangolins is Boreoeutheria—reads from parts of the genomes shared between Primates and Pangolins will only be classified to Boreoeutheria, but not further classified down toward either Laurasiatheria or Euarchontoglires. And definitely will not be classified individually toward Pholidota or Primates, or any child nodes or phylogenetic nodes under them.

Specific BLAST analysis

Whenever a genus or species is provided by analysis, a specific BLAST analysis is performed to confirm the presence of reads toward the exact species by a search of the database in question with representative reference sequences of the specific species in question in look for matches that is either: 100% match, or: contained no 100% matches on BLAST when queried against the Pangolin reference sequences available on GanBank.

RESULTS

The Accession numbers and contents of all Pan-SL-CoV/GD related sequencing experiments are listed under the following table.

Table 1: List of available GD Pangolin sample datasets as provided under NCBI GenBank. By Accession number, size and citation by thesis (if claimed to have SARS-CoV-2 related reads by paper).

Accession number	Size	SARS-CoV-2-like Coronavirus
		Identified and Cited?
<u>SRX6893158</u>	16,491,648	
<u>SRX6893157</u>	9,275,501	Lung12 [3] SRR10168374
<u>SRX6893156</u>	22,220,187	Lung11 [1]
<u>SRX6893155</u>	18,067,615	Lung09 [1] [3] SRR10168376
<u>SRX6893154</u>	16,414,925	Lung08 [1] [3] [4]
		SRR10168377
<u>SRX6893153</u>	19,045,923	Lung07 [1] [3] [4]
		SRR10168378
<u>SRX6893152</u>	13,527,964	
<u>SRX6893151</u>	16,068,654	
<u>SRX6893150</u>	12,967,281	
<u>SRX6893149</u>	12,590,769	
<u>SRX6893148</u>	15,273,939	

SRX6893147	15,975,904	
<u>SRX6893146</u>	19,038,817	
<u>SRX6893145</u>	19,055,973	
<u>SRX6893144</u>	15,350,468	
<u>SRX6893143</u>	11,527,782	
<u>SRX6893142</u>	20,045,443	
<u>SRX6893141</u>	18,903,834	
<u>SRX6893140</u>	19,986,780	
<u>SRX6893139</u>	39,738,679	Lung02 [3] SRR10168392
<u>SRX6893138</u>	22,900,426	
<u>SRX7756769</u>	107,267,359 PRJNA607174**	M1[2]***
<u>SRX7756766</u>	273,651,431 PRJNA607174**	
<u>SRX7756765</u>	196,761,202 PRJNA607174**	
<u>SRX7756764</u>	222,286,763 PRJNA607174**	
<u>SRX7756763</u>	212,161,250 PRJNA607174**	
<u>SRX7756762</u>	232,433,120 PRJNA607174**	M6[2]***
<u>SRX7756761</u>	113,900,941 PRJNA607174**	
<u>SRX7732094</u>	2,633*	"P2S"[3]

*: "Design: This dataset contains coronavirus-like sequence reads, based on BLAST search."

**: All available SRA datasets from PRJNA607174

***:Actual SRA datasets identified from the "Extended Data Table 3" of [2]

Article

Extended Data Table 3 | Identification of SARSr-CoV sequence reads in metagenomes from the lung of pangolins using the SARS-CoV-2 sequence (GenBank accession No. MN908947) as the reference

	bed	No. mapp	Total reads*	Animal species	Sample ID
X7756769 "pangolin 9"	←SR	496	107,267,359	Malayan pangolin	M1
	1	302	38,091,846	Malayan pangolin	M2
		14	79,477,358	Malayan pangolin	мз
lot available		1,100	32,829,850	Malayan pangolin	M4
		56	547,302,862	Malayan pangolin	M5
RX7756762 "pangolin 2"	←SF	10	232,433,120	Malayan pangolin	M6
		12	44,440,374	Malayan pangolin	M8
ot available	No	0	227,801,882	Malayan pangolin	M10
		0	444,573,526	Chinese pangolin	Z1

Fig.1 the "Extended Data Table 3" of [2]. SRA datasets identified in the available database is pointed out by an arrow, while SRA "runs" that failed to be identified in known datasets are outlined in a red square.

Analysis of reads from The Available datasets using NCBI Trace.

	of Known GD Pangolin data		
Accession number and	Primary Mammalian	Primate-related results	Identification of
registration date	Trace results and	in Krona and read size	"Coronaviridae"
	percentage	by Кbp	as by Trace and
			total read size
<u>SRX6893158</u>	Manis javanica: 14.66%	N/D	N/D
20-Sep-2019			
<u>SRX6893157</u>	Boreoeutheria: 1.24%	Catarrhini 644546	N/D***
20-Sep-2019			
<u>SRX6893156</u>	Manis javanica: 7.51%	Homo sapiens 81948	Pangolin
20-Sep-2019	Homo sapiens: 0.03%		coronavirus 2Kbp
<u>SRX6893155</u>	Homo sapiens: 0.37%	Homininae 3534150	Pangolin
20-Sep-2019			coronavirus 5Kbp
<u>SRX6893154</u>	Homo sapiens: 0.02%	Hominoidea 356003	Pangolin
20-Sep-2019			coronavirus
			154Kbp
<u>SRX6893153</u>	Homo sapiens: 0.01%	Homo sapiens 162180	Pangolin
20-Sep-2019			coronavirus
			41Kbp
<u>SRX6893152</u>	Manis javanica: 2.87%	N/D	N/D
20-Sep-2019	Euarchontoglires: 1.37%		
<u>SRX6893151</u>	Manis javanica: 7.47%	N/D	N/D
20-Sep-2019			
<u>SRX6893150</u>	Boreoeutheria: 1.91%	N/D	N/D
20-Sep-2019			
SRX6893149	Manis javanica: 1%	Simiiformes 313069	N/D
20-Sep-2019			
SRX6893148	Manis javanica: 0.4%	Catarrhini 194320	N/D
20-Sep-2019			
SRX6893147	Manis javanica: 2.71%	Catarrhini 69937	N/D
20-Sep-2019			
SRX6893146	Boreoeutheria: 1.72%	Hominoidea 231755	N/D
20-Sep-2019			
SRX6893145	Homininae: 0.27%	Homininae 2536765	N/D
20-Sep-2019	Manis javanica: 1.01%		
SRX6893144	Manis javanica: 0.62%	Hominoidea 166628	N/D
20-Sep-2019			
SRX6893143	Manis javanica: 1.63%	N/D	N/D
20-Sep-2019			
SRX6893142	Manis javanica: 1.28%	Simiiformes 57084	N/D
L			

Table 2. The Trace result of Known GD Pangolin datasets when examined using NCBI Trace SRA.

20-Sep-2019			
SRX6893141	Boreoeutheria: 1.41%	N/D	N/D
20-Sep-2019			
SRX6893140	Boreoeutheria: 1.56%	N/D	N/D
20-Sep-2019			
SRX6893139	Homo sapiens: 0.01%	Homo sapiens 491120	Pangolin
20-Sep-2019			coronavirus 2Kbp
SRX6893138	Boreoeutheria: 1.67%	Homininae 2761176	N/D
20-Sep-2019			
<u>SRX7756769</u>	Homo sapiens: 0.03%	Homo sapiens 5457929	Bat SARS-like
18-Feb-2020			coronavirus 2Kbp
			Wuhan seafood
			market
			pneumonia virus
			2Kbp
<u>SRX7756766</u>	Manis javanica: 78.6%	Cercopithecidae 3116	Betacoronavirus
18-Feb-2020			2Kbp**
<u>SRX7756765</u>	Manis javanica: 87.17%	Cercopithecinae 11339	N/D****
18-Feb-2020			
<u>SRX7756764</u>	Manis javanica: 48.39%	Cercopithecidae 22600	N/D
18-Feb-2020			
<u>SRX7756763</u>	Manis javanica: 94.95%	Cercopithecidae 5076	N/D
18-Feb-2020			
<u>SRX7756762</u>	Manis javanica: 95.37%	Catarrhini* 2831	Nidovirales OKbp
18-Feb-2020			
<u>SRX7756761</u>	Manis javanica: 13.63%	Chlorocebus sabaeus	N/D
18-Feb-2020		498506	
SRX7732094	N/A***	N/A	Pangolin
15-Feb-2020			coronavirus***

*: Chlorocebus Sabaeus

**:Not claimed as being SARS-CoV-2 related in the original publication. Likely unrelated.

***Not analyzable. All Non-Coronavirus data filtered out. Leaving only 2,633 reads, all of which can be mapped to the SARS-CoV-2 reference genome.

****8 reads as claimed by [10]

Specific BLAST analysis

In order to determine the authenticity of the Primate-related reads in the datasets, Specific BLAST analysis is carried out for all datasets that possessed claimed or analyzed reads of coronaviridae-related viruses. An 100% full-length match that does not map to non-primates confirms Authenticity of read.

	select all 100 sequences selected					Grap	hics Distance tree of results
	Description			Query Cover	E value	Per. Ident	Accession
	<u>SRX7756762</u>	279	1047	0%	4e-68	100.00%	SRA:SRR11119766.160125840.2
	<u>SRX7756762</u>	279	1366	0%	4e-68	100.00%	SRA:SRR11119766.138036805.1
	<u>SRX7756762</u>	279	967	0%	4e-68	100.00%	SRA:SRR11119766.101239747.1
	<u>SRX7756762</u>	279	1624	0%	4e-68	100.00%	SRA:SRR11119766.46413326.2
Chlo	rocebus sabaeus isolate 1994-021 unplaced genomic sca						
dna							
1339	488						
<u>Dista</u>	nce tree of results MSA viewer 😧						

Fig.2a Specific BLAST analysis on the PRJNA607174 dataset, <u>SRX7756762</u>, that contained claimed SARS-CoV-2 related coronavirus reads. The 100% full-length matches clearly indicate presence of Primate-derived material.

Select all 100 sequences selected		<u>GenB</u>	ank	<u>Grap</u>	<u>hics</u>	Distance	tree of results
Description				Query Cover	E value	Per. Ident	Accession
Macaca mulatta isolate Rh22777_5890-1b major histocompatibility complex genomic sequence		279	279	100%	2e-71	100.00%	KT332833.1
Macaca mulatta isolate Rh22335_5775-3 major histocompatibility complex genomic sequence		279	279	100%	2e-71	100.00%	KT332608.1
Macaca mulatta isolate Rh22335_5725-2 major histocompatibility complex genomic sequence		279	279	100%	2e-71	100.00%	KT332521.1
Macaca mulatta isolate Rh22335_5702-1a major histocompatibility complex genomic sequence		279	279	100%	2e-71	100.00%	KT332463.1
IGATCCTTCAGGAATCGCCATACTCTTTTTCCATAATGGTTGAACTAGTTTACAATCCCAC	230	230	1	00% 2	Pe-56	94.04%	GQ879596.1
	219	219		00% 4			KF661301.1
	219	219					AB553834.1
Mus musculus NOD-derived CD11c +ve dendritic cells cDNA, RIKEN full-length enriched library, clone:F630221F08 productun	204	204	8	16% 1	le-48	94.66%	<u>AK171052.1</u>
Mus musculus bone marrow macrophage cDNA, RIKEN full-length enriched library, clone:G530008A19 product:hypothetical.pj 2	204	204	8	6% 1	le-48	94.66%	<u>AK149653.1</u>
Ralstonia solanacearum genome assembly 9 genomes, chromosome : V	202	202	1	00% 4	le-48	90.73%	LN899823.1
Canis lupus familiaris breed Labrador retriever chromosome 06a	154	3044	g	18%	le-33	86.43%	CP050586.1
Canis lupus familiaris breed Labrador retriever chromosome 04a	154	4569	1	00% 1	le-33	85.23%	CP050572.1
Canis lupus familiaris breed Labrador retriever chromosome 06b	154	3042	g	18% 1	le-33	86.43%	CP050622.1

Fig.2b BLAST result on the returned sequence revealed it as a Primate-derived MHC complex gene that is not found in non-primates, confirming Primate origin.

	select all 100	sequences selected					Grap	hics Distance tree of results
		Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.269072261.2
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.255768440.2
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.255768440.1
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.255318754.2
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.254520929.1
	SRX7756766		279	6344	0%	5e-67	100.00%	SRA:SRR11119762.251645135.1
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.234036838.2
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.211208832.2
	SRX7756766		279	9108	0%	5e-67	100.00%	SRA:SRR11119762.199583624.1
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.198110623.2
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.196936636.2
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.196936636.1
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.133631622.2
	SRX7756766		279	279	0%	5e-67	100.00%	SRA:SRR11119762.108819247.2
Des	cription	Macaca mulatta isolate AG07107 chromosome 3 genomic sca \dots						
Mol	ecule type	dna						
Que	ery Length	17855752						
Oth	er reports	Distance tree of results MSA viewer						

Fig.3a Specific BLAST analysis of <u>SRX7756766</u> revealed large amount of 100% full-length matches with Macaca Mulatta.

	Macaca mulatta Major Histocompatibility Complex BAC MMU370002, complete sequence	279	279	100%	2e-71	100.00%	AC148706.1
	Macaca mulatta Major Histocompatibility Complex BAC MMU122H23, complete sequence	279	521	100%	2e-71	100.00%	AC148677.1
≤	Macaca mulatta Major Histocompatibility Complex BAC MMU065H09, complete sequence	279	279	100%	2e-71	100.00%	AC148671.1
	Macaca mulatta Major Histocompatibility Complex BAC MMU038L02, complete sequence	279	279	100%	2e-71	100.00%	AC148668.1
≤	Papio anubis clone rp41-22m16, complete sequence	279	554	100%	2e-71	100.00%	AC113268.8
	Papio anubis clone rp41-280n2, complete sequence	279	465	100%	2e-71	100.00%	AC091778.13
~	Papio anubis clone rp41-5m22, complete sequence	279	279	100%	2e-71	100.00%	AC136143.4
	Papio anubis clone rp41-192i11, complete seguence	279	526	100%	2e-71	100.00%	AC091671.28
<	Macaca mulatta chromosome 9 CH250-18D2, complete sequence	279	548	100%	2e-71	100.00%	CT573219.3
	Rhesus Macaque CHR4 BAC CH250-23P16 (Children's Hospital Oakland Research Institute Rhesus macaque Adult Male BAC Librar	279	279	100%	2e-71	100.00%	AC169807.2
<	Rhesus Macaque CHR4 BAC CH250-476F18 (Children's Hospital Oakland Research Institute Rhesus macaque Adult Male BAC Libra	279	279	100%	2e-71	100.00%	AC171646.5
	Chlorocebus aethiops BAC clone CH252-163P9 from chromosome 5, complete sequence	278	556	99%	7e-71	100.00%	AC239684.4
	MACACA MULATTA BAC clone CH250-192J17 from chromosome unknown, complete sequence	278	552	100%	7e-71	100.00%	AC215693.3
	Macaca mulatta isolate Rh22335_5702-1a major histocompatibility complex genomic sequence	274	274	100%	9e-70	99.34%	KT332463.1
	Macaca mulatta isolate Rh9_6570-3 major histocompatibility complex genomic sequence	274	274	100%	9e-70	99.34%	KT331777.1
	Macaca mulatta isolate Rh9_6550-1b major histocompatibility complex genomic sequence	274	274	100%	9e-70	99.34%	KT331733.1
	Macaca mulatta isolate Rh9_6526-2 major histocompatibility complex genomic sequence	274	274	100%	9e-70	99.34%	KT331675.1
✓	Macaca mulatta isolate Rh18665_5547-1b major histocompatibility complex genomic sequence	274	274	100%	9e-70	99.34%	KT329509.1
≤	Macaca mulatta isolate Rh23717 clone 4777 major histocompatibility complex-B genomic sequence	274	274	100%	9e-70	99.34%	KJ913523.1
✓	Macaca mulatta isolate Rh23108 clone 4769-2 major histocompatibility complex-B genomic sequence	274	274	100%	9e-70	99.34%	KJ913420.1
	Eukaryotic synthetic construct chromosome 18	2	202 4	103 96	% 4e-	48 91.789	6 <u>CP034496.1</u>
	Eukaryotic synthetic construct chromosome 19	1	196 20	020 96	% 2e-	46 92.09%	6 <u>CP034522.1</u>
	Eukaryotic synthetic construct chromosome 19	1	196 2	130 96	% 2e-	46 92.099	6 <u>CP034497.</u>
~	Eukaryotic synthetic construct chromosome 16	1	196 3	654 96	% 2e-	46 91.619	6 <u>CP034494.</u>
~	Eukaryotic synthetic construct chromosome 15	1	196 4	994 97	% 2e-	46 92.09%	6 <u>CP034493.1</u>
	Eukaryotic synthetic construct chromosome 14	1	196 7	731 96	% 2e-	46 92.099	6 <u>CP034492.</u>
~	Eukaryotic synthetic construct chromosome 13	1	191 7	988 97	% 9e-	45 90.91%	6 <u>CP034516.</u>
~	Eukaryotic synthetic construct chromosome Y	1	191 2	781 96	% 9e-	45 91.379	6 <u>CP034510.</u>
~	Eukaryotic synthetic construct chromosome 20	1	191 4	517 96	% 9e-	45 91.379	6 <u>CP034499.</u>
	Eukaryotic synthetic construct chromosome 13	1	191 7	988 97	% 9e-	45 90.91%	6 <u>CP034491.</u>
~	Eukaryotic synthetic construct chromosome 21	1	185 10	053 <mark>9</mark> 6	% 4e-	43 90.65%	6 <u>CP034500.</u>
	Eukaryotic synthetic construct chromosome 17	1	185 24	450 96	% 4e-	43 90.65%	6 <u>CP034495.</u>
~	Eukaryotic synthetic construct chromosome 22	1	183 9	33 96	% 2e-	42 90.58%	6 <u>CP034501.1</u>

Fig.3b BLASTing such matches gives 1005 matches to only Primates, and with no matches outside of Primates. This indicate that <u>SRX7756766</u> also contained significant amount of material derived from primates.

sults for	2:lcl Query_13045 gnl SRA SRR11119762.182596220.2 182596220 (Biologi 🗸		ippeur					
ogram	BLASTN 😧 <u>Citation</u> 🗸	Type common name, bir	nomial,	taxid or §	group n	name		
tabase	nt <u>See details</u> 🛩	+ Add organism						
iery ID	Icl Query_13045	Percent Identity	E value	e		Qı	lery Cov	erage
scription	gnl SRA SRR11119762.182596220.2 182596220 (Biological)	to		to			t	o
lecule type	dna							
ery Length	151						Filter	Reset
her reports	Distance tree of results (2)							
Descriptions	Graphic Summary Alignments Taxonomy							
Sequences J	producing significant alignments	Download 🗡	Ма	anage Co	lumns	⊻ s	how 1	000 🗸 (
select all	0 sequences selected				nk Gr			
	Description		Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
-								
	<u>D: Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X3, mRNA</u>		279	279	100%	2e-71	100.00%	XM_015150059
	D. Macaca mulatta LIM domain kinase 2.(LIMK2). transcript variant X3. mRNA D. Macaca mulatta LIM domain kinase 2.(LIMK2). transcript variant X2. mRNA		279 279	279 279	100% 100%	2e-71 2e-71		_
							100.00%	XM_015150059 XM_015150058 XM_015150057
PREDICTE PREDICTE	D: Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X2, mRNA	CaBP-type calcium binding domain	279 279	279	100%	2e-71	100.00% 100.00%	XM_015150058
PREDICTE PREDICTE Papio anub	D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X2, mRNA D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X1, mRNA	CaBP-type calcium binding domain	279 279	279 279	100% 100%	2e-71 2e-71	100.00% 100.00% 100.00%	XM_015150058 XM_015150057
	D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X2 mRNA D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X1 mRNA is anubis NIPSNAP1 protein (NIPSNAP1).gene, partial cds: and merlin (NF2) and S-100/K	CaBP-type calcium binding domain	279 279 279	279 279 5181	100% 100% 100%	2e-71 2e-71 2e-71	100.00% 100.00% 100.00% 100.00%	XM_015150058 XM_015150055 AH012454.2
PREDICTE PREDICTE Papio anub PREDICTE PREDICTE PREDICTE	D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X2, mRNA D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X1, mRNA is anubis NIPSNAP1 protein (NIPSNAP1) gene, partial cds: and merlin (NP2) and S-100// D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X3, mRNA	CaBP-type calcium binding.domain	279 279 279 279 279	279 279 5181 279	100% 100% 100% 100%	2e-71 2e-71 2e-71 2e-71	100.00% 100.00% 100.00% 100.00% 100.00%	XM_015150053 XM_015150053 AH012454.2 XM_015457315
PREDICTE PREDICTE Papio anub PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE	D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X1_mRNA is anubis NIPSNAP1 protein (NIPSNAP1) gene_partial cds: and merlin (NIP2) and S-100// D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X3_mRNA D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X3_mRNA	CaBP-type calcium binding.domain	279 279 279 279 279 279	279 279 5181 279 279	100% 100% 100% 100% 100%	2e-71 2e-71 2e-71 2e-71 2e-71	100.00% 100.00% 100.00% 100.00% 100.00%	XM_015150058 XM_015150057 AH012454.2 XM_015457318 XM_005567558
	D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X2 mRNA D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X1 mRNA is anubis NIPSNAP1 protein (NIPSNAP1) gene_partial cds: and merlin (NIP2) and S-100// D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X3 mRNA D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2 mRNA D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2 mRNA	CaBP-type calcium binding.domain	279 279 279 279 279 279 279	279 279 5181 279 279 279	100% 100% 100% 100% 100%	2e-71 2e-71 2e-71 2e-71 2e-71 2e-71	100.00% 100.00% 100.00% 100.00% 100.00% 100.00%	XM_015150053 XM_015150053 AH012454.2 XM_015457313 XM_005567553 XM_005567553
PREDICTE PREDICTE Papio anub PREDICTE PREDICTE PREDICTE PREDICTE Chlorocebu Chlorocebu	D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X1_mRNA is anubis NIPSNAP1 crotein (NIPSNAP1) gene_partial cds:_and merlin (NF2) and S-100/K D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X3_mRNA D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA S. aethioos BAC clone CH252-146112 from chromosome 6, complete sequence		279 279 279 279 279 279 279 279 279	279 279 5181 279 279 279 279 3318	100% 100% 100% 100% 100% 100%	2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 2e-71	100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%	XM_015150058 XM_015150057 AH012454.2 XM_015457319 XM_005567559 XM_005567559 AC241602.2
PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE Chlorocebu Chlorocebu Macaca mu	D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D. Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X1_mRNA is anubis NIPSNAP1 crotein (NIPSNAP1) gene.partial cds: and merlin (NE2) and S-100/K D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X3_mRNA D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D. Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X1_mRNA s aethiops BAC clone CH252-146112 from chromosome 6, complete sequence s aethiops BAC clone CH252-138D20 from chromosome 13_complete sequence		279 279 279 279 279 279 279 279 279	279 279 5181 279 279 279 3318 681	100% 100% 100% 100% 100% 100% 100%	2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 2e-71	100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%	XM_015150058 XM_015150057 AH012454.2 XM_015457319 XM_005567558 XM_005567554 AC241602.2 AC2239463.3
PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE Chiorocebu Macaca mm Chiorocebu	D: Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D: Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X1_mRNA is anubis NIPSNAP1 potein (NIPSNAP1) gene_partial cds: and merlin (NE2) and S-100/K D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X3_mRNA D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X1_mRNA s aethiops BAC clone CH252:146112 from chromosome 6, complete sequence s aethiops BAC clone CH252:136120 from chromosome 13_complete sequence alatta BAC CH250-74N24 (Children's Hospital Oakland Research Institute Rhesus macagu		279 279 279 279 279 279 279 279 279 279	279 279 5181 279 279 279 3318 681 6774	100% 100% 100% 100% 100% 100% 100%	2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 2e-71	100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%	XM_015150059 XM_015150059 AH012454.2 XM_015457319 XM_005567559 XM_005567559 AC241602.2 AC239463.3 AC204493.6
PREDICTE PREDICTE PApio anub PREDICTE PREDICTE PREDICTE PREDICTE Chlorocabu Macaca mu Chlorocabu Chlorocabu	D: Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D: Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X1_mRNA is anubis NIPSNAP1 potein (NIPSNAP1) gene_partial cds: and merlin (NE2) and S-100/K D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X3_mRNA D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X1_mRNA s aethiops BAC clone CH252-146112 from chromosome 6, complete sequence s aethiops BAC clone CH252-138D20 from chromosome 13_complete sequence ulatta BAC CH250-74N24 (Children's Hospital Oakland Research Institute Rhesus macagu s aethiops BAC clone CH252-257N12 from chromosome 6_complete sequence		279 279 279 279 279 279 279 279 279 279	279 279 5181 279 279 279 3318 681 6774 6168	100% 100% 100% 100% 100% 100% 100% 100%	2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 9e-70	100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.34%	XM_015150053 XM_015150053 AH012454.2 XM_015457319 XM_005567554 XM_005567554 AC241602.2 AC239463.3 AC204493.6 AC241575.3
PREDICTE PREDICTE PApio anub PREDICTE PREDICTE PREDICTE PREDICTE Chiorocebu Chiorocebu Chiorocebu Chiorocebu Chiorocebu	D: Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D: Macaca mulatta LIM domain kinase 2 (LIMK2), transcript variant X1_mRNA is anubis NIPSNAP1 protein (NIPSNAP1) gene_partial cds: and merlin (NE2) and S-100/K D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X3_mRNA D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X2_mRNA D: Macaca fascicularis LIM domain kinase 2 (LIMK2), transcript variant X1_mRNA s aethiops BAC clone CH252-146112 from chromosome 6, complete sequence s aethiops BAC clone CH252-257N12 from chromosome 6, complete sequence s aethiops BAC clone CH252-257N12 from chromosome 6, complete sequence s aethiops BAC clone CH252-257N12 from chromosome 6, complete sequence s aethiops BAC clone CH252-257N12 from chromosome 6, complete sequence		279 279 279 279 279 279 279 279 279 279	279 279 5181 279 279 279 3318 681 6774 6168 4718	100% 100% 100% 100% 100% 100% 100% 100%	2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 2e-71 9e-70 9e-70	100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.34% 99.34%	XM_015150053 XM_015150057 AH012454.2 XM_015457319 XM_005567554 XM_005567554 AC2241602.2 AC239463.3 AC204493.6 AC241575.3 AC241458.2

Fig.3C Presence of Primate-derived mRNA reads in <u>SRX7756766</u> confirms the Primate origin of these reads.

	select all 100 sequences selected					Grap	hics Distance tree of results
	Description	Max Score		Query Cover	E value	Per. Ident	Accession
	SRX7756769	278	278	0%	9e-69	100.00%	SRA:SRR11119759.99831231.2
	<u>SRX7756769</u>	278	278	0%	9e-69	100.00%	SRA:SRR11119759.99831231.1
	<u>SRX7756769</u>	278	4814	1%	9e-69	100.00%	SRA:SRR11119759.88019245.2
	<u>SRX7756769</u>	278	5178	2%	9e-69	100.00%	SRA:SRR11119759.82130976.2
	<u>SRX7756769</u>	278	278	0%	9e-69	100.00%	SRA:SRR11119759.70689253.2
	<u>SRX7756769</u>	278	278	0%	9e-69	100.00%	SRA:SRR11119759.70689253.1
	<u>SRX7756769</u>	278	278	0%	9e-69	100.00%	SRA:SRR11119759.57405658.2
<	<u>SRX7756769</u>	278	278	0%	9e-69	100.00%	SRA:SRR11119759.57405658.1
AC	073210.8						
Но	mo sapiens BAC clone RP11-460N20 from 7, complete sequ						
nu	cleic acid						
203	3396						

Fig.4a Similarly, <u>SRX7756769</u> contained large amount of reads that are 100% full-length matches to Human genomic DNA.

select all 0 se	equences selected									
		Description			Max Score	Total Score	Query Cover		Per. Ident	Accession
Homo sapiens	chromosome 22 clone ABC11_00	0047178300_E22. comple	ete sequence		278	456	100%	6e-71	100.00%	AC279316.1
Homo sapiens	actin related protein 2 pseudogen	e (LOC284441) on chromo	osome 19		278	278	100%	6e-71	100.00%	NG_022927.2
Homo sapiens	TBC1 domain containing kinase ()	IBCK). RefSeqGene on cl	hromosome 4		278	2140	100%	6e-71	100.00%	NG_034057.3
Homo sapiens	chromosome 15 clone VMRC59-2	80106, complete sequenc	<u>e</u>		278	2291	100%	6e-71	100.00%	AC279072.1
Homo sapiens	chromosome 2 clone VMRC59-38	9K09, complete sequence	e		278	3905	100%	6e-71	100.00%	AC279037.1
Homo sapiens	chromosome 15 clone VMRC59-3	59A02, complete sequen	ce		278	3589	100%	6e-71	100.00%	AC278991.1
Homo sapiens	chromosome 16 clone VMRC59-4	53B14, complete sequen	ce		278	2239	100%	6e-71	100.00%	AC278975.1
cription	gnl SRA SRR11119759.880	19245.2 88019245 (Bi	iological)							
ecule type	dna									
ery Length	150									
er reports	Distance tree of results M	SA viewer 😮								
ery ID	lcl Query_61480			Percent Identity	E valu	9			Query Co	verage
cription	gnl SRA SRR11119759.706	89253.1 70689253 (Bi	ological)	to		to				to
ecule type	dna									
ery Length	150								Filter	Reset
er reports	Distance tree of results)								
escriptions	Graphic Summary	Alignments	Taxonomy							
Descriptions	Graphic Summary	Alignments	Taxonomy							
	Graphic Summary	-	Taxonomy	Download 🗸	N	lanage	Colum	ns ~	Show	1000 🗸
Sequences p		-	Taxonomy	Download 🗠	N	lanage <u>GenE</u>		ns ∨ Graphic	L	
Sequences p	producing significant a	-		Download 🗸	Мах	<u>GenE</u> Total	Bank Query	<u>Graphic</u>	<u>s Dista</u> Per.	
Sequences p	producing significant al	lignments Descripti	ion		Max	GenE Total Score	Query Cover	<u>Graphic</u> E value	<u>s Dista</u> Per. Ident	nce tree of resi
select all	D: Pan paniscus endogenous re	lignments Descripti	ion er 1. envelope (ERV3-1)). <u>mRNA</u>	Max Score 278	GenE Total Score 278	Query Cover 100%	<u>Graphic</u>	<u>s Dista</u> Per. Ident 100.00%	nce tree of resi Accession XM_03496425
Sequences p select all <u>PREDICTE</u> <u>Homo sapi</u>	Producing significant al 41 sequences selected D: Pan paniscus endogenous re ens endogenous retrovirus grou	lignments Descript trovirus.group.3membe p.3member 1. envelope	ion er 1. envelope (ERV3-1) e (ERV3-1), transcript va). <u>mRNA</u> ariant 1. mRNA	Max Score 278 278	GenE Total Score 278 278	Query Cover 100% 100%	Graphic E value 7e-71	<u>s Dista</u> Per. Ident 100.00%	nce tree of resi Accession XM_03496425 NM_00100725
Sequences p select all PREDICTE PREDICTE PREDICTE	Producing significant al 41 sequences selected D: Pan paniscus endogenous re ens endogenous retrovirus grou D: Pan troglodytes endogenous	Descripti Descripti strovirus group 3 membe p 3 member 1. envelope retrovirus group 3 memb	ion er 1. envelope (ERV3-1) e (ERV3-1), transcript va ber 1. envelope (ERV3-). <u>mRNA</u> ariant 1. mRNA 1). transcript variant X2. mRNA	Max Score 278	GenE Total Score 278	Query Cover 100%	Graphic E value 7e-71 7e-71	<u>s Dista</u> Per. Ident 100.00%	nce tree of resi Accession XM 03496425 NM 00100725 XM 02435756
Sequences p Select all PREDICTE PREDICTE PREDICTE PREDICTE	Producing significant al 41 sequences selected D: Pan paniscus endogenous re ens endogenous retrovirus grou D: Pan troglodytes endogenous D: Pan troglodytes endogenous	Descripti Descripti strovirus group 3 membe p 3 member 1. envelope retrovirus group 3 memt retrovirus group 3 memt	ion er 1. envelope (ERV3-1) e (ERV3-1), transcript va ber 1. envelope (ERV3- ber 1. envelope (ERV3-). <u>mRNA</u> ariant 1. mRNA 1). transcriet variant X2. mRNA 1). transcriet variant X1. mRNA	Max Score 278 278 278 278 278	GenE Total Score 278 278 278	Query Cover 100% 100% 100%	Graphic E value 7e-71 7e-71 7e-71	25 Dista Per. Ident 100.00% 100.00% 100.00%	nce tree of rest Accession XM 03496425: NM 00100725 XM 02435756- XM 016956774
Sequences p Select all PREDICTE Homo sapi PREDICTE PREDICTE Synthetic co	Producing significant al A1 sequences selected D: Pan paniscus endogenous re ens endogenous retrovirus grou D: Pan troglodytes endogenous D: Pan troglodytes endogenous onstruct DNA, clone: pFN21AE12	Descripti trovirus group 3 membe p 3 member 1. envelope retrovirus group 3 memt retrovirus group 3 memt retrovirus group 3 memt fe1. Homo sapiens ERV7	ion er 1. envelope (ERV3-1) e (ERV3-1), transcript va ber 1. envelope (ERV3- ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3 gene for endogenous). <u>mRNA</u> ariant 1. mRNA 1). transcript variant X2. mRNA 1). transcript variant X1. mRNA s retroviral sequence 3. without stop co	Max Score 278 278 278 278 278	GenE Total Score 278 278 278 278 278	Query Cover 100% 100% 100%	Graphic E value 7e-71 7e-71 7e-71 7e-71	<u>Per.</u> Ident 100.00% 100.00%	nce tree of resi Accession XM 03496425 NM 00100725 XM 02435756
Sequences p Select all PREDICTE Homo sapi PREDICTE PREDICTE Synthetic of Homo sapi Homo sapi	Troducing significant al A1 sequences selected D. Pan paniscus endogenous re- ens endogenous retrovirus grou D. Pan troglodytes endogenous D. Pan troglodytes endogenous D. Pan troglodytes endogenous enstruct DNA, clone: pFN21AE12 ens cDNA FLJ60255 complete co	lignments Descripti strovirus, group 3 membe p 3 member 1. envelope retrovirus group 3 memb retrovirus group 3 memb fe1. Homo sapiens ERV ds. highly similar to HEF	ion er 1. envelope (ERV3-1) 2 (ERV3-1), transcript va ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3 gene for endogenous RVR. 7g21.2 provirus a). <u>mRNA</u> ariant 1. mRNA 1). transcriet variant X2. mRNA 1). transcriet variant X1. mRNA	Max Score 278 278 278 278 278 278	GenE Total Score 278 278 278 278 278 278 278	Cover 100% 100% 100% 100%	Graphic E value 7e-71 7e-71 7e-71 7e-71 7e-71	Dista Per. Ident 100.00% 100.00% 100.00% 100.00% 100.00%	Accession Accession XM_03496425 NM_00100725 XM_02435756 XM_01695677 AB590999.1
Sequences p Select all PREDICTE PREDICTE PREDICTE Synthetic ct Homo sapi Pan troploce	Producing significant al A1 sequences selected D. Pan paniscus endogenous re- ens endogenous retrovirus grou D. Pan troglodytes endogenous D. Pan troglodytes endogenous onstruct DNA. clone: pFN21AE12 ens cDNA FLJ60255 complete co bytes BAC clone CH251-623C19	lignments Descripti trovirus.group.3 membe p.3 member 1.envelope retrovirus.group.3 memt retrovirus.group.3 memt f61.Homo.sapiens.ERV ds.highly.similar.to.HER from.chromosome 7.co	ion er 1. envelope (ERV3-1) 2. (ERV3-1), transcript va ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3 gene for endogenous RVR_7g212 provinus a pmplete seguence). <u>mRNA</u> ariant 1. mRNA 1). transcript variant X2. mRNA 1). transcript variant X1. mRNA s retroviral sequence 3. without stop co	Max Score 278 278 278 278 278 278 278 278 278	GenE Total Score 278 278 278 278 278 278 278 278 278	Cover 100% 100% 100% 100% 100%	Graphic E value 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71	Dista Per. Ident 100.00% 100.00% 100.00% 100.00% 100.00%	nce tree of resi Accession XM_03496425 NM_00100725 XM_02435756 XM_01695677 AB5909991 AK2951891
Sequences p Select all PREDICTE Homo sapi PREDICTE PREDICTE Synthetic cr Homo sapi Pan troploc Pan troploc Pan troploc	D. Pan paniscus endogenous re ens endogenous retrovirus grou D. Pan tradicture endogenous re ens endogenous retrovirus grou D. Pan tradicates endogenous. D. Pan tradicates endogenous D. Pan tradicates endogenous onstruct DNA, clone: pFN21AE12 ens cDNA FLJ60255 complete co types BAC clone CH251-632C19 types BAC clone CH251-565C10	lignments Descripti trovirus.group.3 membe p.3 member 1. envelope retrovirus.group.3 memb retrovirus.group.3 memb for leven and service and the fill Homo sapiens ERV ds. highly similar to HEF from chromosome 7. co from chromosome 7. co	ion er 1. envelope (ERV3-1) 2. (ERV3-1), transcript va ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3 gene for endogenous RVR . 7g21.2 provirus a minplete sequence minplete sequence). <u>mRNA</u> ariant 1. mRNA 1). transcript variant X2. mRNA 1). transcript variant X1. mRNA s retroviral sequence 3. without stop co	Max Score 278 278 278 278 278 278 278 278 278	GenE Total Score 278 278 278 278 278 278 278 278 278 278	Cover 100% 100% 100% 100% 100% 100%	Graphic E value 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71	Dista Per. Ident 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%	Accession XM_03496425 NM_00100725 XM_02435756 XM_01695677 AB590999.1 AK295189.1 AC184799.2 AC148313.3
Sequences p Select all Select all PREDICTE Homo sapi PREDICTE Synthetic co Homo sapi Pan troploc Pan troploc Ran	D: Pan paniscus endogenous re ens endogenous retrovirus grou D: Pan troglodytes endogenous D: Pan troglodytes endogenous D: Pan troglodytes endogenous D: Pan troglodytes endogenous onstruct DNA, clone: pFN21AE12 ens cDNA FLJ60255 complete c bytes BAC clone CH251-563C10 bytes BAC clone CH251-565C10 bytes endogenous retrovirus grou	Lignments Descripti etrovirus.group.3.membe p.3.member 1.envelope retrovirus.group.3.memt retrovirus.group.3.memt f61.Homo.sapiens.ERV/ ds.hiphly.similar.to.HEF from chromosome 7.co from chromosome 7.co up.3.member 1.envelope	ion er 1. envelope (ERV3-1) 2 (ERV3-1), transcript va ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3 gene for endogenous RV-R. 7a21.2 provinus a implete seguence implete seguence e (ERV3-1), mRNA). <u>mRNA</u> ariant 1. mRNA 1). transcript variant X2. mRNA 1). transcript variant X1. mRNA s retroviral sequence 3. without stop co	Max Score 278 278 278 278 278 278 278 278 278 278	GenE Total Score 278 278 278 278 278 278 278 278 278 278	Cover 100% 100% 100% 100% 100% 100% 100%	Graphic E value 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71	Dista Per. Ident 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%	Accession XM_03496425 NM_00100725 XM_02435756 XM_01695677 AB590999.1 AK295189.1 AC184799.2 AC148313.3
Sequences p Select all Select all PREDICTE PREDICTE PREDICTE Synthetic co Pan troploc Pan troploc Pan troploc Homo sapi Homo sapi	Producing significant al A1 sequences selected D: Pan paniscus endogenous re- ens endogenous retrovirus grou D: Pan troglodytes endogenous D: Pan troglodytes endogenous D: Pan troglodytes endogenous onstruct DNA, clone: pFN21AE12 ens cDNA FLJ60255 complete c tytes BAC clone CH251-565C10 tytes endogenous retrovirus grou ens BAC clone RP11-460N20 fro	lignments Descripti strovirus.group.3.membe p.3.member 1.envelope retrovirus.group.3.memt retrovirus.group.3.memt f61.Homo.sapiens.ERV/ ds.hiphly.similar.to.HEF from chromosome 7.co from chromosome 7.co up.3.member 1.envelope ym.7.comolete.sequenc	ion er 1. envelope (ERV3-1) 2. (ERV3-1), transcript va ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3 gene for endogenous RV-R. 7a21.2 provinus a proplete seguence omplete seguence e. (ERV3-1), mRNA 32), <u>mRNA</u> ariant 1. mRNA :1).transcript variant X2, mRNA :1).transcript variant X1, mRNA s retroviral sequence 3, without stop co ancestral Env polyprotein precursor	Max Score 278 278 278 278 278 278 278 278 278 278	GenE Total Score 278 278 278 278 278 278 278 278 278 278	Cover 100% 100% 100% 100% 100% 100% 100% 100	Graphic E value 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71	Dista Per. Ident 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%	nce tree of resi Accession XM_03496425 NM_00100725 XM_02435756 XM_01695677 AB590999.1 AK295189.1 AC285189.1 AC184799.2 AC148313.3 NM_00113558
Sequences p Select all PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE PREDIC	Producing significant al A1 sequences selected D: Pan paniscus endogenous re- ens endogenous retrovirus grou D: Pan troglodytes endogenous D: Pan troglodytes endogenous D: Pan troglodytes endogenous onstruct DNA, clone: pFN21AE12 ens cDNA FLJ60255 complete c tytes BAC clone CH251-565C10 tytes endogenous retrovirus grou ens BAC clone RP11-460N20 fro	lignments Descripti trovirus.group.3.membe p.3.member.1.envelope retrovirus.group.3.memt retrovirus.group.3.memt f61.Homo.sapiens.ERV/ ds.highly.similar.to.HEF from.chromosome.7.co up.3.member.1.envelope am.7.complete.sequenc NG13819.highly.similar	ion er 1. envelope (ERV3-1) 2. (ERV3-1), transcript va ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3 gene for endogenous RV-R. 7a21.2 provinus a proplete seguence omplete seguence e. (ERV3-1), mRNA 32). <u>mRNA</u> ariant 1. mRNA 1). transcript variant X2. mRNA 1). transcript variant X1. mRNA s retroviral sequence 3. without stop co	Max Score 278 278 278 278 278 278 278 278 278 278	GenE Total Score 278	Cover 100% 100% 100% 100% 100% 100% 100% 100	Graphic E Value 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71	S Dista Per. Ident 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%	nce tree of resi Accession XM_03496425 NM_00100725 XM_02435756 XM_02435756 XM_01695677 AB5909991 AK2951891 AC1847992 AC148313.3 NM_00113558 AC073210.8
Sequences p Select all PREDICTE PREDICTE	Producing significant al A1 sequences selected D: Pan paniscus endogenous re ens endogenous retrovirus grou D: Pan troglodytes endogenous D: Pan troglodytes D: Pan tro	Descripti trovirus.group.3.membe p.3.member 1. envelope retrovirus.group.3.memb retrovirus.group.3.memb retrovirus.group.3.memb retrovirus.group.3.memb retrovirus.group.3.memb retrovirus.group.3.member 1. envelope from chromosome 7. co pa.3.member 1. envelope pm 7. complete sequence NG13819. highly similar nv-31TR region	ion er 1. envelope (ERV3-1) e (ERV3-1), transcript vs ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3 gene for endogenous RV-R. 7g21.2 provinus a propiete sequence e (ERV3-1), mRNA 28 tho Human endogenous)mRNA ariant 1mRNA (1). transcript variant X2mRNA (1). transcript variant X1mRNA s retroviral sequence 3. without stop co ancestral Env polyprotein precursor is retrovirus ERV3pol-env-31.TR region	Max Score 278 278 278 278 278 278 278 278 278 278	GenE Total Score 278 278 278 278 278 278 278 278 278 278	Bank Query Cover 100%	Graphic E value 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71	S Dista Per. Ident 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%	nce tree of resu Accession XM_034964255 XM_024357564 XM_016956777 AB5909991 AC1847992 AC1483133 NM_00113558 AC073210.8 AK074464.1 M12140.1
Sequences p Select all PREDICTE PREDICTE	Producing significant al Al sequences selected D: Pan paniscus endogenous ret ens endogenous retrovirus grou D: Pan troglodytes endogenous D: Pan troglodytes D: Pan	lignments Descripti trovirus.group.3.membe p.3.member.1.envelope retrovirus.group.3.memb retrovirus.group.3.member 161.Homo.sapiens.ERV/ ds.highly.similar to HEF from chromosome 7.co from chromosome 7.co up.3.member 1.envelope am 7.complete.sequence NG13819.highly.similar nv:3.TR region rus.group.3.member 1.e	ion er 1. envelope (ERV3-1) (ERV3-1), transcript vs ber 1. envelope (ERV3- 3 gene for endogenous RV-R. 7g21.2 provinus a proplete seguence e (ERV3-1), mRNA 28 to Human endogenou envelope (ERV3-1), mR)mRNA ariant 1mRNA (1). transcript variant X2mRNA (1). transcript variant X1mRNA s retroviral sequence 3. without stop co ancestral Env polyprotein precursor is retrovirus ERV3pol-env-31.TR region	Max Score 278 278 278 278 278 278 278 278 278 278	GenE Total Score 278	Bank Query Cover 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%	Graphic E value 7e-71	S Dista Per. Ident 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%	nce tree of resu Accession XM_034964255 XM_024357564 XM_016956777 AB5909991 AC1847992 AC1483133 NM_00113558 AC073210.8 AK074464.1 M12140.1
Sequences p select all PREDICTE Homo sapi PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE Pan troploc Pan troploc Pan troploc Pan troploc Pan troploc Homo sapi Homo sapi Homo sapi Homo sapi Homo sapi Homo sapi Homo sapi	troducing significant al al sequences selected D: Pan paniscus endogenous re ens endogenous retrovirus grou D. Pan troglodytes endogenous D: Pan troglodytes endogenous D: Pan troglodytes endogenous D: Pan troglodytes endogenous onstruct DNA, clone: pFN21AE12 ens cDNA FLJ60255 complete c bytes BAC clone CH251-563C10 bytes Endogenous retrovirus grov ens cDNA FLJ60251 complete c ens cDNA FLJ60255 complete c dytes BAC clone CH251-563C10 bytes Endogenous retrovirus grov ens cDNA FLJ23884 fis. clone L dogenous retrovirus ERV3, pol-e leucogenys endogenous retrovirus proviral endogenous	Lignments Descripti strovirus group 3 membe p 3 member 1. envelope retrovirus group 3 memb retrovirus group 3 memb retrovirus group 3 memb retrovirus group 3 member 1. ds. highly similar to HEF from chromosome 7. co from chromosome 7. co g 3 member 1. envelope m 7. complete sequence NG13819. highly similar mv-31.TR region rus group 3 member 1. et 8 gene for R envelope pr	ion ar 1. envelope (ERV3-1) a (ERV3-1), transcriptva ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3. gene for endogenous RV-R. 7.021.2 provinus a pomplete sequence e (ERV3-1), mRNA 28 to Human endogenou envelope (ERV3-1), mR). mRNA ariant 1. mRNA 1). transcript variant X2. mRNA 1). transcript variant X1. mRNA 3: retroviral sequence 3. without stop co ancestral Env polyprotein precursor is retrovirus ERV3. pol-env-31.TR region	Max Score 278 278 278 278 278 278 278 278 278 278	GenE 278 279	Cover 100% 100% 100% 100% 100% 100% 100% 100	Graphic E value 7e-71 3e-69	Estimation 100.00%	nce tree of resu Accession XM_03496425; XM_02435766; XM_01695677; AB5909991 AC1847892 AC1847892 AC1847892 AC1843133 NM_00113558; AC073210.8 AK074464.1 M12140.1 NM_00130819 AJ862653.1
Sequences p select all PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE Pan troploc Pan troploc	Producing significant al A1 sequences selected D: Pan paniscus endogenous re ens endogenous retrovirus grou D: Pan troglodytes endogenous D: Pan troglodytes endogenous D: Pan troglodytes endogenous onstruct DNA clone: pFN21AE12 iens cDNA FLJ60255 complete c bytes BAC clone CH251-623C19 bytes BAC clone CH251-623C19 bytes endogenous retrovirus grou ens SAC clone RP11-460N20 fr ens SAC scher	Lignments Description itrovirus group 3 member p 3 member 1. envelope retrovirus group 3 membr fetrovirus group 3 membr f61. Homo sapiens ERV: ds. highly similar to HEF from chromosome 7. co gra 3 member 1. envelope m7. comolete sequence NG13819. highly similar mv-31.TR region rus group 3 member 1. ef 8 gene for R envelope pr degenous retrovirus grou	ion er 1. envelope (ERV3-1) e (ERV3-1), transcript va ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3. gene for endogenous 3. gene for endogenous SV-R. 7. g21.2. provinus a propiete seguence e. (ERV3-1), mRNA 28. to Human endogenou envelope (ERV3-1), mR totelin up 3. member 1. envelop). mRNA ariant 1. mRNA (1). transcript variant X2, mRNA (1). transcript variant X1, mRNA s retroviral sequence 3, without stop co ancestral Env polyprotein precursor is retrovirus ERV3, pol-env-31,TR region RNA appe (ERV3-1). transcript variant X1, mR	Max Score 278 278 278 278 278 278 278 278 278 278	GenE 278 272 272	Cover 100% 100% 100% 100% 100% 100% 100% 100	Graphic e value 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 3e-69 3e-69	Dista Per. Ident 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.33%	nce tree of resu Accession XM_034964255 XM_02105756 XM_021455756 XM_01695677 A6590999.1 AC184799.2 AC184313.3 NM_00113558 AC073210.8 AK074464.1 M12140.1 NM_00130819
Sequences p Sequences p Select all PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE PAn troploc Pan troplo	Producing significant al A1 sequences selected D: Pan paniscus endogenous re ens endogenous retrovirus grou D: Pan troglodytes endogenous D: Pan troglodytes D: Pan trovirus proviral envir D: Pillocolobus teotrosceles en D: Papio anubis endogenous retrovirus	Lignments Description etrovirus group 3 member p 3 member 1. envelope retrovirus group 3 member retrovirus group 3 member fett Homo saptens ERV: ds. highly similar to HEF from chromosome 7. coo from chromosome 7. coo from chromosome 7. coo from chromosome 7. coo m 7. comolette sequenci NG13819. highly similar mv-31TR region rus group 3 member 1. et R gene for R envelope pr dogenous retrovirus group 3 member	ton er 1. envelope (ERV3-1) e (ERV3-1), transcript va ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3 gene for endogenous RVR. 7g21.2 provirus a omplete seguence e (ERV3-1) provinus a ervelope (ERV3-1), mRNA 28 envelope (ERV3-1), mR totein up 3 member 1. envelop r 1. envelope (ERV3-1).). mRNA ariant 1. mRNA (1). transcript variant X2, mRNA (1). transcript variant X1, mRNA s retroviral sequence 3, without stop co ancestral Env polyprotein precursor is retrovirus ERV3, pol-env-31,TR region RNA spee (ERV3-1), transcript variant X1, mR utranscript variant X2, mRNA	Max Score 278 278 278 278 278 278 278 278 278 278	GenE 278 272 267	Cover 100% 100% 100% 100% 100% 100% 100% 100	Graphie Value 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 3e-69 3e-69 3e-69 2e-67	Dista Per. 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.33% 98.67%	nce tree of resu Accession XM_03496425; XM_00100725 XM_02435766; XM_01695677; AB5909991 AC1847892 AC1847892 AC1847892 AC1847892 AC1847892 AC1847892 AC1847892 AC073210.8 AK074464.1 M12140.1 NM_00130819 AJ862653.1 XM_02319628;
Sequences p Sequences p Sequences p Setect all PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE PREDICTE Pan troolog P	Producing significant al A1 sequences selected D: Pan paniscus endogenous re ens endogenous retrovirus grou D: Pan troglodytes endogenous retrovirus Endogenous retrovirus ERV3, pol-e Leucogenys endogenous retrovirus D: Piliocolobus techrosceles en D: Papio anubis endogenous ret	Lignments Description etrovirus, group 3 membe p 3 member 1. envelope retrovirus, group 3 member fetrovirus, group 3 member fetrovirus, group 3 member fam, chromosome 7, co from chromosome 7, co from chromosome 7, co pa 3 member 1. envelope pm 7, complete sequenci NG13819, highly similar nn-31TR region rus, group 3 member 1, s 3 gene for R envelope pr deogenous retrovirus, group trovirus, group 3 member	ion er 1. envelope (ERV3-1) e (ERV3-1), transcript va ber 1. envelope (ERV3- ber 1. envelope (ERV3- 3 gene for endogenous 3 gene for endogenous XVR. 7o21.2 provinus a bomolete sequence e (ERV3-1), mRNA 28 envelope (ERV3-1), mRNA 28 envelope (ERV3-1), mR colein up 3 member 1. envelope r 1. envelope (ERV3-1) r 1. envelope (ERV3-1).). mRNA ariant 1. mRNA (1). transcript variant X2, mRNA (1). transcript variant X1, mRNA s retroviral sequence 3, without stop co ancestral Env polyprotein precursor is retrovirus ERV3, pol-env-31,TR region RNA spee (ERV3-1), transcript variant X1, mR utranscript variant X2, mRNA	Max Score 278 278 278 278 278 278 278 278 278 278	GenE GenE Contal Score 278 272 267 267	Coursy 00% 100%	Graphie Value 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 7e-71 3e-69 3e-69 2e-67 2e-67	Dista Per. 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 99.33% 98.67% 98.67%	Accession XM_03496425; NM_00100725 XM_02435756; XM_01695677; AB5909991 AC1847992 AC1847992 AC1483133 NM_00113558; AC073210.8 AK074464.1 M12140.1 NM_00130819 AJ862553.1 XM_0231962855 XM_031662050

Fig.4b A BLAST analysis on reads sampled from the 100% hit results confirmed that it was found only in humans. Once again confirming human origin.

escription	gnl SRA SRR11119759.706892	253. 1 70689253 (E	Biological)	to		1	to			to	
lolecule type	dna										
uery Length	150								F	Filter	Reset
Other reports	Distance tree of results 3										
Descriptions	Graphic Summary	Alignments	Taxonomy								
Sequences	producing significant alig	nments		Down	load 🗸	Manag	ge Colu	mns	√ Sho	ow 100	0 🗸 🔞
select all	1 sequences selected					Gei	n <u>Bank</u>	Grap	hics 1	Distance t	ree of result
						Max	Total	Query	Е	Per.	Accession
		Des	cription			Score	Score	Cover	value	Ident	Accession

Fig.4c The sequence have no matches outside of Primates.

🗹 sel	lect all 100	equences selected			Graph	ics Distance tree of result		
		Description			Query Cover	E value	Per. Ident	Accession
S 5	RX6893156		278	278	0%	2e-69	100.00%	SRA:SRR10168375.5045789.1
🔽 <u>s</u>	RX6893156		278	278	0%	2e-69	100.00%	SRA:SRR10168375.5964.1
Descri	ption	Homo sapiens BAC clone RP11-460N20 from 7, complete seq						
Molecu	ule type	nucleic acid						
Query	Length	203396						
Other	reports	Distance tree of results MSA viewer 🔞						

Fig.5a <u>SRX6893156</u> also returned 100% matched results from the human Genome.

select all 14 sequences selected	GenBank Graphics Distance tree of results
Description	Max Total Query E Per. Score Score Cover value Ident
Homo sapiens BAC clone RP11-460N20 from 7, complete sequence	278 278 100% 6e-71 100.00% AC073210.8
Pan troglodytes BAC clone CH251-623C19 from chromosome 7, complete sequence	267 267 100% 1e-67 98.67% AC184799.2
Pan troglodytes BAC clone CH251-2015 from chromosome 7, complete sequence	267 267 100% 1e-67 98.67% AC174000.3
Pan troglodytes BAC clone CH251-565C10 from chromosome 7, complete sequence	267 267 100% 1e-67 98.67% <u>AC148313.3</u>
Description gnl SRA SRR10168375.5045789.1 5045789 (Biological)	
Molecule type dna	
Query Length 150	
Other reports Distance tree of results MSA viewer 😧	
Description gnl SRA SRR10168375.5964.15964 (Biological)	to to to
Molecule type dna	
Query Length 150	Filter Reset
Other reports Distance tree of results ?	
Descriptions Graphic Summary Alignments Taxonomy	
Sequences producing significant alignments	Download Y Manage Columns Y Show 1000 V
select all 1000 sequences selected	GenBank Graphics Distance tree of resu
Description	Max Total Query E Per. Score Score Cover value Ident
Homo sapiens IncAB572.1 IncRNA gene, complete sequence	278 278 100% 7e-71 100.00% MK280613.1
Homo sapiens IncAB572.1 IncRNA gene, complete sequence Pan troglodytes chromosome 2 clone CH251-50P06, complete sequence	278 278 100% 7e-71 100.00% MK220613.1 278 278 100% 7e-71 100.00% AC279084.1
Pan troglodytes chromosome 2 clone CH251-60P06, complete sequence	278 278 100% 7e-71 100.00% AC279084.1

Fig.5b BLAST search on the result returned 100% match only found in humans. Confirming origininhuman-derivedmaterial.

scription	gnl SRA SRR10168375.596	4.1 5964 (Biologica	l)		to			to			to	
lecule type	dna											
ery Length	150			-							Filter	Reset
ner reports	Distance tree of results			_								
Descriptions	Graphic Summary	Alignments	Taxonomy									
Sequences	producing significant a	lignments			Dowr	iload ~	Mana	ge Colı	ımns	∨ Sh	ow 100	00 🗸
select all	14 sequences selected						Ge	enBank	Grap	hics	<u>Distance t</u>	ree of resu
		Des	cription				Max Score	Total Score	Query Cover	E value	Per. Ident	Accessio
Eukaryotic	synthetic construct chromosome	121					278	7938	100%	7e-71	100.00%	CP03450
Eukaryotic	synthetic construct chromosome	<u>13</u>					267	14570	100%	1e-67	98.67%	CP03451
Eukaryotic	synthetic construct chromosome	<u>16</u>					267	10333	100%	1e-67	98.67%	CP03449
Eukaryotic	synthetic construct chromosome	<u>15</u>					267	9021	100%	1e-67	98.67%	CP03449
Eukaryotic	synthetic construct chromosome	13					267	14570	100%	1e-67	98.67%	<u>CP03449</u>
Eukaryotic	synthetic construct chromosome	18					261	15047	100%	7e-66	98.00%	<u>CP03449</u>
Eukaryotic	synthetic construct chromosome	<u>+ 17</u>					261	6545	100%	7e-66	98.00%	<u>CP03449</u>
Eukaryotic	synthetic construct chromosome	20					219	7949	98%	4e-53	93.79%	<u>CP03449</u>
Eukaryotic	synthetic construct chromosome	<u>19</u>					209	3521	96%	3e-50	93.10%	CP03452
Eukaryotic	synthetic construct chromosome	<u>19</u>					209	3766	96%	3e-50	93.10%	CP03449
Eukaryotic	synthetic construct chromosome	22					207	2291	96%	9e-50	92.47%	<u>CP03450</u>
Eukaryotic	synthetic construct chromosome	<u>14</u>					207	13851	96%	9e-50	92.47%	CP03449
Gossypiur	m hirsutum clone NBRI_GE27093	3 microsatellite seque	nce				189	189	96%	3e-44	90.41%	<u>JX591845</u>

Fig.5c BLAST result of the sequences in question revealed that it is not found outside of Primates.

Select all 100 sequences selected Graphics Distance tree of result									
		Description		Max Score	Total Score		E value	Per. Ident	Accession
	SRX689315			278	278	0%	2e-69	100.00%	SRA:SRR10168376.17339580.1
	SRX689315	i		278	278	0%	2e-69	100.00%	SRA:SRR10168376.17013625.2
	SRX689315	i		278	278	0%	2e-69	100.00%	SRA:SRR10168376.17013625.1
	SRX689315	i de la companya de l		278	278	0%	2e-69	100.00%	SRA:SRR10168376.16930714.2
	SRX689315			278	278	0%	2e-69	100.00%	SRA:SRR10168376.16930714.1
	SRX689315	i de la companya de l		278	278	0%	2e-69	100.00%	SRA:SRR10168376.15267479.2
	SRX689315	i		278	278	0%	2e-69	100.00%	SRA:SRR10168376.15267479.1
≤	SRX689315			278	278	0%	2e-69	100.00%	SRA:SRR10168376.13985702.2
	SRX689315	i		278	278	0%	2e-69	100.00%	SRA:SRR10168376.13985702.1
	SRX689315	i		278	278	0%	2e-69	100.00%	SRA:SRR10168376.13353823.2
	SRX689315	i de la constante de		278	278	0%	2e-69	100.00%	SRA:SRR10168376.13353823.1
	SRX689315	i de la companya de l		278	278	0%	2e-69	100.00%	SRA:SRR10168376.11109740.1
	SRX689315	i de la companya de l		278	278	0%	2e-69	100.00%	SRA:SRR10168376.9343845.2
	SRX689315			278	278	0%	2e-69	100.00%	SRA:SRR10168376.9232549.2
escrip	otion	Homo sapiens BAC clone RP11-460N20 from 7, complete seq							
lolecu	ıle type	nucleic acid							
uery	Length	203396							
ther r	reports	Distance tree of results MSA viewer 😵							

Fig.6a Similarly, BLAST research on <u>SRX6893155</u> gives large number of full length 100% matches to the human genome.

✓	select all 57 se	equences selected					GenBan	<u>k</u> <u>G</u>	raphics	<u>Distan</u>	ice tree of results
			Descrip	otion		Max Score		Query Cover	E value	Per. Ident	Accession
	Homo sapiens F(OSMID clone ABC13-48840700E	15 from chromosome	7. complete sequence		278	278	100%	6e-71	100.00%	AC242196.4
	Pan troglodytes 8	BAC clone CH251-340l24 from ch	iromosome 7, complet	<u>te sequence</u>		278	278	100%	6e-71	100.00%	AC185242.2
	Pan troglodytes 8	BAC clone CH251-623C19 from c	hromosome 7, comple	<u>ete sequence</u>		278	278	100%	6e-71	100.00%	AC184799.2
	Pan troglodytes I	BAC clone CH251-114G16 from c	hromosome 7, comple	ete sequence		278	278	100%	6e-71	100.00%	AC183835.2
		BAC clone CH251-2O15 from chr		e sequence		278	278	100%	6e-71		AC174000.3
		AC clone RP11-479O9 from 7, co				278	278	100%	6e-71		AC073107.7
		BAC clone CH251-565C10 from c		ete sequence		278	278	100%	6e-71		AC148313.3
		AC clone RP11-460N20 from 7, c				278	278	100%	6e-71		
	PREDICTED: Ce	bus capucinus imitator small inte	g <u>ral membrane protei</u>	n 11A (SMIM11A), transc	<u>rript variant X6, mRNA</u>	87.9	87.9	49%	1e-13	88.00%	XM_017526193.1
De	scription	gnl SRA SRR10168376.15	267479.2 1526747	9 (Biological)							
M	olecule type	dna									
Qı	ery Length	150									
Ot	her reports	Distance tree of results	MSA viewer 🔞								
De	cription	gnl SRA SRR10168376.1398	5702.1 13985702 (Biological)	to		to			t	o
Мо	lecule type	dna									
Qu	ery Length	150								Filter	Reset
Ot	er reports	Distance tree of results 😯									
	ier reports Descriptions	Distance tree of results ? Graphic Summary	Alignments	Taxonomy							
	Descriptions		Alignments	Taxonomy	Download 🗸	Ма	nage Co	olumn	s Y (Show	1000 🗸 😢
:	Descriptions Sequences pr	Graphic Summary	Alignments	Taxonomy	Download 🗠	Ма	nage Co		s × s		1000 V Ø
:	Descriptions Sequences pr	Graphic Summary	Alignments			Мах	<u>GenBar</u> Total C		raphics E		
:	Descriptions Sequences pr Select all 8	Graphic Summary	Alignments ignments Descr	iption		Мах	GenBar Total C Score C	t <mark>ik G</mark> Query Cover 1	raphics E value	Distan Per. Ident	ce tree of results
:	Sequences pr	Graphic Summary roducing significant al	Alignments ignments Descr m.7. complete seque	iption		Max Score	GenBar Total C Score C 278 1	n <u>k G</u> Query Cover N 00%	raphics E value 7e-71 1	Distant Per. Ident 00.00%	ce tree of results Accession
2	Descriptions Sequences pr Select all 8 Homo saple Pan troplody	Graphic Summary roducing significant ali S7 sequences selected ens BAC clone RP11-460N20 fro	Alignments ignments Descr m 7. complete seque from chromosome 7.	iption ince complete sequence		Max Score 278	GenBar Total C Score C 278 1 272 1	tuery cover 1 00%	E Telue 7e-71 1 3e-69	Distan Per. Ident 00.00% / 99.33% /	Accession
	Descriptions Sequences pr Select all 8 Homo saple Pan troglody Pan troglody	Graphic Summary roducing significant all 37 sequences selected ens BAC clone RP11-460N20 fro ytes BAC clone CH251-623C191 ytes BAC clone CH251-565C101	Alignments ignments Descr m 7. complete seque tom chromosome 7. tom chromosome 7.	tption Ince complete sequence complete sequence		Max Score 278 272	GenBar Total C Score C 278 1 272 1 272 1	uery over v 00% 1 00% 1	E ralue 7e-71 1 3e-69 9 3e-69 9	Distant Per. Ident 00.00% (99.33% (99.33% (Accession Accor3210.8 AC184799.2
	Cescriptions Cequences pr Sequences pr Select all 8 Homo saple Pan troology Macaca mul Homo saple Homo saple	Graphic Summary roducing significant all 37 sequences selected ens BAC clone RP11-460N20 fro ytes BAC clone CH251-623C191 ytes BAC clone CH251-565C101	Alignments ignments Descr m 7. complete seque tom chromosome 7. tom chromosome 7. in's Hospital Oakland	tption Ince complete sequence complete sequence Research institute Rhe		Max Score 278 272 272	GenBar Total C Score C 278 1 272 1 272 1 272 1 272 1	ak <u>G</u> Query Cover 1 00% 3 00% 3 00% 3	E Palue 7e-71 1 3e-69 9 3e-69 9 2e-52 9	Distant Per. Ident 00.00% 99.33% 99.33% 92.67%	Accession AC073210.8 AC184799.2 AC148313.3
:	Cescriptions Cequences pr Sequences pr Sector all 8 Homo saple Pan troolody Macaca mul Homo saple Homo saple Homo saple	Graphic Summary roducing significant all 37 sequences selected ens BAC clone RP11-460N20 fro vtes BAC clone CH251-623C191 vtes BAC clone CH251-565C101 latta BAC CH250-206B6 (Childre	Alignments ignments Descr m 7. complete seque tom chromosome 7. tom chromosome 7. inis Hospital Oakland (TRIM24), RefSeqGer	iption ince complete sequence complete sequence I Research Institute Rhe ne on chromosome Z		Max Score 278 272 272 272 217	GenBar Total C Score C 278 1 272 1 272 1 272 1 217 1 182 5	Ik G Query V Cover V 00% C	E Palue 7e-71 1 3e-69 9 2e-52 9 5e-42 1	Distant Per. Ident 1dent 99.33% 2 99.33% 2 9 92.67% 2 88.59% 3	Accession AC073210.8 AC184799.2 AC148313.3 AC210125.6 NG_023286.1 AC013429.12
	Cescriptions Cequences pr Sequences pr Select all 8 Homo saple Pan troolody Macaca mul Homo saple Homo saple Homo saple Homo saple Homo saple	Graphic Summary roducing significant all 37 sequences selected ens BAC clone RP11-460N20 fro vites BAC clone CH251-623C19 I vites BAC clone CH251-565C10 I latta BAC CH250-206B6 (Childre ens tripartite motif containing 24 ens chromosome 7 clone RP11- ens chromosome 7 clone RP11-	Alignments ignments Descr m7.complete seque tom chromosome 7. inis Hospital Oakland (TRIM24).RefSeqGer 199L18.complete se	iption ince complete sequence complete sequence I Research Institute Rhe ne on chromosome 7 guence		Max Score 278 272 272 217 182 182 182	GenBar Total C Score C 278 1 272 1 272 1 217 1 182 9 182 9 182 9	hk G cover 1 00% 2 00% 2 00% 2 00% 2 99% 9 99% 9	E F ralue 7e-71 1 3e-69 9 9 3e-69 9 9 2e-52 9 9 5e-42 1 5e-42 5e-42 1 5e-42	Distant Per. Ident Ident 00.00% 4 99.33% 4 99.33% 4 99.33% 4 92.67% 4 88.59% 4 88.59% 4	Accession AC073210.8 AC184799.2 AC148313.3 AC210125.8 NG_023286.1 AC013429.12 AC008265.15
	Cescriptions Cequences pr Sequences pr Select all 8 Homo saple Pan troolody Macaca mul Homo saple Homo saple Homo saple Homo saple Homo saple	Graphic Summary roducing significant all 37 sequences selected ens BAC clone RP11-460N20 fro vtes BAC clone CH251-623C19 f vtes BAC clone CH251-565C10 f latta BAC CH250-206B6 (Childre ens tripartite motif containing 24.1 ens chromosome 7 clone RP11-	Alignments ignments Descr m7.complete seque tom chromosome 7. inis Hospital Oakland (TRIM24).RefSeqGer 199L18.complete se	iption ince complete sequence complete sequence I Research Institute Rhe ne on chromosome 7 guence		Max Score 278 272 272 272 217 182 182	GenBar Total C Score C 278 1 272 1 272 1 217 1 182 9 182 9 182 9	hk G cover 1 00% 2 00% 2 00% 2 00% 2 99% 9 99% 9	E F ralue 7e-71 1 3e-69 9 9 3e-69 9 9 2e-52 9 9 5e-42 1 5e-42 5e-42 1 5e-42	Distant Per. Ident Ident 00.00% 4 99.33% 4 99.33% 4 99.33% 4 92.67% 4 88.59% 4 88.59% 4	Accession AC073210.8 AC184799.2 AC148313.3 AC210125.6 NG_023286.1 AC013429.12
	Cescriptions Cequences pr Sequences pr Select all 8 Homo saple Pan troolody Macaca mul Homo saple Homo saple Homo saple Homo saple Homo saple	Graphic Summary roducing significant all associated ans BAC clone RP11-460N20 fro wes BAC clone CH251-623C19 I wes BAC clone CH251-623C19 I ista BAC CH250-20686 (Childre ens tripartite motif containing 24 ens chromosome 7 clone RP11- ens chromosome 7 clone RP11- synthetic construct chromosome	Alignments ignments Descr m7.complete seque tom chromosome 7. inis Hospital Oakland (TRIM24).RefSeqGer 199L18.complete se	iption ince complete sequence complete sequence I Research Institute Rhe ne on chromosome 7 guence		Max Score 278 272 272 217 182 182 182 182 176	GenBar Total C Score C 278 1 272 1 272 1 217 1 182 9 182 9 182 9	Ik G cover 1 00% 1 00% 1 00% 2 00% 2 00% 2 00% 2 09% 0 99% 0 99% 2 99% 2	E F ralue 7e-71 1 3e-69 9 9 3e-69 9 9 2e-52 9 9 5e-42 1 5e-42 5e-42 1 5e-42	Distant Per. Ident 100.00% 2 99.33% 2 92.67% 2 88.59% 2 88.59% 2 88.59% 2 88.59% 2 88.59% 2 87.92% 2	Accession AC073210.8 AC184799.2 AC148313.3 AC210125.8 NG_023286.1 AC013429.12 AC008265.15
	Cescriptions Cequences pr Sequences pr Select all s Homo saple Pan troglody Pan troglody Macaca mul Homo saple Homo saple Homo saple Eukaryotic s	Graphic Summary roducing significant all associated ans BAC clone RP11-460N20 fro wes BAC clone CH251-623C19 I wes BAC clone CH251-623C19 I ista BAC CH250-20686 (Childre ens tripartite motif containing 24 ens chromosome 7 clone RP11- ens chromosome 7 clone RP11- synthetic construct chromosome	Alignments ignments Descr m 7. complete seque tom chromosome 7. tom chromosome 7. t	iption ince complete sequence complete sequence I Research Institute Rhe ne on chromosome 7 guence		Max Score 278 272 272 217 182 182 182 176	GenBar Total C Score C 278 1 272 1 272 1 217 1 182 9 182 9 353 9 GenBar To	Ik G Ruery V Cover V 000% 7 000% 7 000% 2 010% 2 010% 2 010% 2 010% 2 010% 2 010% 2 010% 2	raphics E value 7e-71 1 3e-69 9 2e-52 9 3e-69 9 2e-52 9 3e-42 1 3e-42 1 3e-40 1 raphics 1	Distant Per. Ident 100.00% 2 99.33% 2 92.67% 2 88.59% 2 88.59% 2 88.59% 2 88.59% 2 88.59% 2 87.92% 2	Accession Accession Ac18470.8 Ac184709.2 Ac148313.3 Ac210125.6 NG.023286.1 Ac008265.15 CP034510.1
	Cescriptions Cequences pr Sequences pr Select all s Homo saple Pan troploch Pan troploch Macaca mul Homo saple Homo saple Eukaryotic s Select all 3 seq	Graphic Summary roducing significant all associated ans BAC clone RP11-460N20 fro wes BAC clone CH251-623C19 I wes BAC clone CH251-623C19 I ista BAC CH250-20686 (Childre ens tripartite motif containing 24 ens tripartite motif containing 24 ens chromosome 7 clone RP11- ens chro	Alignments ignments Descr m 7. complete seque tom chromosome 7. tom chromosome 7. t	iption ince complete sequence complete sequence I Research Institute Rhe ne on chromosome 7 quence isquence		Max Score 278 272 272 217 182 182 182 176	GenBar Total C Score C 278 1 272 1 272 1 272 1 272 1 182 9 182 9 353 9 353 9 GenBar Max TC Score Sc	Ik G tuery V cover V 000% C	E E raue 38-69 38-69 9 38-69 9 38-69 9 38-69 9 38-69 9 38-64 1 38-64 1 38-64 1 38-64 1 38-64 1 38-64 1 1 1 1 1 1 1 1 1 1 1	Distant Per. Ident Ident 00.00% 0 99.33% 0 0 99.33% 0 0 88.59% 0 0 88.59% 0 0 88.59% 0 0 97.92% 0 0 Distant 0 0 E Pe Pe	Accession Accession Ac073210.8 Ac184799.2 Ac148313.3 Ac210125.6 NG.023286.1 Ac008265.15 CP034510.1 accession accession
	Cescriptions Cescriptions Cescriptions Cescriptions Cescriptions Cescription	Graphic Summary roducing significant al 37 sequences selected ans BAC clone RP11-460N20 fro Mes BAC clone CH251-623C191 Mes BAC clone CH251-263C101 lata BAC CH250-206B (Childre ens triparitie motif containing 24) ens chromosome 7 clone RP11- synthetic construct chromosome quences selected	Alignments ignments Descr m 7. complete seque tom chromosome 7. tom chromosome 7. t	iption ince complete sequence complete sequence I Research Institute Rhe ne on chromosome 7 quence isquence		Max Score 278 272 272 217 182 182 182 176	GenBar Total C Score C 2778 1 272 1 272 1 272 1 272 1 182 9 353 9 GenBar Tocore Core C I76 3	Ik G tuery V cover V 000% C 000% C	E E 7e-71 1 33e-69 9 36-69 9 36-69 9 36-69 9 36-69 9 36-40 3 36-40 3 age-40 3 age-40 3 age-40 3 age-40 3 age-40 3	Distant Per. Ident 1dent 00.00% 4 99.33% 4 99.33% 4 99.33% 4 99.33% 4 99.33% 4 99.33% 4 99.33% 4 99.33% 4 99.33% 4 99.33% 4 99.33% 4 99.33% 4 99.33% 4 99.33% 4 98.59% 4 88.59% 4 88.59% 4 97.92% 9 Distant 1 E Pe Ide Ide	Accession Accession AC073210.8 AC14813.3 AC210125.6 NG_023286.1 AC008265.15 CP034510.1 Accession rt Accession 2% CP034510.1

Fig.6b The results, when put through BLAST, confirms that the 100% matches are in fact derived from a Hominid origin.

Description Molecule type Query Length Other reports Descriptions	Homo sapiens BAC clone RP11-460N20 from 7, nucleic acid 203396 Distance tree of results MSA viewer Graphic Summary Alignments	complete seq	Percent Identity	E V	alue	to		Query Coverage to	e Reset
Sequences p	roducing significant alignments		Down	load 🗠	Ма	nage Co	olumns	 Show 100 	✓ 0
🗹 select all	100 sequences selected						Graph	nics Distance tre	e of results
	Description			Max Tota Score Scor	Query Cover		Per. Ident	Accessio	on
SRX689315	3			278 278	0%	2e-69	100.00%	SRA:SRR10168378	.1832954.1

Fig.7a <u>SRX6893153</u> have also returned 100% match full-length read on this tiny part of the human genome.

Description	gnl SRA SRR10168378.183	22954 1 1832954 (Bi	ological)					-	-		
Aolecule type	dna	2334.1 1032334 (DI	otoBicati	Percent Identity E	value			Query	/ Covera	ge	
				to	t	ο			to		
Query Length	150										_
ther reports	Distance tree of results M	<u>ISA viewer</u> 😮						F	ilter	Rese	<u>ا</u>
Descriptions	Graphic Summary	Alignments	Taxonomy								
Sequences	producing significant a	lignments		Download 🗡	Manag	e Colu	mns ~	Sho	w 100	00 🗸	0
select all	170 sequences selected				Gen	<u>ıBank</u>	<u>Graph</u>	<u>ics [</u>	istance t	ree of res	ults
		De	escription		Max Score		Query Cover	E value	Per. Ident	Access	ion
Homo sapi	ens FOSMID clone ABC18-862111	from chromosome 7, cr	omplete sequence		278	278	100%	6e-71	100.00%	AC24520	<u>5.1</u>
Homo sapi	ens FOSMID clone ABC13-48840	700E15 from chromosor	ne 7, complete sequence		278	278	100%	6e-71	100.00%	AC24219	5.4
Homo sapi	ens BAC clone RP11-460N20 from	n 7. complete sequence			278	278	100%	6e-71	100.00%	AC07321	<u>0.8</u>
Pan trogloo	dytes BAC clone CH251-487D11 fr	rom chromosome 7, con	nplete sequence		272	272	100%	3e-69	99.33%	AC18273	3.3
select all 7	7 sequences selected					Ger	<u>Bank</u>	<u>Grap</u>	hics <u>C</u>	istance (ree of re
		ſ	Description			Max Score	Total Score	Query Cover	E value	Per. Ident	Acces
Eukaryotic s	synthetic construct chromosom	<u>ne 15</u>				211	211	98%	7e-51	92.11%	CP0344
Eukaryotic s	ynthetic construct chromosom	<u>ne 16</u>				206	1214	98%	3e-49	91.45%	CP0344
Eukaryotic s	ynthetic construct chromosom	<u>ne 13</u>				200	200	98%	2e-47	90.79%	CP034
Eukaryotic s	ynthetic construct chromosom	<u>ne 21</u>				200	401	98%	2e-47	90.79%	CP034
Eukaryotic s	synthetic construct chromosom	<u>ie 13</u>				200	200	98%	2e-47	90.79%	CP034
Eukaryotic s	synthetic construct chromosom	<u>ne 18</u>				195	195	96%	7e-46	90.60%	CP034
Eukaryotic s	synthetic construct chromosom	ne 17				195	195	98%	7e-46	90.13%	CP034

Fig.7b Similarly, the read is only found in humans—indicating the Homo Sapiens Trace result is

accurate.

escription	Homo sapiens BAC clone RP11-450O3 from 7, complete sequence						
olecule type	nucleic acid						
uery Length	195834						
ther reports	Distance tree of results MSA viewer 😧						
Descriptions	Graphic Summary Alignments						
Sequences	producing significant alignments	Downlo	oad ~	Ма	nage Co	olumns	s ∨ Show 100 ∨
_	producing significant alignments 100 sequences selected	Downlo	oad ~	Ma	nage Co		Show 100 V
_		Мах	Total		E		
_ `	100 sequences selected Description	Мах	Total	Query Cover v a	E alue	<u>Gra</u> Per. Ident	phics Distance tree of resu
select all	100 sequences selected Description	Max Score	Total Score	Query Cover v 0% 1	E alue e-69 10	<u>Grap</u> Per. Ident	phics Distance tree of resu

Fig.8a Reads from the Human PMS1 gene is recovered from <u>SRX6893154</u> with a query sequence only 195834bp in length.

Description	gnl SRA SRR10168377.163	02266.1 16302266 (Biological)						
Molecule type	dna							Filte	r Reset
Query Length	150								
Other reports	Distance tree of results								
Descriptions	Graphic Summary	Alignments	Taxonomy						
Sequences	producing significant a	lignments		Download 🗡	Mar	age Col	umns 🗸	Show	1000 🗸 😨
select all	311 sequences selected					<u>GenBank</u>	Graphic	<u>s Dista</u>	ince tree of results
		Descr	iption			otal Que	ery E ver value	Per. Ident	Accession
Homo sa	piens PMS1 homolog 2, mismato	h repair system comp	onent pseudogene 8	(PMS2P8) on chromosome 7	278	278 100	% 7e-71	100.00%	NG_006447.3
Homo sa	piens PMS1 homolog 2, mismate	h repair system comp	onent pseudogene 1) (PMS2P10) on chromosome 7	278	278 100	% 7e-71	100.00%	NG_023454.4
Homo sa	piens PMS1 homolog 2, mismate	h repair system comp	onent pseudogene 6	(PMS2P6) on chromosome 7	278	278 100	% 7e-71	100.00%	NG_006449.3
Homo sa	piens BAC clone CH17-264B6 fro	<u>m chromosome 7, co</u>	mplete sequence		278	112 100	% 7e-71	100.00%	AC211476.5
Homo sa	piens BAC clone CH17-220H16 f	rom chromosome 7, c	omplete sequence		278	112 100	% 7e-71	100.00%	AC211491.5
Homo sa	piens FOSMID clone ABC10-455	5000F15 from chrome	osome 7, complete s	equence	278	556 100	% 7e-71	100.00%	AC244146.2
 Homo sap Homo sap Homo sap 	viens BAC done RP11-396K3 fro viens BAC done RP11-313P13 f viens chromosome 7 done VMR viens chromosome 7 done VMR viens chromosome 7 done CH1	rom 7, complete sequ C53-89F05, complete C62-404M06, complete	ience e sequence ete sequence		270 271 271 271	2 272 2 272	100% 7 100% 3 100% 3 100% 3	e-69 99 e-69 99	AC005488.2 33% AC278394.1 33% AC278331.1 33% AC270699.1
Homo sapi	iens PMS8 mRNA (yeast misma	ich repair gene PMS1	homologue), partial	cds (C-terminal region)	248	248 1	00% 6e-6	2 96.67	% <u>D38503.1</u>
Homo sapi	iens PMS1 homolog 2. mismatcl	n repair system comp	onent (PMS2), RefSe	gGene (LRG_161) on chromosome 7	244	244 1	00% 7e-6	1 96.00	% <u>NG 008466.1</u>
Canis lupu:	s familiaris breed Labrador retrie	ver chromosome 06a			154	154 8	4% 1e-33	3 88.89%	CP050586.1
Canis lupu:	s familiaris breed Labrador retrie	ver chromosome 06b			154	154 8	4% 1e-33	3 88.89%	CP050622.1
Pipistrellus	pipistrellus genome assembly,	chromosome: 5			139	139 8	6% 3e-29	9 86.15%	LR862361.1
Synthetic co	onstruct Homo sapiens clone ccs	bBroadEn 14772 PM	<u>S2 gene, encodes co</u>	mplete protein	126	126 4	9% 3e-2	5 97.30%	KJ905275.1
	D: Zalophus californianus PMS1	homolog 2, mismatch	repair system comp	onent (PMS2), transcript variant X3, mRNA	124	124 5	4% 9e-2	5 93.90%	XM_027610028.2
	D: Desmodus rotundus PMS1 ho	molog 2, mismatch re	pair system compor	ent (PMS2), transcript variant X2, mRNA	121	121 5	2% 1e-23	3 94.87%	XM_024576931.1
	D: Desmodus rotundus PMS1 ho	molog 2, mismatch re	epair system compor	ent (PMS2), transcript variant X1, mRNA	121	121 5	2% 1e-23	3 94.87%	XM_024576930.1
	D: Myotis lucifugus PMS1 homolo	og 2, mismatch repair	system component (PMS2), transcript variant X4, mRNA	121	121 5	2% 1e-23	3 94.87%	XM_023761457.1
	D: Myotis lucifugus PMS1 homolo	og 2, mismatch repair	system component (PMS2), transcript variant X3, mRNA	121	121 5	2% 1e-23	3 94.87%	XM_023761456.1

Fig.8b This PMS1 read is only found in Humans. This is clearly a contaminant from a hominid origin.

escription	Homo sapiens BAC clone	e RP11-611L7 from 7, complete sequer	Percent Identity		E valu	e		Query Coverage
lolecule type	nucleic acid		to			to		to
uery Length	173967							
ther reports	Distance tree of results	MSA viewer 🔞						Filter Reset
Descriptions	Graphic Summary	Alignments						
Sequences	producing significant	alignments	Dow	nload	~	Manage C	olumns	∽ Show 100 ✔
✓ select all	100 sequences selected						Graph	hics Distance tree of resul
		Description				uery E over value	Per. Ident	Accession
SRX689313	<u>39</u>			278	278	0% 3e-69	100.00%	SRA:SRR10168392.39544030.
SRX689313	<u>39</u>			278	278	0% 3e-69	100.00%	SRA:SRR10168392.28917809
SRX689313	<u>39</u>			278	278	0% 3e-69	100.00%	SRA:SRR10168392.14357888
SRX689313	39			278	278	0% 3e-69	100.00%	SRA:SRR10168392.2548655.2

Fig.9a Similarly, multiple 100% match Full length reads were obtained from <u>SRX6893139</u>. As this query sequence is only 173967 nucleotides in length, the real extent of Human-derived contamination is also extremely severe.

Description	gnl SRA SRR10168392.28917809.1 28917809 (Biological)	Percent Identity	E value		Q	uery Cov	erage
Molecule type	dna	to		to		1	to
Query Length	150						
Other reports	Distance tree of results MSA viewer 😨					Filter	Reset
Descriptions	Graphic Summary Alignments Taxonomy						
Sequences p	producing significant alignments	Download 🗡	Mana	age Columr	is ~	Show	1000 🗸 😨
select all	66 sequences selected		Ge	enBank <u>G</u>	raphics	<u>Distan</u>	ice tree of results
	Description			Total Query Score Cover	E value	Per. Ident	Accession
Momo sapie	ens zinc finger protein 316 (ZNF316), mRNA		278	278 100%	6e-71	100.00%	NM_001278559.2
	D: Homo sapiens zinc finger protein 316 (ZNF316), transcript variant X3, mRNA		278	278 100%	6e-71	100.00%	XM_024446619.1
	D: Homo sapiens zinc finger protein 316 (ZNF316), transcript variant X2, mRNA		278	278 100%	6e-71	100.00%	XM_024446618.1
	D: Homo sapiens zinc finger protein 316 (ZNF316), transcript variant X1, mRNA		278	278 100%	6e-71	100.00%	XM_006715630.4
Homo sapie	ens BAC clone RP11-611L7 from 7, complete sequence		278	278 100%	6e-71	100.00%	AC073343.6
PREDICTE	D: Pongo abelii zinc finger protein 316 (ZNF316), mRNA		272	272 100%	3e-69	99.33%	XM_024250011.1
	Drycteropus afer afer zinc finger protein 316 (ZNF316), mRNA		150	150 100%	2e-32	84.67%	XM_007942750
	<u> Miniopterus natalensis zinc finger protein 853 (ZNF853), mRNA</u>		145	145 100%	7e-31	84.00%	XM_016213621
PREDICTED: C	<u> Dchotona princeps zinc finger protein 316 (ZNF316), mRNA</u>		145	145 98%	7e-31	84.35%	XM_012930995
Pipistrellus pip	<u>sistrellus genome assembly, chromosome: 5</u>		145	145 100%	7e-31	84.11%	LR862361.1

Fig.9b Examining these reads revealed that they are only found in humans and apes. This is therefore also clear evidence that there are Human/Hominid-derived contamination in **SRX6893139**.

Description	Homo sapiens chromoson	ne 9, clone hRPK.2	02_H_3, complet	Percent Identity	E	value			Query Coverage
Molecule type	nucleic acid			to			to		to
Query Length	187174								
Other reports	Distance tree of results M	SA viewer 😢							Filter Reset
Descriptions	Graphic Summary	Alignments							
Sequences	producing significant a	lignments		Dowr	nload ~	Mai	nage Co	lumns	✓ Show 100 ✔ 🔮
🗹 select all	100 sequences selected							Graphi	cs Distance tree of results
		Descriptio	n			tal Query		Per. Ident	Accession
SRX689315	57				278 2	78 0%	8e-70	100.00%	SRA:SRR10168374.7906491.2

Fig.10a One read is also recovered from <u>SRX6893157</u>. From a query sequence only 187174nt in length.

	PREDI	CTED: Homo sapiens formin binding protein 1 (ENBP1), transcript variant X13, mRNA	278	278	100%	6e-71	100.	00% <u>XN</u>	<u>1_00525182</u>	4.2
	PREDI	CTED: Homo sapiens formin binding protein 1 (FNBP1), transcript variant X4, mRNA	278	278	100%	6e-71	100.	00% <u>XN</u>	<u>/_01151840</u>	2.1
	PREDI	CTED: Homo sapiens formin binding.protein 1 (FNBP1), transcript variant X3, mRNA	278	278	100%	6e-71	100.	00% <u>XN</u>	<u>01151840</u>	1.1
	Homo s	apiens formin binding.protein 1.(ENBP1). RefSegGene on chromosome 9	278	278	100%	6e-71	100.	00% <u>N</u> C	<u>G_033946.1</u>	
	Homo s	apiens cDNA FLJ13619 fis, clone PLACE1010926, weakly similar to HYPOTHETICAL 72.2 KD PROTEIN C12C2.05C IN CHROMOS(278	278	100%	6e-71	100.	00% <u>A</u> P	<u><023681.1</u>	
~	Human	DNA sequence from clone RP11-138E2 on chromosome 9q34.11-34.3, complete sequence	278	278	100%	6e-71	100.	00% <u>AL</u>	.136141.13	
	Homo s	sapiens formin-binding protein 17 (FBP17) mRNA_partial cds	278	278	100%	6e-71	100.	00% <u>AF</u>	265550.1	
~	Homo s	sapiens chromosome 9, clone hRPK.202_H_3, complete sequence	278	278	100%	6e-71	100.	00% <u>AC</u>	<u> 2006241.1</u>	
	Homo s	apiens KIAA0554 mRNA for KIAA0554 protein	278	278	100%	6e-71	100.	00% <u>A</u> E	<u>3011126.1</u>	
~	PREDI	CTED: Nomascus leucogenys formin binding protein 1 (ENBP1), transcript variant X18, mRNA	272	272	100%	3e-69	99.3	3% <u>XN</u>	<u>1_03081802</u>	9.1
~	PREDI	CTED: Nomascus leucogenys formin binding protein 1 (ENBP1), transcript variant X17, mRNA	272	272	100%	3e-69	99.3	3% <u>XN</u>	<u>1_03081802</u>	8.1
	PREDI	CTED: Nomascus leucogenys formin binding protein 1 (ENBP1), transcript variant X16, mRNA	272	272	100%	3e-69	99.3	3% <u>XN</u>	/ <u>03081802</u>	7.1
Descriptio	on	gnl SRA SRR10168374.7906491.2 7906491 (Biological)								
Molecule t	type	dna								
Query Len	ngth	150								
Other repo	orts	Distance tree of results MSA viewer 😮								
Sciur		linensis genome assembly, chromosome: 16		17	4 17	74 9	95%	96-40	88.81%	LR738606.1
_		linensis genome assembly, chromosome: 14		17			95%			LR738604.1
_										
_		aris genome assembly, chromosome: 15		16	9 16	59 9	95%			LR738626.1
PRED	DICTED	: Loxodonta africana formin binding protein 1 (FNBP1), transcript variant X2, mRNA		13	5 13	35 7	4%	4e-28	88.50%	XM_010587565.
PRED	DICTED	: Loxodonta africana formin binding protein 1 (FNBP1), transcript variant X1, mRNA		13	5 13	35 7	4%	4e-28	88.50%	XM 023544839.

Fig.10b This particular sequence is only found in humans—indicating that even the <u>SRX6893157</u> dataset was contaminated by material of human origin.

scription	Chlorocebus aethiops BAC clone CH252-276C1 from chromos	Percent Identity	Ev	alue		Query Coverage
olecule type	nucleic acid	to		to		to
ery Length	160189					
her reports	Distance tree of results MSA viewer 🔞					Filter Reset
Descriptions	Graphic Summary Alignments					
c		Darmal	oad ~	Managa	Columns	🗠 Show 100 🗸 📢
Sequences	producing significant alignments	Downi	Jau	мападе	cotumns	
_	producing significant alignments 100 sequences selected	Downt	Jau	мападе	Grag	
_		Downi Ma Scc	x Total	Query E Cover value	<u>Grar</u> Per.	
_	100 sequences selected Description	Ma	x Total re Score	Query E	Grag Per. Ident	phics Distance tree of resul
Select all	100 sequences selected Description 765	Ma	x Total re Score 9 774	Query E Cover value 0% 4e-69	Grag Per. Ident 100.00%	hics Distance tree of resul
SRX775674	100 sequences selected Description 765 765	Mi Scc 21	x Total re Score 9 774 9 375	Query E Cover value 0% 4e-69 0% 4e-69	Grag Per. Ident 100.00%	Chics Distance tree of resul Accession SRA-SRR11119763.129105044
 select all <u>SRX775670</u> <u>SRX775670</u> <u>SRX775670</u> 	100 sequences selected Description 765 765 765 765	Mi Scc 27 27	x Total re Score 9 774 9 375 9 279	Query Cover E 0% 4e-69 0% 4e-69 0% 4e-69 0% 4e-69	Grag Per. Ident 100.00% 100.00%	Accession SRA SRR11119763 129105044 SRA SRR11119763 106754018
 select all <u>SRX775671</u> <u>SRX775671</u> <u>SRX775671</u> 	100 sequences selected Description T65 765 765 765 765 765	Mi Scc 27 27 27 27	x Total re Score 9 774 9 375 9 279 9 510	Query Cover E 0% 4e-69 0% 4e-69 0% 4e-69 0% 4e-69 0% 4e-69	Grag Per. Ident 100.00% 100.00% 100.00%	hics Distance tree of resul Accession SRA SRR11119763 120105044 SRA SRR11119763 106754018 SRA SRR11119763 75715814 1

Fig.11a The presence of Reads from Somatic Chlorocebus aethiops in <u>SRX7756765</u> confirms the identity of the Cercopithecinae reads there.

scription	gnl SRA SRR11119763.106754018.1106754018 (Biological) to		to				to
lecule type	dna						
ery Length	151					Filter	Reset
her reports	Distance tree of results 🔞						
Descriptions	Graphic Summary Alignments Taxonomy						
Sequences	oroducing significant alignments Download	~	Manage	Colum	ins ~	Show	1000 🗸
select all	1000 sequences selected		GenE	<u>Bank</u>	<u>Graphic</u>	<u>s Dista</u>	nce tree of res
	Description	Max Score	Total Score	Query Cover	E value	Per. Ident	Accession
Chloroceb	us aethiops BAC clone CH252-276C1 from chromosome 6, complete sequence	279	375	100%	2e-71	100.00%	AC241496.3
_	us aethiops BAC clone CH252-445L10 from chromosome unknown, complete sequence	279	690	100%	2e-71	100.00%	AC238953.2
_	ulatta Y Chr BAC CH250-11J13 (Children's Hospital Oakland Research Institute Rhesus macaque Adult Male BAC I	-	1513		2e-71	100.00%	
_	us aethiops BAC clone CH252-371E9 from chromosome 5, complete sequence	279	1124	100%		100.00%	AC239563.3
_	us aethiops BAC clone CH252-461K13 from chromosome 13, complete sequence	279	629	100%		100.00%	AC239354.3
_	us aethiops BAC clone CH252-138D20 from chromosome 13, complete sequence	279	493	100%			AC239463.3
_	us aethiops BAC clone CH252-417L1 from chromosome 6, complete sequence us aethiops BAC clone CH252-62B18 from chromosome 4, complete sequence	279 279	472 510	100%		100.00%	AC239275.3 AC239442.2
	nthetic construct chromosome 18 Inthetic construct chromosome 16	268 268	1.545e+05 1.008e+05	100% 100%		100.00% 98.68%	CP034496.1 CP034494.1
	nthetic construct chromosome 16						
	nthetic construct chromosome 19	263	47303 1.935e+05	100% 100%		98.01% 99.31%	CP034522.1
	nthetic construct chromosome 13	263 263	1.935e+05		2e-66	99.31%	CP034516.1 CP034510.1
	nthetic construct chromosome Y nthetic construct chromosome 21	263	55262	100%		98.01%	CP034510.1 CP034500.1
	nthetic construct chromosome 20	263	88148			99.31%	01 00 1000.1
Eukarvotic si							CP034499.1
		263	47481		2e-66	99.31% 98.01%	<u>CP034499.1</u> <u>CP034497.1</u>
Eukaryotic s	Inthelic construct chromosome 19 Inthelic construct chromosome 17		47481 74732	100%			
Eukaryotic sy	nthetic construct chromosome 19	263		100% 100%	2e-66	98.01%	CP034497.1
Eukaryotic sy Eukaryotic sy Eukaryotic sy	nthetic construct chromosome 19 nthetic construct chromosome 17	263 263	74732	100% 100%	2e-66 2e-66	98.01% 98.01%	CP034497.1 CP034495.1
Eukaryotic sy Eukaryotic sy Eukaryotic sy Eukaryotic sy	nthelic construct chromosome 19 nthelic construct chromosome 17 nthelic construct chromosome 15	263 263 263	74732 1.384e+05	100% 100% 100% 100%	2e-66 2e-66 2e-66	98.01% 98.01% 98.01%	CP034497.1 CP034495.1 CP034493.1
Eukaryotic su Eukaryotic su Eukaryotic su Eukaryotic su Eukaryotic su	nthelic construct chromosome 19 nthelic construct chromosome 17 nthelic construct chromosome 15 nthelic construct chromosome 14	263 263 263 263	74732 1.384e+05 1.910e+05	100% 100% 100% 100%	2e-66 2e-66 2e-66 2e-66	98.01% 98.01% 98.01% 99.31%	CP034497.1 CP034495.1 CP034493.1 CP034492.1
Eukaryotic sy Eukaryotic sy Eukaryotic sy Eukaryotic sy Eukaryotic sy	nthelic construct chromosome 19 nthelic construct chromosome 17 nthelic construct chromosome 15 nthelic construct chromosome 14 nthelic construct chromosome 13	263 263 263 263 263	74732 1.384e+05 1.910e+05 1.935e+05	100% 100% 100% 100% 100%	2e-66 2e-66 2e-66 2e-66 2e-66	98.01% 98.01% 98.01% 99.31% 99.31%	CP034497.1 CP034495.1 CP034493.1 CP034492.1 CP034491.1
Eukaryotic sy Eukaryotic sy Eukaryotic sy Eukaryotic sy Eukaryotic sy Eukaryotic sy Human gam	nthelic construct chromosome 19 nthelic construct chromosome 17 nthelic construct chromosome 15 nthelic construct chromosome 14 nthelic construct chromosome 13 nthelic construct chromosome 22	263 263 263 263 263 263 257	74732 1.384e+05 1.910e+05 1.935e+05 22814	100% 100% 100% 100% 100% 100%	2e-66 2e-66 2e-66 2e-66 2e-66 9e-65	98.01% 98.01% 98.01% 99.31% 99.31% 97.35%	CP034497.1 CP034495.1 CP034493.1 CP034492.1 CP034491.1 CP034501.1
Eukaryotic si Eukaryotic si Eukaryotic si Eukaryotic si Eukaryotic si Human gam Human gam	nthelic construct chromosome 19 nthelic construct chromosome 17 nthelic construct chromosome 15 nthelic construct chromosome 14 nthelic construct chromosome 13 nthelic construct chromosome 22 maherpesvirus 4 isolate HKNPC60, partial genome	263 263 263 263 263 263 257 248	74732 1.384e+05 1.910e+05 1.935e+05 22814 248	100% 100% 100% 100% 100% 100%	2e-66 2e-66 2e-66 2e-66 9e-65 5e-62	98.01% 98.01% 98.01% 99.31% 99.31% 97.35% 96.03%	CP034497.1 CP034495.1 CP034493.1 CP034492.1 CP034491.1 CP034501.1 MH590571.1
Eukaryotic sy Eukaryotic sy Eukaryotic sy Eukaryotic sy Eukaryotic sy Eukaryotic sy Human gam Human gam Uncultured b	nthetic construct chromosome 19 nthetic construct chromosome 17 nthetic construct chromosome 15 nthetic construct chromosome 14 nthetic construct chromosome 13 nthetic construct chromosome 22 maherpesvirus 4 isolate HKNPC60, partial genome maherpesvirus 4 isolate HKNPC60, partial genome	263 263 263 263 263 263 257 248 248	74732 1.384e+05 1.910e+05 1.935e+05 22814 248 248	100% 100% 100% 100% 100% 100% 100%	2e-66 2e-66 2e-66 2e-66 9e-65 5e-62 5e-62	98.01% 98.01% 99.31% 99.31% 97.35% 96.03% 96.03%	CP034497.1 CP034495.1 CP034493.1 CP034492.1 CP034492.1 CP034491.1 CP034501.1 MH590571.1 MH590409.1

Fig.11b the sequences from the BLAST hits indicate that they were unique to the family Cercopithecinae. Confirming Primate origin.

Analyzing the extent of contamination.

As the Specific BLAST analysis confirmed significant level of Human-derived contamination in all samples positive for SARS-CoV-2 related Coronaviruses, The TRACE result can therefore be

trusted for the analysis on the extent of contamination.

The 32nt Krona Trace system is used for elucidating the ratio of different taxa within a sample. As Specific BLAST analysis confirmed the significant presence of Human and Primate derived Genetic material--The most basal group of primates detected in all Coronavirus-positive samples belong to Catarrhini—or Humans, Apes and Old-World Monkeys. Therefore, Trace classification results that can be classified into sister nodes of Catarrhini should be considered as Contamination by Primate-derived material.

Since Catarrhini is under Simiiformes; Haplorrhini; Primates; Euarchonta; Euarchontoglires and Manis is under Pholidota; Laurasiatheria, If a read is TRACEd down to Catarrhini, it can not be from a Pangolin, and it will have to be from a Primate-derived source—Contamination by material from the lab.

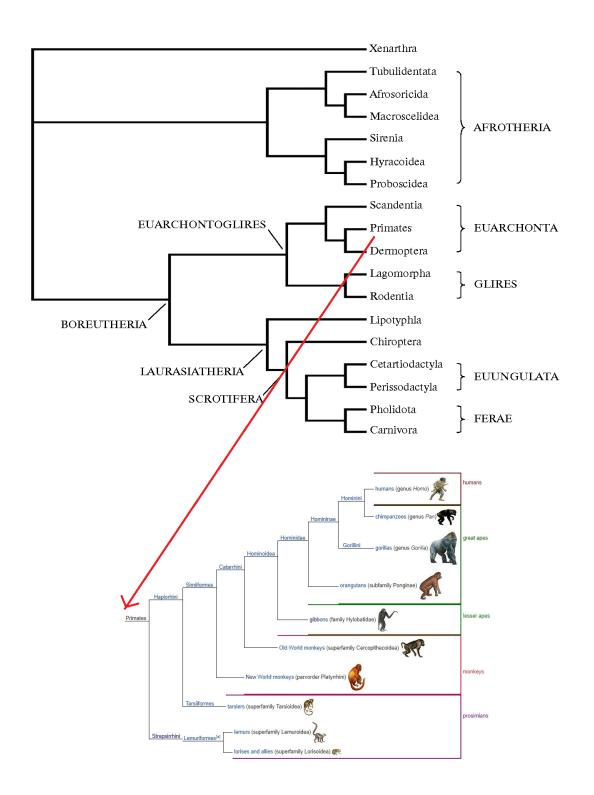


Fig. 12 Family tree of mammals, Including the position and classification of Primates in the lineage of Mammalia.

Table 3a Ratios of Hominid-traced reads to Pangolin-traced reads in the SRA datasets that contained reads of the GD- Pangolin-CoV sequence, and had Hominid reads.

Accession and	Primate	Total traced Kbps	Ratio of	Virus
date	classification and	to Manis Javanica	Primate to	classification
	total traced Kbps	(Pangolin)	Pangolin	and amount of
				reads by Kbps
SRX7756769	Homo sapiens	15401134	0.35	Bat SARS-like
18-Feb-2020	5457929			coronavirus
				2Kbp
				Wuhan seafood
				market
				pneumonia
				virus 2Kbp
<u>SRX6893139</u>	Homo sapiens	5301351	0.0926	Pangolin
20-Sep-2019	491120			coronavirus
				2Кbp
<u>SRX6893157</u>	Catarrhini	1889448	0.34	N/D***
20-Sep-2019	644546			
SRX6893156	Homo sapiens	4765461	0.01719	Pangolin
20-Sep-2019	81948			coronavirus
				2Kbp
SRX6893155	Homininae	525801	6.7214	Pangolin
20-Sep-2019	3534150			coronavirus
				5Kbp
<u>SRX6893154</u>	Hominoidea	2232008	0.159	Pangolin
20-Sep-2019	356003			coronavirus
				154Kbp
<u>SRX6893153</u>	Homo sapiens	3110158	0.05214	Pangolin
20-Sep-2019	162180			coronavirus
				41Kbp

***: No trace result on Coronaviruses, despite claimed reads from [3]

Table 3b Ratios of Primate-traced reads to Coronavirus-traced reads in the SRA datasets that contained reads claimed to be traced to of the GD- Pangolin-CoV sequence, and lacked Hominid reads.

Accession and date	Primate classification	Virus	Ratio of virus
	and reads (in Kbp)	classification and	reads to
		reads	Primate reads
SRX7756766	Cercopithecidae 3116;	Betacoronavirus	0.000642
18-Feb-2020	BLAST to Macaca	2Kbp **	
	Mulatta		
SRX7756762	Catarrhini 2831;	Nidovirales 0Kbp	0.000530
18-Feb-2020	BLAST to Chlorocebus	Claimed	
	sabaeus	10x150bp reads	
SRX7756765	Cercopithecinae 11339	N/D***	N/A
22-Apr-2020	BLAST to Chlorocebus		
	Aethiops		
SRX7732094	N/A*	Pangolin	N/A*
15-Feb-2020		coronavirus	

*: No non-coronavirus reads available in the dataset with a total of 2,633 reads, making analysis impossible.

**: No claimed reads from [2]

***: Claimed 8 reads from [10]

DISCUSSIONS

The extent of contamination in the pangolin sequencing datasets

As the samples were supposed to be pangolin lung tissue, which will neither contact with nor be contaminated by non-pangolin derived mammalian tissues when still inside the animal, any non-pangolin mammalian reads within such a dataset can only be introduced to the sequencing process after the sample itself have been taken and brought into a lab.

As the classification Catarrhini itself is phylogenetically very deep down the Primate line which is itself distinguished from the Pangolin line at a very basal node (Boreoeutheria), and since we have already confirmed that the Primate line in PRJNA573298 traces mostly to humans by using Specific BLAST analysis, (SRX6893157, the only one of the claimed coronavirus read dataset that gives a classification just down to Catarrhini, contained 213 full length 100% matches to the Human Mitochondrial reference genome alone, which is only 16569 bp in length. All other datasets gives definitive TRACE mapping to Homo Sapiens and contained distinct 100% matched reads to even very small parts of the Human genome.), We can deduce the extent of contamination of the PRJNA573298 dataset by Primate-related materials as from a minimum of 1.6% to as high as 87% by sample mass—using the ratio of Primate reads to Pangolin reads on TRACE. Such high level of contamination with Primate-derived material is unacceptable for a sample that was supposed to be Lung tissue. And therefore, the virome data of such samples in PRJNA573298 no longer reflects the original virome of the animal, and an potential "novel" reads from these contaminated samples may have been from in-lab contamination instead.

Deducing the dynamic of contamination in PRJNA607174

Of all 7 PRJNA607174 datasets, only <u>SRX7756769</u> and <u>SRX7756762</u> is claimed by Xiao et. Al to contain SARS-CoV-2-like reads. However, TRACE results revealed low level of contamination by Cercopithecidae (Old World Monkey) reads across all the samples. In particular, the <u>SRX7756762</u> dataset contained definitive mappings to Chlorocebus sabaeus, or African Green Monkey, while <u>SRX7756766</u> which contained 2Kbp unclaimed reads of Betacoronaviruses on TRACE, contained 100% full-length definitive mappings to Macaca Mulatta that may also be mapped to Homo Sapiens.

<u>SRX7756769</u> genetically resembles other samples in PRJNA573298, in both the kind of contamination and the extent of contamination. It contained an large excess of homo sapiens reads in levels similar to the contaminated samples in PRJNA573298.

From the method section of Lam et.al, we knew that they have performed Virus isolation using VERO E6 cells—Species Chlorocebus Sabaeus on one of the samples that have a positive PCR test for coronaviruses. The low level of contamination by Cercopithecidae-related reads in all the samples in PRJNA607174 except for <u>SRX7756769</u> itself support the possibility that <u>SRX7756769</u> is the first sample to be sequenced, and it happens before the lab begun using VERO E6 cells in the experiment. They then isolated the virus from the contaminated <u>SRX7756769</u> in VERO E6 cells, characterized it but did not sequence it, and this cell culture material then contaminated <u>SRX7756762</u> and possibly <u>SRX7756766</u>, resulting the 10 reads in <u>SRX7756762</u> and the 2Kb batacoronavirus reads in <u>SRX7756766</u>.

The exact nature of <u>SRX7732094</u> needs to be further scrutinized.

The P2S dataset, SRX7732094, displays very unusual property when compared to other Datasets under the same BioProject. It is the only dataset with all Non-coronavirus reads being filtered out, and contained too little spots for it to be an ILLUMINA NextSeq 550 run. Furthermore, it was the only dataset that did not contain metadata with either an isolation source or a Library prep procedure, other than "This dataset contains coronavirus-like sequence reads, based on BLAST search."

Such a strange designation and the fact of the dataset being heavily filtered, Raises problems on whether such a dataset is an actual BioSample at all. If this sample is really as claimed by Lam et. Al, Why the dataset have to be put through such heavy filtering when the other sequencing runs was clearly not filtered as severely as this dataset? Why there was no BioSample metadata on either Biomaterial provider, Source Tissue or Collector when all other Sequencing runs clearly provided such metadata information?

Unless the complete, unfiltered sequencing reads are made available on **SRX7732094**, and the rest of **PRJNA696875**, this Dataset can not be considered to be a real, reliable sample, and it must be excluded as "evidence" of a SARS-CoV-2-like virus infecting

Table 4 Sequencing	runs in	PRJNA696875,	Accession	number,	BioSample,	Content
and designation						

Accession number and	Size	Non-Coronavirus reads?	Source Tissue	Virus Designation:	Design
date			Provider	GD or GX?	
			and		
			Collected		
CDV77222004	2 (22	N -	by	<u></u>	This data at
SRX7732094	2,633	No	N/A	GD	This dataset
15-Feb-2020					contains
					coronavirus-like
					sequence
					reads, based on
CDV77222002	470.244		Latest's a		BLAST search.
SRX7732093	470,344	Yes	Intestine	GX	NEBNext Ultra
15-Feb-2020			Yanling Hu		II DNA Library
			Wuchun		Prep Kit, paired
			Сао		sequencing
					data has been
CDV77222002	240.664			<u></u>	integrated.
SRX7732092	340,661	Yes	Lung	GX	NEBNext Ultra
15-Feb-2020			Yanling Hu		II DNA Library
			Wuchun		Prep Kit, paired
			Сао		sequencing
					data has been
507722001	416 650	Yes	Intestine	GX	integrated. NEBNext Ultra
SRX7732091 15-Feb-2020	416,659	ies	Yanling Hu	GX	II DNA Library
15-Feb-2020			Wuchun		Prep Kit, paired
			Сао		sequencing
					data has been
SBX7722000	E20 2E4	Yes	Lung	GX	integrated. NEBNext Ultra
SRX7732090 15-Feb-2020	520,254	105	Lung Vanling Hu		II DNA Library
12-L60-2050			Yanling Hu Wuchun		
					Prep Kit, paired
			Сао		sequencing
					data has been

					integrate	d.
SRX7732089	19,607,536	Yes	Blood	GX	lon	Total
15-Feb-2020			Yanling Hu		RNA-Seq	Kit v2
			Wuchun			
			Cao			
SRX7732088	4,550,437	Yes	lung and	GX	lon	Total
15-Feb-2020			intestine		RNA-Seq	Kit v2
			Yanling Hu			
			Wuchun			
			Cao			

By closely examining the P2V dataset, SRX7732088, which claimed to be a culture sample in VERO E6 cells, Chlorocebus Sabaeus, the exact viral load in-culture when compared to Cellular mRNA can be deduced by dividing the total identifiable coronavirus signal to the total identifiable Primate signal within the dataset, 6943Kbp/451932Kbp, which correspond to 0.01536:1 Viral RNA to Cellular RNA.

This places the viral loads on the other datasets with Coronavirus-like reads from GD well within the threshold expected from cell culture contamination of the sequencing samples—including the samples in PRJNA607174.

Potential breach of data availability statement by Xiao et al.[2]

Sequence data that support the findings of this study have been depos	ited in GISAID with the accession numbers EPI_ISL_410721. Raw data of RNAseq are available
from the NCBI SRA under the study accession number PRJNA607174.	

Fig 13. The Data Availability Statement of Xiao et al.

In the Data availability statement, the "Raw data of RNAseq" are clearly stated to be deposited under PRJNA607174. However, only 2 of the "Extended Data Table S3" datasets actually matches the datasets deposited on PRJNA607174. The other 7 datasets were completely unavailable. And the actual deposited datasets on PRJNA607174 does not match what have been claimed by Extended Data Table S3. As the RNA-seq Raw data was stated to be available within PRJNA607174, the failure to publish all the claimed data constitute a breach of the Data Availability statement on the article. Unless such datasets are published and independently examined, All such claimed reads from the strangely unpublished datasets can not be trusted as evidence of a SARS-CoV-2-like virus infecting pangolins in GuangDong, 2019.

Identifying the Etiological agent of the GuangDong 2019 incident.

By using an approach of both SRA TRACE analysis and specific BLAST Analysis, We have uncovered the fact that all samples that does not Contain confirmed Human-derived material, also lacked Claimed reads of a SARS-CoV-2 like virus that can be confirmed using NCBI Trace. All samples with claimed or traced reads of Coronaviruses in general, contained confirmed primate reads with the lowest common phylogenetic node Catarrhini. Samples that does not give a TRACE result on primate-derived material all lacked identifiable or claimed coronavirus reads.

This strongly imply that the Coronavirus-like reads are associated with human/Primate-sourced contamination material.

Most importantly, of all dead pangolins being sampled in the studies, only 9 out of a total of 29 Analyzable samples/datasets contained TRACEd or Claimed Coronavirus reads—despite all dead pangolins displayed similar symptoms in captivity. This imply that the alleged pangolin coronavirus is not the Etiological agent of the death of the pangolins being sampled in the studies. This is further supported by the fact that 4 out of 10 lung samples in PRJNA573298 and 4 out of 7 lung samples in PRJNA607174 lacked any claimed or TRACEd coronavirus reads—despite the same symptoms displayed and similar date of death.

In order to establish the Etiological agent of the dead pangolins in the single GuangDone Accident that leads to the sampling and studies. A full virome TRACE analysis is conducted on the available samples for the determining of the exact etiological agent.

Extended Data Table S1

Full virome TRACE results of all Analyzable datasets of the GD pangolin incident

	Mammarenavirus	Nairoviridae	Murine respirovirus	Flaviviridae	Nidovirales	Rubulavirus	Nonanavirus	Perihunyayi	Amigovirus	Sinhoviridae	Siphoviridae	Pahexavir
SRX6893158			No	No	No	No		No	Yes	Yes	No	No
			No	No	Claimed	No	No	Yes	No	No	No	No
			Yes	Yes	Yes	No	No	No	Yes	No	No	Yes
			Yes	No	Yes	No	No	No	No	No	No	No
			Yes	No	Yes	No	No	No	No	No	No	No
			Yes	Yes	Yes	No	No	No	Yes	No	No	No
			Yes	Yes	No	No	No	Yes	No	No	No	No
			No	Yes	No	No	No	Yes	Yes	No	No	No
			Yes	No	No	No	No	Yes	Yes	No	No	No
			No	No	No	No	No	No	No	No	Yes	No
SRX6893148	Yes	Yes	Yes	No	No	No	No	No	Yes	No	No	No
SRX6893147	Yes	Yes	"Respirovirus"	Yes	No	No	Yes	No	Yes	No	No	No
SRX6893146	Yes		Yes	No	No	No	No	No	No	No	No	No
SRX6893145	Yes	Yes	No	No	No	No	No	No	No	No	No	No
SRX6893144	Yes	Yes	Yes	Yes	No	No	No	No	No	No	No	No
SRX6893143	Yes	Yes	No	No	No	No	No	No	No	No	No	No
SRX6893142	Yes	Yes	No	No	No	No	No	Yes	Yes	No	No	No
SRX6893141	Yes	Yes	No	Yes	No	No	No	No	No	No	No	No
SRX6893140	Yes	Yes	Yes	No	No	No	No	Yes	No	No	No	No
SRX6893139	No	No	Yes	No	Yes	No	No	No	No	No	No	No
SRX6893138	Yes	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	No	No
SRX7756766	No	No	Yes	Yes	Yes	Yes	No	No	No	No	No	No
SRX7756765	No	No	Yes	No	No	Yes	No	No	No	No	No	No
SRX7756764	No	No	Yes	No	No	Yes	No	No	No	No	No	No
SRX7756763	No	No	Yes	No	No	Yes	No	No	No	No	No	No
SRX7756762	No	No	Yes	No	Claimed	Yes	No	No	No	No	No	No
SRX7756761	No	No	Yes	No	No	Yes	No	No	No	No	No	No
SRX7756769	No	No	Yes	Yes	Yes	No	No	No	No	No	No	No

A full Virome TRACE result suggest all the dead pangolins were infected by either Mammarenaviruses or Murine Respirovirus, or both. Including both samples that contained Claimed Or TRACEd Coronavirus reads and the samples that didn't.

Murine Respirovirus and Mammarenaviruses co-infect 7 out of 29 Available Analyzable datasets, while None of the 29 datasets lacked both—indicating that both viruses were prevalent in the location where the pangolins were captive at The Guangdong Wildlife Rescue Center.

Symptoms of Murine Respirovirus in animals resembles that of SARS-CoV-2 in humans—It forms massive Syncytiums in Eukaryotic cells, suppresses the immune system and causes secondary bacterial infections. The virus causes necrosis of Lung tissue in 5 days, with similar inflammation and immunopathological effects in the lung tissues of infected animals [5]—creating the histopathological effect as reported by Xiao et al.

It should be worth pointing out that the only examined lung tissues were examined by Xiao et al. And all Lung tissue samples examined by Xiao et.al contained Reads from the Murine Respirovirus.

Similarly, Mammarenaviruses are also known to cause multi organ, lethal[7] infections, characterized by endothelial pathology and swelling of internal organs. [6] All of which were Symptoms reported in the incident. As these samples were not examined Histopathologically by

either the authors of [4] nor by any of the authors of any other article who have used the datasets/samples, leaving the only mean of elucidating the cause of death being the observed symptoms and the coarse examination of the organs during sampling. Mammarenavirus infection therefore remains the most likely cause of death of the Murine Respirovirus Negative samples in the available datasets.

Is the "GD pangolin CoV" really a virus of the pangolin?

The only examination of the binding affinity of the GD pangolin CoV RBD to different animal receptors was done by Xiao et al [2], which performed molecular dynamic simulation of the RBD docking to the Human ACE2 receptor, The Civet ACE2 receptor and the pangolin ACE2 receptor. If the RBD of GD pangolin CoV in deed evolved in pangolins, we should expect the binding affinity of the RBD toward the pangolin ACE2 receptor to be the highest binding affinity returned from the examination.

However, neither the GD pangolin CoV RBD, nor the RBD of SARS-CoV-2 which is highly similar, produced a higher binding affinity to the pangolin ACE2 receptor than to the human ACE2 receptor, and both binds the Human ACE2 receptor with the highest affinity across all 3 animal species (Human, Civet, Pangolin) examined.

This fact argues strongly against the RBD residues of the GD pangolin CoV being evolved in pangolins, and instead favoring the RBD and the virus being the result of a passage experiment of a possible virus of pangolin origin (The GX/P2V virus was isolated and passaged in VERO E6 cells during it's collection in 2017) in Primate-derived cell lines.

There are only 2 locations of Biological sample storage in GuangDong, the Guangdong Institute of Applied Biological Resources and the China National GeneBank.

As all Credible (Non-filtered and contained analyzable Non-Coronavirus reads) samples were collected in a single incident from the GuangDong Wildlife Rescue Center[1][4][2], which the initial sample collection and storage was carried out by the Guangdong Institute of Applied Biological Resources[4], this experimental culture likely contaminated the GD pangolin samples during their initial collection or Storage, Either by the lab worker doing the initial sampling, or during their storage in the facility.

Epidemiology analysis of SARS-CoV-2 and related viruses argues strongly against the existence of a Coronavirus with the claimed RBD residues and sequence similarity in or near the GuangDong Wildlife Rescue Center at the time and date of the incident and the collection of the samples.

The earliest collection date of the GD pangolin CoV available, MP789, GenBank MT084071.1, is displayed at 29 March 2019.

Since the original location of the animals and samples in question was inside the GuangDong Wildlife Rescue Center which is neither a certified Biosafety Laboratory nor possessed adequate

PPE when handling the animals, from the Simulation results by Xiao et al[2] and the observed high human transmissibility of SARS-CoV-2 which had a very similar RBD, Should the GD pangolin CoV genuinely exists at that date and within the unprotected GuangDong Wildlife Rescue Center, It would almost certainly infect one to multiple On-site workers (Rescue workers which lacked either the Biosafety training or the adequate PPEs required to handle tissues or animals infected with a virus as characterized by the GD pangolin CoV papers) in the GuangDong Wildlife Rescue Center, and caused a SARS-level epidemic in GuangDong 2013 beginning in or around April 2019. However, no such epidemic was recorded, nor there have been any virus that genetically resembled the GD pangolin CoV sequence (which is only 90% similar to SARS-CoV-2) being isolated in humans anywhere in the world even till today.

Nor there is a possibility that the current SARS-CoV-2 pandemic may have stemmed from the 29 March incident with the GD pangolin CoV, since the estimated time of divergence between the current SARS-CoV-2 genome to the GD pangolin CoV Genome was estimated to be at least 100 years ago , ranging from 1851 [1730,1958] to 1877 [1746,1986] [8], for a genome that is only 90% similar to SARS-CoV-2 and possessed significant difference in the sequence and composition of the viral proteins they encodes.

As the Earliest time of discovery and the incident on the GD pangolin CoV is no earlier than the beginning of Year 2019, The time between the incident and the first isolate of SARS-CoV-2 is far too short for GD pangolin CoV incident to be involved in the formation of the current SARS-CoV-2 pandemic, since even the neutral sites on the RBD itself would have taken more than 19.8 years to drift/evolve into what we seen today on the actual SARS-CoV-2 genome. [9]

Conclusions

The Extreme lack of transparency and the sheer level of contamination from the original samples, the lack of epidemiological evidence of it's existence at the location of it's collection, and the receptor binding affinity of the Viral RBD itself indicating it as not being evolved nor adapted in pangolins, all strongly argue against the existence of a SARS-CoV-2 like virus infecting pangolins captive in GuangDong at 2019.

Moreover, it suggests that the GD pangolin CoV exists only as a culture in Primate-derived cells within the lab/facility used for the initial collection and/or storage of the samples of the pangolins in question, raising important issues on the serial passage Gain-Of-Function research of viral pathogens.

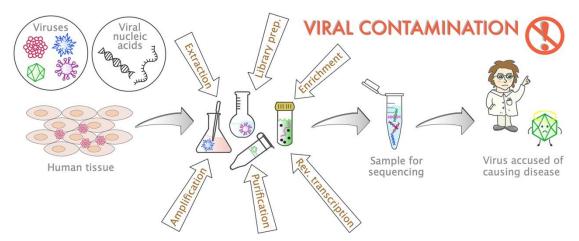


Figure 14. A cartoon diagram of contamination in sequencing experiment leading to false results and false "discoveries".

Note as in 2020/7/23

A recent Dataset, seemingly unrelated to the Xiao et.al Nature dataset, <u>SRX8582289</u>, appeared under <u>PRJNA607174</u>. This dataset seems to be newly sequenced, and it was not referred in [2].

Accession number and	Primary Mammalian	Primate-related results	Identification of
registration date	Trace results and	in Krona and read size	"Coronaviridae"
	percentage	by Кbp	as by Trace and
			total read size
SRX8582289	Manis javanica: 43.52%	Catarrhini 98913	Pangolin
22-Jun-2020			coronavirus 792

Table S2: TRACE analysis result of the **SRX8582289** dataset.

Nevertheless, in-depth analysis revealed significant amount of contamination from the Human genome, with ratio of Virus to cell=0.8%.

escription	Homo sapiens BAC clone	Percent Identity	E	E value			Query Coverage			
olecule type	nucleic acid	to			to		to			
uery Length 203396										
her reports	Distance tree of results M	ISA viewer 😮						Filter Re	set	
Descriptions	Graphic Summary	Alignments								
Sequences p	producing significant a	lignments	Dow	nload ~	Ма	nage C	olumns	✓ Show 100 ✓	•	
🗹 select all	100 sequences selected						Grap	hics Distance tree of	result	
		Description		Max Tot Score Sco		E value	Per. Ident	Accession		
SRX858228	<u>39</u>			278 27	8 0%	8e-69	100.00%	SRA:SRR12053850.8844	4297.	
SRX858228	<u>39</u>			278 40	2 0%	8e-69	100.00%	SRA:SRR12053850.8391	6175.	
SRX858228	<u> 39</u>			278 38	B 0%	8e-69	100.00%	SRA:SRR12053850.8391	6175	
SRX858228	<u>39</u>			278 27	8 0%	8e-69	100.00%	SRA:SRR12053850.8222	1130	
SRX858228	<u> 39</u>			278 27	3 0%	8e-69	100.00%	SRA:SRR12053850.7123	4261.	
SRX858228	<u>39</u>			278 27	8 0%	8e-69	100.00%	SRA:SRR12053850.7123	4261	
SRX858228	<u>39</u>			278 516	9 2%	8e-69	100.00%	SRA:SRR12053850.5188	9132	
SRX858228	<u>89</u>			278 726	8 3%	8e-69	100.00%	SRA:SRR12053850.2602	7930	
SRX858228	<u>39</u>			278 567	1 2%	8e-69	100.00%	SRA:SRR12053850.2155	4419	
SRX858228	<u>39</u>			278 27	8 0%	8e-69	100.00%	SRA:SRR12053850.1327	1287	
SRX858228	<u> 39</u>			278 476	0 1%	8e-69	100.00%	SRA:SRR12053850.6204	2.2	
				276 27	5 0%			SRA:SRR12053850.8222		

Figure S1A: Some BLAST hits out of a human Somatic BAC clone.

escription gnl SRA SRR12053850.82221130.2 82221130 (Biological)	to		to				to	
Iolecule type dna								
uery Length 150						Filte	r Res	et
ther reports Distance tree of results 😧								
Descriptions Graphic Summary Alignments Taxonomy								
Sequences producing significant alignments	Download 🗠	Ма	anage	Colum	ns ~	Show	1000 🗸	0
Select all 59 sequences selected			<u>GenB</u>	ank (Graphic	<u>s Dista</u>	ance tree of re	<u>esults</u>
Description		Max Score	Total Score	Query Cover	E value	Per. Ident	Accessi	on
Homo sapiens general transcription factor III pseudogene 14 (GTF2IP14) on chromosome 7		276	276	99%	3e-70	100.00%	NG 043494	<u>.1</u>
Homo sapiens FOSMID clone ABC13-48840700E15 from chromosome 7, complete sequence		276	276	99%	3e-70	100.00%	AC242196.4	£
Homo sapiens BAC clone RP11-460N20 from 7, complete sequence		276	276	99%	3e-70	100.00%	AC073210.8	ž
Homo sapiens general transcription factor IIi pseudogene 5 (GTF2IP5) on chromosome 7		270	270	99%	1e-68	99.33%	<u>NG 026590</u>	1.1
Pan troglodytes BAC clone CH251-340/24 from chromosome 7, complete sequence		270	270	99%	1e-68	99.33%	AC185242.2	2
Pan troglodytes BAC clone CH251-623C19 from chromosome 7, complete sequence		270	270	99%	1e-68	99.33%	AC184799.2	2
Pan troglodytes BAC clone CH251-114G16 from chromosome 7, complete sequence		270	270	99%	1e-68	99.33%	AC183835.2	2
Pan troglodytes BAC clone CH251-2015 from chromosome 7, complete sequence		270	270	99%	1e-68	99.33%	AC174000.3	3
Homo sapiens BAC clone RP11-47909 from 7, complete sequence		270	270	99%	1e-68	99.33%	AC073107.7	(
Pan troglodytes BAC clone CH251-565C10 from chromosome 7, complete sequence		270	270	99%	1e-68	99.33%	AC148313.3	3
homo sapiens BAC clone CH17-99D2 from chromosome 4, complete sequence		226	226	99%	3e-55	93.96%	AC278002.1	1
Homo sapiens FOSMID clone ABC27-154/13 from chromosome 4, complete sequence		226	226	99%	3e-55	93.96%	AC240529.1	1
Pan troglodytes BAC clone CH251-4D23 from chromosome 7, complete sequence		226	226	99%	3e-55	93.96%	AC148834.3	<u>}</u>
Eukaryotic synthetic construct chromosome 16			193	193	99%	3e-45	90.07% <u>CP</u>	034494
Eukaryotic synthetic construct chromosome 19			182	182	99%	5e-42	88.74% <u>CP</u>	034522
Eukaryotic synthetic construct chromosome 19			182	182	99%	5e-42	88.74% CP	034497

Fig. S1B: BLAST results returned only Homo Sapiens as 100% match. This indicate that the listed Catarrhini reads come from Homo Sapiens.

The significance of this particular dataset is yet unknown.

REFERENCES

[1] Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)?

Ping Liu , Jing-Zhe Jiang , Xiu-Feng Wan, Yan Hua, Linmiao Li, Jiabin Zhou, Xiaohu Wang, Fanghui Hou, Jing Chen, Jiejian Zou, Jinping Chen

Published: May 14, 2020 https://doi.org/10.1371/journal.ppat.1008421

[2] Xiao, K., Zhai, J., Feng, Y. *et al.* Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. *Nature* (2020). <u>https://doi.org/10.1038/s41586-020-2313-x</u>

[3] Lam, T.T., Shum, M.H., Zhu, H. *et al.* Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. *Nature* (2020). <u>https://doi.org/10.1038/s41586-020-2169-0</u>

[4] Liu, P.; Chen, W.; Chen, J.-P. Viral Metagenomics Revealed Sendai Virus and Coronavirus Infection of Malayan Pangolins (*Manis javanica*). *Viruses* **2019**, *11*, 979.

[5] Inducible epithelial resistance improves survival of Sendai virus pneumonia in mice by both inactivating virus and preventing CD8+ T cell-mediated immunopathology

S. Wali, J. R. Flores, A.M. Jaramillo, D. L. Goldblatt, J. Pantaleón García, M. J. Tuvim, B. F. Dickey, S. E. Evans

doi: https://doi.org/10.1101/2020.01.30.917195

[6] Jorlan Fernandes, Renata Carvalho de Oliveira, Alexandro Guterres, Débora Ferreira Barreto-Vieira, Ana Claudia Pereira Terças, Bernardo Rodrigues Teixeira, Marcos Alexandre Nunes da Silva, Gabriela Cardoso Caldas, Janice Mery Chicarino de Oliveira Coelho, Ortrud Monika Barth, Paulo Sergio D'Andrea, Cibele Rodrigues Bonvicino, Elba Regina Sampaio de Lemos,

Detection of Latino virus (Arenaviridae: Mammarenavirus) naturally infecting Calomys callidus, Acta Tropica,

Volume 179,

2018,

Pages 17-24,

ISSN 0001-706X,

https://doi.org/10.1016/j.actatropica.2017.12.003.

(http://www.sciencedirect.com/science/article/pii/S0001706X17311749)

[7] Hemorrhagic Fever-Causing Arenaviruses: Lethal Pathogens and Potent Immune Suppressors Morgan E. Brisse1,2 and Hinh Ly2,*

[8] Evolutionary origins of the SARS - CoV - 2sarbecovirus lineage responsible for the COVID-19 pandemicMaciej F Boni1*, Philippe Lemey2*, Xiaowei Jiang3, Tommy Tsan-Yuk Lam4, Blair Perry5, Todd Castoe5, Andrew Rambaut6 and David L Robertson7

[9] Xiaolu Tang, Changcheng Wu, Xiang Li, Yuhe Song, Xinmin Yao, Xinkai Wu, Yuange Duan, Hong Zhang, Yirong Wang, Zhaohui Qian, Jie Cui, Jian Lu, On the origin and continuing evolution of SARS-CoV-2, *National Science Review*, , nwaa036, <u>https://doi.org/10.1093/nsr/nwaa036</u>

[10] SARS-CoV-2-like viruses from captive Guangdong pangolins generate circular RNAs Alexandre Hassanin 1 Huw Jones 2 Anne Ropiquet 2