

Software Sustainability

Final report

The Hague, 8 November 2016

Patrick J.C. Aerts
Data Archiving and Networked Services
patrick.aerts@dans.knaw.nl

In close cooperation with the project team:
Peter Doorn and Dirk Roorda (DANS)

Software Sustainability

Final report

The Hague, 8 November 2016

Patrick J.C. Aerts

Data Archiving and Networked Services

patrick.aerts@dans.knaw.nl

In close cooperation with the project team:

Peter Doorn and Dirk Roorda (DANS)

www.den.nl/netwerkdigitaalerfgoed

www.ncdd.nl

www.dans.knaw.nl

Acknowledgement

This report describes the research into the sustainability of software.
The research was carried out by Data Archiving and Networked Services
within and with funding of the Dutch Digital Heritage Network. The national
Digital Heritage Network was established in 2015. This network's strategy
is based on three connected pillars: 1) increasing the visibility of collections,
2) improving the possibilities for using collections and 3) cross-sector
sharing, utilisation, and scaling up of facilities for sustainable preservation
and access. For each pillar, a work package was devised, consisting of a
series of interlinked collaborative projects. The ultimate goal is to arrive at a
future-proof and cost-efficient infrastructure that will encompass all of the
various domains while meeting the needs of heritage users.

The Netherlands Coalition Digital Preservation was tasked with carrying out
the work package "Sustainable Digital Heritage", that includes the study at
hand. The aim of this section of the national strategy corresponds with
NCDD’s mission: to ensure the long-term accessibility of digital information
through the establishment of a national network of facilities. This work
package runs from September 2015 to May 2017.

NDE project_final_report_software
sustainability_DEF.docx

 4 | 71

1 Contents

1! Contents .. 4!
2! Conclusions and recommendations .. 6!
3! Introduction ... 9!
4! Software sustainability in science and culture ... 11!

4.1! Introduction ... 11!
4.2! Science .. 12!
4.3! Libraries ... 12!
4.4! Archives ... 13!
4.5! Broadcasting, Sound&Vision .. 13!
4.6! Game preservation .. 14!
4.7! Museums: Born digital art .. 14!
4.8! Digital history and archaeology ... 15!
4.9! Common issues across all domains .. 15!
4.10! Legal matters .. 15!
4.11! Bit rot and link rot .. 16!
4.12! Lack of original devices ... 17!

5! Need for a software sustainability facility .. 19!
5.1! Introduction ... 19!
5.2! Support from the science community ... 19!
5.3! Past versus future ... 19!
5.4! Expertise in an international context .. 19!

6! Use cases .. 20!
6.1! Introduction ... 20!
6.2! General conclusions based on the use cases .. 20!
6.3! Use case: Pineapple, a semantic search engine for historians .. 20!
6.4! Use case: CATCH (Continuous Access To Cultural Heritage) ... 22!
6.5! Use case: Software for access to legacy CD-ROM collection ... 24!
6.6! Use case: NDL (Naive Discriminative Learning), an implementation in R 26!
6.7! Use case: eSTeP (eScience Technology Platform) ... 28!
6.8! Use case: Tündra, treebank repository and search tool ... 29!
6.9! Use case: Gaming software .. 32!
6.10! Use case: HSN (Historical Sample of the Netherlands) ... 34!
6.11! Use case: Preserving sound and vision .. 36!
6.12! Use case: TSTC, software to manage Dutch language data .. 36!
6.13! Use case: Digital archaeology – De Digitale Stad .. 39!
6.14! Use case: Born digital art – SHFT-34 ... 41!
6.15! Observations from the use cases .. 42!

7! International initiatives .. 43!
7.1! Introduction ... 43!
7.2! Knowledge Exchange group (KE) ... 43!
7.3! UNESCO Persist .. 43!
7.4! Digital Preservation Coalition .. 43!
7.5! Software Heritage Project ... 43!
7.6! PLAN-E .. 44!
7.7! Commercial initiatives .. 44!
7.8! UK .. 44!

7.8.1! Centre for Digital Heritage, University of York ... 44!
7.8.2! Digital Preservation Coalition .. 44!
7.8.3! The Software Sustainability Institute (SSI) ... 44!
7.8.4! Future-Proof Computing Group, University of Portsmouth ... 46!
7.8.5! The Computer Conservation Society ... 46!

7.9! Australian National Data Service (ANDS) .. 46!
7.10! Denmark: Royal Library .. 47!

7.10.1! DEFF, the Danish Electronic Research Library ... 47!
7.10.2! Danish Royal Library ... 47!

7.11! France ... 47!
7.12! Germany ... 49!

7.12.1! Technical University of Munich ... 49!
7.12.2! University of Freiburg ... 49!

NDE project_final_report_software
sustainability_DEF.docx

 5 | 71

7.12.3! Karlsruhe University ... 49!
7.13! The Netherlands ... 49!

7.13.1! SURF .. 49!
7.13.2! NWO .. 49!
7.13.3! DANS ... 50!
7.13.4! NCDD and NDE .. 50!
7.13.5! NLeSC .. 50!
7.13.6! ePLAN .. 50!
7.13.7! Legacy Coalitie NL .. 50!

7.14! USA .. 51!
7.14.1! CSESSP Workshop .. 51!
7.14.2! Software Infrastructure for Sustained Innovation (SI2 - SSE&SSI) 51!

8! Software types ... 52!
8.1! Semantics .. 52!
8.2! Software classification .. 52!

8.2.1! Firmware ... 53!
8.2.2! Embedded software ... 53!
8.2.3! System software ... 53!
8.2.4! Application software .. 55!
8.2.5! Internet applications .. 56!
8.2.6! Mobile apps .. 57!

8.3! Other characteristics axes .. 57!
8.3.1! Open software versus closed (proprietary) software ... 57!
8.3.2! Commercial software versus freeware .. 57!
8.3.3! Licensed software versus unlicensed freeware ... 57!
8.3.4! Off-the-shelve software versus tailor-made software .. 58!
8.3.5! Individual programs versus software packages .. 58!
8.3.6! Owned software versus software as a service .. 58!

9! Appendix ... 59!
10! Abbreviations and terms used ... 61!
11! Article from De Telegraaf (in Dutch) .. 71!

NDE project_final_report_software
sustainability_DEF.docx

 6 | 71

2 Conclusions and recommendations

1. Due to the inaccessibility of digital born1 information, exponentially increasing volumes of
contemporary and recent history are at direct risk, including news, trade, knowledge and
methodologies. This applies to all domains covered by the Digital Heritage Network and
NCDD.

 Encourage and enable national actions to be taken towards software recovery and future
sustainability:
♦ From education and training to dedicated services (such as a Software Sustainability

Initiative);
♦ Continue with further research into the identified issues and continue to monitor

international efforts and developments;
♦ Allocate a leading role to a national coalition, involving NDE/NCDD partners, NLeSC,

SURF and ePLAN;
♦ Mobilise actors and bridge gaps between formal parties/actors and

volunteers/amateurs.
2. Software Sustainability is lagging behind compared to Data Stewardship policies.

 Treat Software Sustainability and Data Stewardship on an equal footing, policy-wise:
♦ Software and Data are intrinsically closely connected and so are their urgent

preservation needs;
♦ In practical matters, however, Software Sustainability requires different solutions.

3. Split the matter into two parts: legacy and future. Since the amount of legacy software in all
the domains of science, culture and heritage will keep on growing beyond the limits of what
can be dealt with in a reasonable manner, it helps to attack the issues from two sides.

 Invest in serious efforts to assign a proper place to software sustainability (and data
stewardship) in education:
♦ Include it in first and second-year curricula of universities, colleges for higher

vocational education and other educational institutions;
♦ Compile and share courses and training for students and researchers in the field of

software development, both professionals and amateurs;
♦ Consider sharing expertise in software building and maintenance through a network

of Software Sustainability Initiatives across Europe;
♦ For the Netherlands: appoint parties to materialise such a Software Sustainability

Initiative;
♦ Consider extending the present scope of Software Sustainability Initiatives to the

library, archiving, gaming and museum domains.
4. The use cases show both common elements and domain-specific particularities.

i) There clearly are common elements, faced by all parties:
! Cooperate wherever you can and differentiate where needed;
! Cooperate to meet all common challenges and acquire critical mass for

addressing the issues;
! Further explore the common issues for common solutions.

ii) Very specific elements that differ across stakeholders:
! Concentrate on the particularities as an addition to the common elements;
! Share the specifics with peer communities elsewhere.

COMMON

5. Common to the Software Sustainability efforts in all domains are the legal matters. Today’s

legislation complicates preservation. Even if one technically succeeds in preserving a piece
of software, the way in which this has to be done may violate copyrights and licensing
legislation. This is certainly true for the actual deployment of the software. On the other
hand, if it is not preserved now, the product may disappear entirely.

1 The term “digital born” essentially refers to material that was not originally published on paper or never
existed on paper, but was directly published in a digital format.

NDE project_final_report_software
sustainability_DEF.docx

 7 | 71

 Consider changing legislation (preferably at the European level for European countries)
in order to allow national institutes with a legal task concerning (cultural) heritage to
copy and use software and data for specific purposes.

 Specific attention should be paid to:
♦ Copyrights on orphaned or otherwise abandoned software, including operating

systems and libraries;
♦ Copyrights in conjunction with public access to Web archives;
♦ Copy-protection infringements.

 Cooperate with and support the UNESCO PERSIST project, which is presently working on
an agreement with major global software vendors on the use of their obsolete products.

 Consider adopting legislation against the present freedom of major, usually global
commercial archiving services to discard data (photos and videos, websites, scientific
data, resources and software (git)) without proper notice or solid alternatives.

 Design criteria for keeping software (and maintaining it at a certain level) and for
discarding it.

6. Common to the archival, library and museum domains is the issue of hardware availability.
It applies to the science domain too, but to a much lesser extent. The problem arises from
the many different storage devices (tapes, magnetic and optical disks and other I/O
peripherals) that have been in use that still contain unique material, but require original
systems to be accessed. Also, older computers may be necessary to run older software.
There are still working systems around, but they are often in private collections with the
serious danger of falling apart.

 Consider making a national (followed by a European) inventory of working computer and
peripheral equipment; an informal inventory of sites with systems (working and not
working) already exists.

 Consider setting up a national computer museum with sufficient critical mass to have
impact. A foundation has been laid in Zwolle, but it covers only a fraction of what would
make a collection with a minimum level of completeness.

 Start cooperating with other sites (including museums) and communities maintaining
computer equipment (UK, Germany, France, Australia, US).

 Adopt large-scale emulation as the carrier of software preservation.
7. Obviously, bit rot adds to the sense of urgency when considering software sustainability, but

the technical issues related to bit rot are the same issues that pertain to data and data
stewardship. Because software extends the domain of involvement to the Internet and the
World Wide Web, link rot adds to the problem.

 Gain knowledge of bit rot matters from the data world.
 Support existing national and international efforts towards:
♦ Internet archives;
♦ Persistent Identifiers (PIDs);
♦ Persistent Uniform Resource Locators (PURLs).

SPECIFIC

8. Software Sustainability has different goals in different NDE / NCDD stakeholders’ domains.

Cultural heritage plays a role across all domains but with different intensities.
- In the museum/art sector the most important element is to keep acquired artefacts

alive in such a way that the observer gets the impressions intended by the artist. The
required software is only part of the total issue.
! Consider investments in software sustainability/recovery for art objects on a

case-by-case basis.
- In the archival and library sectors software is required to maintain access to the data

in the many archives, but also to keep copies of software products for historical
purposes and inspection by the public.

! Continue exploring the emulation and Universal Computer approaches. These
facilities seem to become more common and therefore more affordable than
before.

- In the science domain, the emphasis is mainly on reproducibility of scientific output,
but also on accelerating scientific discovery by re-use.

NDE project_final_report_software
sustainability_DEF.docx

 8 | 71

! International cooperation helps sharing the cost and finding best solutions.

GENERAL

9. From an international perspective, the Netherlands is not lagging behind in its attention for
software sustainability. This is not to say that all expertise in the Netherlands is at the
forefront of best practices.

 After the initial step, continue to take further steps as required to salvage all relevant
digital born heritage, particularly including software.

 Share Dutch-born best practices and absorb international best practices in other
domains.

 Continue to monitor international developments in software sustainability.

NDE project_final_report_software
sustainability_DEF.docx

 9 | 71

3 Introduction

The Dutch Digital Heritage Network (NDE) and the Netherlands Coalition for Digital Preservation
(NCDD) consist of partners in a number of sectors: science, archiving, libraries, art and
broadcasting. In all these sectors the NDE and NCDD members are faced with many different
aspects of software obsolescence, in agreement with the rapidly growing interest in software
sustainability. The partners therefore quickly need more insight into this matter in order to be able
to dedicate funds for a first quick inventory of the issues at stake. But the question is whether
Software Sustainability is a matter of largely coinciding issues and challenges across the NCDD
stakeholders’ domains, or if the differences are larger than the similarities?

“What is Software?” is the title of an article by Peter Suber2. It is a paper of a highly philosophical
nature, written at a time one would expect the term to have been defined, but much has happened
since. After twenty pages a high level of abstraction is reached while attempting to answer the
question. Despite this effort, a more down-to-earth approach may be more useful: you recognise
software when you see it or are confronted with it. So without knowing exactly what we are going
to try to preserve, we will try to preserve it: software of all kinds in all its forms.

Why should software sustainability be an issue at all? Are communities not taking care of it already,
if the software is important enough for them? Why would funders or governments have a concern
for software, let alone obsolete software?
What is the nature of the challenges faced by those who try to sustain software or keep it for future
reference?

The cultural heritage sector has an interest in maintaining digital born objects, artefacts, social
history (why were some games or websites so attractive?) and the history of digital life (records of
what happened in the past 65 years after the initial introduction of computers).
The archiving world needs to be able to provide access to archives which were based on today’s
obsolete technologies, hardware and software systems.
The library world hosts many digital objects that carry data, software, educational materials and so
on, which need to remain accessible, readable and executable.
The gaming archives not only want to keep games playable, but want to be able to reproduce the
user experience with the games. This goes beyond merely sustaining the software.
The academic world is after no less than formal reproducibility of scientific results, re-usability of
code and sharing of efforts in coding, maintaining access to the information behind stored data,
which requires the software with which the data were generated, or which is needed to interpret or
handle the data to be maintained just as well, at least for the medium term (10-25 years).
Who is responsible for what when it comes to software maintenance or creating images for future
use. Will we be using emulators3 or virtual machines?

This report is based on a research effort which was limited in scope and time. The purpose is
primarily to document, by means of “use cases”, the various issues regarding Software
Sustainability faced by different organisations and players in the field. Some use cases have been
compiled through interviews or pseudo interviews, others by completing templates. From the use
cases and from activities in the international software sustainability scene, conclusions are derived
and directions for further action and/or further research proposed. Despite the limitations in scope,
we hope to have provided useful answers to the questions raised and practical recommendations
for future work or actions.

The project also involved the organisation of a workshop, which was conducted in close cooperation
with an adjacent NDE/NCDD project about Born Digital Art (focusing on CD-ROM sustainability) and
placed under the umbrella of a Seminar on Preservation organised by the NCDD (June 13, 2016).
During the workshop, where the main conclusions of this work were presented and discussions took
place on various draft conclusions, further input was collected and merged with this document.

2 Peter Suber, Journal of Speculative Philosophy, 2 2(1988) 89-119. Thanks to Vincent Wintermans (Unesco
Persist) for pointing to this paper.
3 Emulators: software programs running on modern computers which interpret programs written for another
(usually older) target machine and so cause them to be executed in much the same way as they were on the
original computer hardware.

NDE project_final_report_software
sustainability_DEF.docx

 10 | 71

While in a parallel effort the first steps were taken by DANS and NLeSC to define a Software Seal of
Approval, including criteria and formal processes, an overview of software types was produced.
Although this overview was strictly speaking outside the scope of this NDE supported research, the
resulting compilation of software types is appended to this document.

Matters not explicitly addressed in this document are:
- criteria for discarding software or keeping/maintaining software at a certain support level;
- criteria for the quality of software.

The discussion on the former criteria has not yet started, it seems. The latter criteria have been
addressed in at least two documents, one4 by SSI, the UK Software Sustainability Institute, which
also addresses maintainability and green sustainability, the other by CLARIAH-NL on requirements
for software quality. That document is presently being circulated for comments.

This work is also partly based on earlier reports, in particular:

• Research Software at the Heart of Discovery - Principles of Academic Software
Sustainability. 16/02/2016. Editors: Peter Doorn (DANS), Patrick Aerts (DANS & NLeSC),
Scott Lusher (NLeSC);

• A Conceptual Approach to Data Stewardship and Software Sustainability by Patrick Aerts
(NLeSC & DANS), Peter Doorn (DANS);

• Research Software Sustainability, Report on a Knowledge Exchange Workshop by Simon
Hettrick (SSI), February 2016;

• A Unified Approach to the Preservation of Cultural Software Objects and Their Development
Histories (https://securegrants.neh.gov/publicquery/main.aspx?f=1&gn=HD-51719-13)

• Preserving Virtual Worlds (https://www.ideals.illinois.edu/handle/2142/17097);
• Emulation and Virtualisation as Preservation Strategies

(https://mellon.org/media/filer_public/0c/3e/0c3eee7d-4166-4ba6-a767-
6b42e6a1c2a7/rosenthal-emulation-2015.pdf);

• Merritt Online Repository Link (https://merritt.cdlib.org/m/ucsc_lib_promweek);

and other documents, referenced throughout this document.

Acknowledgements
This document was only made possible by the cooperation, inputs and expert opinions of the
members and staff of the NDE and NCDD, DANS, NLeSC, ePLAN, the Knowledge Exchange Group,
and many more. Thanks to all of you.

In particular, I would like to thank Nina Westzaan (DANS) for her critical reading of and comments
on the draft document.

4 http://www.software.ac.uk/software-evaluation-guide

NDE project_final_report_software
sustainability_DEF.docx

 11 | 71

4 Software sustainability in science and culture

4.1 Introduction
Software sustainability is becoming a high priority agenda item. Now that “data” have become a
major topic in science, industry and the cultural sectors, people are discovering that these data
either are produced through software or require software to be read, interpreted or handled. This
means that software needs to be kept and maintained as long as the data are relevant. But now
that software has become a matter of concern, other domains start acknowledging that software
– particularly its sustainability – has been underappreciated and that some catching up is
required.

In all cases the question must be asked why we should want to keep, restore and maintain a
piece of software. Why retain code written for a Telefunken TR4 on Hollerith punch cards that ran
for hours, when today the same action can be performed in a second using state-of-the-art
software? There may actually be good reasons.

Once upon a time there was this Web page in the Netherlands, somewhere around 1992, with all
Dutch websites on a geographical map of the country. Three places even had a fork projected,
because they had more than one website! But the evidence is gone. Snapshots of the Internet
were not made yet. From the early nineties until well into the second millennium, numerous
websites have disappeared without a trace. The same holds for software. Actually, we are leaving
an approximately thirty-year period behind us with less historical traces than before, because the
pace of IT development got so high we could not keep up saving images of the past for future
historical research.

In a recent report by DANS, “A Conceptual Approach to Data Stewardship and Software
Sustainability”, three levels of stakeholders are identified with regard to these topics. The first
level concerns governments, funding organisations and the like. Their interest lies in
accountability and matters of general interest, notably cultural heritage. Reproducibility of
scientific results and verifiability of scientific claims are most important if accountability for the
expediency of allocated funds is required. Keeping an eye on cultural heritage in the digital world
is certainly also something of general interest, but the role of data, digital collections and software
has been overlooked in the past decades. Recovery will be a complex and labour-intensive effort.

Looking at the use cases collected in this paper, some common aspects stand out very clearly:

• Legal matters

o (Lack of) licences
o Copyrights and ownership

• Physical protection
• Bit rot and link rot
• (Lack of) original devices
• (Lack of) sources
• (Lack of) documentation and versioning
• (Lack of) structured processes in development
• Outdated/obsolete languages
• Outdated operating systems.

Another conclusion that may be drawn from these cases is that it makes sense to distinguish
between everything that has been created (the legacy) and everything that is yet to be created:
try to prevent the errors that led to the present legacy by proper education. In this way the entire
problem may be brought under control.

Important differences between domains can be observed as well, one of them being the relative
importance of the software code. Here a downward scale can be observed from science (where in
all its basics the text of the code is the most important), via games (where the playing device is
important), to born digital art (where the software, however indispensable, is only part of the
issue, because what counts most is the perception of the observer).

NDE project_final_report_software
sustainability_DEF.docx

 12 | 71

4.2 Science
In science, it is important that outcomes involving software are reproducible. Today this is, strictly
speaking, hardly the case. There are no codes of conduct, whether formal or informal, on how to
refer to the software used in publications. Software versions are not commonly mentioned, if the
code is referred to at all. If the software is mentioned it may still not be retrievable, ready for
inspection, openly usable. There is virtually no software without errors. Some may not be
essential for the scientific results (for example when the program just stops working), but other
errors may actually influence the results. Still, one may reference such publications in good faith.
Therefore, one needs to be able to backtrack all publications whose results indirectly depended on
these references. If only for that purpose, one needs proper version control and long-term access
to the software, at least as long as is required for open access to the data on which the paper’s
conclusions were based, i.e. about ten years after publication.

Another argument for software sustainability in science is well illustrated by the metaphor of the
World Wide Web. All Web page codes have always been open for inspection ever since the first
browsers emerged. This allowed for easy copying of elegant (or any) solutions to increasingly
more complex Web page designs and functionalities. Today everyone knows the pace of
development in this domain. In a similar manner it is likely that discovery in science will be
accelerated if everyone can more or less freely use and re-use existing codes and software
solutions.

Even within the context of science, the term “research software” covers many forms of software.
In Computer Science, a compiler, an operating system or a scheduler may be research software.
In other domains such pieces of software will be considered system software and largely fall
outside the scope of the software domain. Writing code in application domains (chemistry,
astronomy, physics, technical sciences, …) is not usually seen as producing scientific output. Only
the results produced with the software are acknowledged as scientific results, provided they are
published in refereed papers. Currently, this is a drawback for the production of properly and
organisationally well-developed software.

As mentioned earlier, the UK Software Sustainability Institute (SSI) and the Knowledge Exchange
Group have explicitly o started address software sustainability as a separate issue, of no lesser
importance than Research Data Management; increasingly more standing organisations are
getting focused on this subject, including (but not restricted to) the KNAW (Royal Academy for the
Arts and Sciences), NWO, SURF, NLeSC, DANS and the NCDD in the Netherlands.

There are large research domains that should be able to take care of their own procedures and
finance them in the future as well. But there are many more orphaned codes, produced by one of
the many smaller four-year projects funded by universities or funding agencies. Taking care of
these codes in a professional way is less trivial. Organisations such as the SSI are needed to do
this job, even if it means playing the ball back to the science communities enriched with
templates, guidelines, best practice based advice and more.

Applying software sustainability in science involves a few steps. Just to give an impression,
without an attempt to be exhaustive:

1. Determine if the software is worth keeping and/or maintaining, and if it is:
2. Determine to what extend the software is to be maintained;

a. Just keep the (text of the) code and/or
b. Keep a binary
c. Maintain accessibility
d. Maintain usability
e. Continue updating or more;

3. If a code has been used in a publication it must be maintained to a level that renders it
usable on currently available computer equipment for at least ten years;

4. Maintained software must be citable, findable and accessible.

4.3 Libraries
Libraries are confronted with a transformation from collecting and making findable and accessible
hardcopy, mostly paper, documents (books and other printed materials) to collecting and making

NDE project_final_report_software
sustainability_DEF.docx

 13 | 71

available digital objects of historic potential. Organisations and even countries have different
policies as to which digital objects qualify to be kept by libraries and which objects are the
concern of other organisations. In the Netherlands, the National Library keeps digital copies of
publications and books but also large amounts of CD-ROMs. Games, however, are kept by
Beeld&Geluid, a unique organisation. In the US, games collections are collected by museums
rather than libraries.

Since the early 1990s, digital documents have entered library collections, but in a large variety of
formats, many of which are obsolete today. The software to read these documents is just as
obsolete and will not perform or run at all on today’s computers. This poses a threat to the
readability of these many documents. In addition, libraries may want to keep software as part of
the history of computer programs, as examples of an era and the way we did things then. But
that function only works if the software actually runs, on either emulated or virtualised machines.

In the Dutch case, where the National Library also is in fact responsible for CD-ROM collections,
additional issues arise. Working CD-ROM players are decreasing in number, the CD-ROMs will fail
to be read due to storage errors (bit rot), and so on. Their concern is therefore how to make
copies of CD-ROMs in a sustainable format, and how to subsequently run the software. Again:
emulation, virtual machines, etc.

The Dutch National Library was one of the early adopters of emulation as the leading means of
making software sustainable. It demonstrated that emulation based on the Universal Virtual
machine (UVC) concept is a viable option for long-term digital preservation.5 The research
conducted, however, focused on methods to preserve document types of data, which does not
require full emulation. Preserving software using this method does require full emulation of older
computers and runtime environments.
As emulation used to be an expensive way of running outdated software, it was not obvious at the
time that this methodology would be sustainable. Today, however, the interest in older computer
systems, their operating systems, architecture and specific characteristics has got the attention of
many people and freeware emulators6 are now provided for many types of computers, including
gaming systems.

4.4 Archives
In a recent article in the Dutch daily newspaper De Telegraaf7, reporting on an earlier article by
Binnenlands Bestuur (a publication for professionals in public government), it was reported that a
large number of city administrations suffer from all sorts of data loss due to ill-kept information
records. It concerns inaccessibility due to obsolete formats, programs no longer working, bit rot
and more. The article is an apparent reflection of the general ignorance concerning long term data
stewardship and software sustainability, but also – hopefully – the start of government seeing the
light: policies should be designed and put in place for proper long term data management and
software sustainability.
The issues at hand in the archiving world do not seem, however, very different from those already
mentioned for libraries, although it should be noted that some archives may have been
constructed using complex and proprietary data and record formats, which are not easily
reconstructed without the original software, at least for the sake of conversion.

4.5 Broadcasting, Sound&Vision
Beeld&Geluid (B&G) (Sound&Vision) is part of the NCDD consortium and it has a specific task
regarding games preservation in the Netherlands. B&G has its specific issues regarding software
for copying analogue data sources, such as sound, film, movies, photographs, and texts on

5Lorie, R. A., 2002. The UVC: a Method for Preserving Digital Documents – Proof of Concept. IBM/KB Long-
term Preservation Study. Amsterdam: IBM Netherlands. Citation after Wikipedia’s lemma un Universal Virtual
Machines (https://en.wikipedia.org/wiki/UVC-based_preservation). More references can be found there.
6 See for example http://www.emulator-zone.com/
7 De Telegraaf on line 20-05-2016.
http://www.telegraaf.nl/binnenland/25829077/__Gemeenten_zitten_met_floppy_s__cd-
roms_in_hun_maag__.html

NDE project_final_report_software
sustainability_DEF.docx

 14 | 71

carriers such as LP’s and smaller records (back up to glass records), many types of tapes
containing unique and original audio-visual materials, most of which are used in radio or television
broadcasting and today of course also on the Internet. It appears that the majority of software is
made by third parties, although some software is homegrown. The original materials have either
already been copied to modern magnetic carriers in sustainable formats or are on the verge of
being processed in this way. In that sense software sustainability is less of an issue for B&G. One
obvious exception is the role that B&G plays in games preservation. Due to the nature of games
(much visualisation and sound) it has been decided among B&G and the National Library that B&G
will take care of the significant collection of games of Dutch national origin. To these activities all
issues apply that apply to gaming software in general, which is discussed in the next paragraph.

4.6 Game preservation
Gaming is the first example of digital objects where the role of the software is essential but only
part of the total play. Games have been created on and for about all computer systems ever
designed, if only for the engineers to have some fun during testing and other work. However, in
gaming, the very device on which the game runs is an essential part of the experience. Hence
having the software available is only part of what needs to be achieved. The software itself or its
maintenance for the future has hardly any value without the devices that created the experience.
You can play a Nintendo game on a laptop, but for what purpose?
In industry, compatibility with earlier versions of software may be important. But in gaming the
experience of the game is just as important as the code on which it is based. The very devices,
from large machines in gaming halls, to different kinds of handhelds and TV screens are all
relevant if future generations want an impression of what the game entailed and what drove
people into buying and playing those games. And interactive Internet games complicate matters
even more.

The use case for gaming is extra extensive because of the implicit complexity of the interaction of
the software with the device it runs on and the environment that takes part in the game, such as
in community games played over the Internet.
Gaming software is also extraordinary in the complexity of the citing strings required to know
which game is actually referred to. Addressing games requires the game software version, the
make version, the device on which it runs, the format and the version of the cartridge on which
the game was stored and put into the device, etc. Yet there are even more complex software
environments: they can be found in the world of art.

4.7 Museums: Born digital art
Works of art created on or by computers go back a long way. As early as 1949(!)8 on the
Australian CSIRAC computer a programmed tune was played. Because the machine was restored
50 years later, that tune can still be played in its original form. Most likely other programs have
been written to use computers for other purposes than pure, applied math: computer art, art
which was born digital. Computers were not yet transistorised and used vacuum tubes until the
late fifties, so the hardware remained partly analogue at the time, but the logic was digital.
Art and computers went hand in hand, although for a long time real artistic expressions on
computers remained in the background, more as a gimmick than as a serious attempt to create
artworks in a new manner.
What adds to the complexity of digital art is the fact that artists tend to express their creativity by
doing things differently. But although most artists create artefacts for an indefinite future, when it
comes to digital born art, which depends on languages, operating systems and computer
hardware that becomes obsolete with every innovation cycle (typically three years), the artefact
becomes inaccessible/unusable rather soon. Moreover, in contrast with the scientific software
domain, where having access to the written code at least would be enough to understand what
the author wanted to express or calculate, the perception of the viewer is the most important
aspect of an artefact. This means that having the software that forms one of the basic elements of
a born digital artefact, is not enough to maintain the object and use it as intended.

8 https://www.youtube.com/watch?v=yxDQSluWaMs
 https://www.youtube.com/watch?v=6F44b60Mq30

NDE project_final_report_software
sustainability_DEF.docx

 15 | 71

With a view to recovering digital born art objects, LIMA has extracted a specific workflow. Yet it
seems difficult to set general rules and processes for born digital art sustainability. Most likely the
decision to spend funds and efforts on sustaining a particular piece of art will have to be taken on
a case by case basis (comparable perhaps to museums’ processes for deciding whether or not to
buy a certain piece for their collection). The cost of recovering or rewriting software to keep an
artefact alive may be very significant.

4.8 Digital history and archaeology
A specific domain is that of digital history, or the history of digital computing9. Now that the age
of computer development extends well past its diamond anniversary, the interest of historians in
this field is growing. At the same time, it is found that researching this is like looking into pre-
history: just as history starts with the written word, of which traces can be found in stone, clay
tablets, on parchment and pig skin, and pre-history is defined as the period before any written
remains, so does the history of computers and digital data start out in pre-historic times with
written (and physically readable) objects lacking!

The Digitale Stad (Digital City) project is an outstanding example of what it takes to restore lost
information and, most importantly, lost experiences. At the time, Digitale Stad was a very
advanced and progressive endeavour, of which some remains are still around, but whose basis
has largely disappeared. It may, however, be considered an extended museological object
because it prototyped an era of early development for the Internet, communications and social
forums.

From an educational point of view, the history of digital computing is an important new domain of
scientific research, comparable to the history of mathematics. But as was mentioned before,
many of the historical objects no longer exist. The interest, however, is so great that significant
efforts are being made to restore e.g. entire obsolete computer systems.

4.9 Common issues across all domains

Common issues encountered across all domains are:

• Legal matters
• Bit rot and link rot
• Lack of original devices
• Lack of sources
• Lack of documentation and versioning
• Old/obsolete languages
• Old operating systems
• Lack of licences
• Copy protection
• Copy disallowed

4.9.1 Legal matters
The most common problems experienced in maintaining, curating and/or running older software
are legal matters. This is exemplified by the case of the CD-ROMs at the Dutch National Library.
The National Library has the legal task and obligation to preserve documents, publications, books,
and similar artefacts, including computer programs. In order to counteract bit rot on CD-ROMs
and the increasing obsolescence of reading equipment, they obtain so-called images of the
contents of the disks. Here, the first violations may occur: the software may be copy-protected
and copying the contents to another medium may be forbidden by copy protection law. Once
these hurdles have been passed the image is to be run on a virtual system running some obsolete
version of an operating system (which may be obsolete as well), say Windows 3.11 or Windows
95. Without a proper license this is illegal too.

9 In the context of this document, this includes computing on pre-transistor type computers.

NDE project_final_report_software
sustainability_DEF.docx

 16 | 71

These problems are common to all attempts to run old software on old systems and is an issue
discussed at an international level.
The organisation UNESCO PERSIST is presently concerned with working out deals with global
software vendors for the legal use of their legacy software. This should alleviate the issues
concerning the legal use of obsolete versions of operating systems, such as Windows 95 or old
versions of Mac OS, as well as the use of old versions of Word, MacWrite, Excel and the like.
Other parties10 are considering the creation of license banks, where old software licenses not in
use could be re-used.
A term that appears to be used in this context is “abandonware11”.
The Wikipedia article on abandonware distinguishes the following types, which are – slightly
shortened – are repeated here because it is worthwhile reading:

• Commercial software unsupported but still owned by a viable company
o There are abandonware websites where copies of unsupported and discontinued

operating systems made by Microsoft and Apple are archived and made available, as
well as rare development builds of such operating systems that have been leaked by
the media or technicians working for said companies. After Windows XP was
discontinued in April 2014, numerous websites started providing the operating
system for free, despite the fact that its usage and popularity prevent it from being
considered abandoned.

• Commercial software owned by a company no longer in business
o When no owning entity of a piece of software exists, all activities (support,

distribution, IP activities etc.) in relationship to this software have ceased. If the
rights to a software are non-recoverable in legal limbo ("orphaned work"), the
software's rights cannot be bought by another company, copyrights cannot be
enforced, etc. An example is Digital Research's original PL/I compiler for DOS, which
for many years was considered to be without an owner (now probably owned by
Novell).

• Shareware whose author still makes it available
o Finding historical versions, however, can be difficult since most shareware archives

remove past versions with the release of new versions. Authors may or may not
make older releases available. Some websites collect and offer for download old
versions of shareware, freeware, and (in some cases) commercial applications. In
some cases, these sites had to remove past versions of software, particularly if the
company producing that software still maintains it, or if later software releases
introduce digital rights management, whereby old versions could be viewed as DRM
circumvention.

• Unsupported or unmaintained shareware
• Open source and freeware programs that have been abandoned

Obviously, the legal aspects of these types of unsupported software may vary hugely. But the important
part is the recognition that new legislation may be in order to cope with this legacy.
This is also true for yet another domain of archiving: Web archiving. Somewhere in between archiving
data and sustaining software lies the domain of the Internet (mostly the World Wide Web). Only a very
limited number of Internet archives are in existence today. The Dutch National Library has one.
However, legal restrictions prevent it from making this archive open to the general public: only on the
premises of the National Library in The Hague can one browse this wealth. This situation needs to be
mended.

4.9.2 Bit rot and link rot
“Bit rot” refers to the deterioration of the magnetic medium or carrier of data (“the bits falling down”).
“Link rot” refers to Internet links used on the World Wide Web that are no longer active/existent. If
anything in the discussion of preservation should sparkle a sense of urgency, it is bit rot. But link rot is
equally frustrating for Web heritage.
Even the term “software rot” seems to be in use in some communities12. In this case the rot is largely
virtual, because nothing really disappears. It is the environment that changes without the particular

10 NLnet, private communication.
11 https://en.wikipedia.org/wiki/Abandonware
12 https://en.wikipedia.org/wiki/Software_rot

NDE project_final_report_software
sustainability_DEF.docx

 17 | 71

piece of software changing with it or changing at the same pace. Software becomes, or may be just
perceived as, slow. To add to the confusion, sometimes the term bit rot is used to this phenomenon of
software rot13.
Instead of bit rot, the term “data degradation” is sometimes used. Obviously, data degradation is often
the result of physical changes in storage media. And those changes are referred to as bit rot. The
causes of bit rot are different for different media. In tapes, the magnetic orientation of stored bits may
change, in other media it may be the physical medium used to contain the magnetic properties that may
deteriorate. Unreadable magnetic media can only be restored, if at all, at the expense of significant
investment cost.

Generally, bit rot is prevented by timely copying materials to other media or recopying them to the
same storage medium (and repeating this procedure regularly). But this requires access to the magnetic
source in the first place (sometimes complicated due to copy-protect measures).
Link rot occurs very frequently. Whole websites may disappear (if only because the domain fee has not
been paid) or change, for example because a new CMS is introduced. This complicates Web content
conservation. There are practical ways to avoid link rot, for example by using DOIs (Digital Object
Identifiers) and PURLs (Persistent Uniform Resource Locators), but those are mostly used by parties
who a priori want to share information indefinitely. They cannot be used automatically; one has to
invest in getting links persistent. For something like historical curiosity (what did the Web look like in
the 1990s), these methods do not solve anything.
In a recent article in the Dutch newspaper NRC,14 Herbert van de Sompel15 (Los Alamos) and Frank
Huysmans16 (UvA) were interviewed on the topic of digital amnesia. After only one year, 10-15% of the
links in scientific publications are broken, they claimed. If one were to visit the website of a former
prestigious department store in the Netherlands (V&D) today, after it has gone bankrupt, nothing has
remained of it. With that, much of the historical knowledge about this company’s operations, successes
and failures has gone too.

So link rot as such is difficult to avoid when doing general research on the Web. Internet Archives have
come to the rescue and help a bit. Web files are stored in there in snapshot style, but link rot hampers
proper functionality of the linking websites significantly. Sometimes matters can be restored, if the link
has changed address but still exists, or if the material can be recovered from other sources.

4.9.3 Lack of original devices
Tapes, floppy disks, hard disks, optical disks, cards (paper and magnetic) require original peripheral
equipment to expose their data. If only for making a one-time copy. The peripheral equipment in turn
often requires drivers on computers, running under specific (versions of) operating systems to function.
Old computer systems are a necessity, both for reading data (and software) and for executing obsolete
software on appropriate systems.
Worldwide, there are a few computer museums with working systems. Old and very old computers have
been restored or even rebuilt, often just for demonstration purposes, but they can be used for practical
purposes too.
When it comes to more “modern” systems, such as original Personal Computers, Commodores, Ataris,
IBM PCs, Apple Macintoshes, an entire industry has emerged refurbishing such systems, both the
hardware and the cases, replacing unrepairable broken parts with similar ones from other systems or
with newer parts with the same functionality.
Eighties and nineties mainframes, mini-supers and supercomputers are definitely rarely found in
museums. They are heavy and energy consuming.
In the Netherlands there is an organisation dedicated to computer heritage, SCEN (Stichting Computer
Erfgoed Nederland17), whose members represent most of the public and private computer collections in
the country. Individual computer collections can be found at the Netherlands Institute for Games and
Computers, formed from the Bonami Spelcomputer Museum and The Computer Museum. They now
share a common exposition space in Zwolle18. However, there are more museum-quality collections.
There is the Apple Museum19, the Tehuis voor Bejaarde Computers20, a private collection with surprising

13 The Jargon File: https://en.wikipedia.org/wiki/Jargon_File
14 http://www.nrc.nl/handelsblad/2016/05/31/vechten-tegen-digitaal-geheugenverlies-1623567
15 public.lanl.gov/herbertv/ and https://en.wikipedia.org/wiki/Herbert_Van_de_Sompel
16 www.uva.nl/over-de-uva/organisatie/medewerkers/...huysmans/f.j.m.huysmans.html
17 http://dutch-computer-heritage.com/
18 http://www.gamesencomputers.nl/
19 http://www.applemuseum-nederland.nl/

NDE project_final_report_software
sustainability_DEF.docx

 18 | 71

elements (PDP-11 computers from 1970-1985, DEC’s Vax, Gould PowerNode, workstations and servers
from SUN, DEC, IBM, Tectronix, and more). The University of Amsterdam Computer Museum21 has a
large variety of mainly smaller devices and peripherals and a few minicomputers, such as a PDP-8
(1965). ING Bank had a computer museum in their Arnhem office, but since that site was closed it is
unknown what happened to the legacy, which included an IBM 1401. Other collections are Erik
Klooster’s Computermuseum22 (a private collection of mostly PC type systems), and the
Vitrinemuseum23 (a small collection from TU Delft’s EWI Faculty).
In fact, there turns out to be an inventory of computer systems hosted by SCEN24.
Many of the objects in these collections have no actual function, because they represent only parts of a
total, but a few objects, mostly in the PC domain, still work. It would be useful to have a list of working
systems and peripherals available, in case data or software considered relevant needs to be rescued.
One could even consider setting this up on a European scale, because the UK, France and Germany do
have more extensive collections of working systems including larger-size systems (like mainframes).

20 http://www.bejaardecomputers.nl/
21 https://ub.fnwi.uva.nl/computermuseum/
22 http://computermuseum.50megs.com/
23 http://www.vitrinemuseum.ewi.tudelft.nl/
24 http://dutch-computer-heritage.com/COLLECTIONS.htm

NDE project_final_report_software
sustainability_DEF.docx

 19 | 71

5 Need for a software sustainability facility

5.1 Introduction
One of the questions raised by the NCDD was how to organise software sustainability in the
Netherlands. Is there a need for some sort of formal software sustainability organisation? A few
observations should give enough direction to take action.

5.2 Support from the science community
In a survey conducted in the Netherlands among over 10,000 researchers in 2015, the question
was asked whether the concepts of Data Stewardship, Research Data Management and Software
Sustainability were familiar to them and if so, what they thought should be done about them. A
vast majority was not acquainted (let alone involved) with any of these terms, but over 80%(!) of
the respondents considered the topic important enough to warrant a national or international
policy. In other words, the science community at least supports that something concrete should
be done about software sustainability, both in the interest of the general public and theirs.

5.3 Past versus future
In order to tackle the problem of software sustainability, two discussions are needed: one
concerned with the question what to do with the vast amounts of legacy software and software
still used today, the other about new legacy to be created by taking preventive measures.
So far all of the discussion has concentrated on the legacy: what to keep, what to let go, what to
actively maintain, what to keep as is, how to revive older software, how to make it accessible,
and so on. This discussion has to continue until the appropriate measures have been taken and
the risk of losing important tools and products is minimised. But can we prevent further growth of
the stack of legacy software?
This is where education enters the discussion, aimed at today’s software developers as well as
students.
The most important way of contributing to the solution of software sustainability issues is to teach
students, before teaching them any programming languages or other programming tools, how to
write code that will be intrinsically maintainable at minimum cost. Matters such as version control,
documentation (not just user manuals) and modular coding should be stressed as being an
integral part of good coding practices. Of course, this should also be taught to people who do their
coding today. It may strongly contribute to mitigating future sustainability issues.

5.4 Expertise in an international context
Maintaining or recovering software for renewed use requires considerable expertise. So does
formulating advice to maintain software yourself or in your group or with your peers. A focal point
where this type of knowledge and expertise is available, or which actively promotes best
practices, would surely be very helpful. One of the centres with the most experience in sustaining
software is the Software Sustainability Institute in the UK. Although its scope is limited to the
scientific domain, much of what it is doing is broadly applicable and readily available.
At the Open Science Conference in April 2016, DANS presented the suggestion to have all
European countries define national Software Sustainability Initiatives and to create an overarching
European Software Sustainability Infrastructure on top of that. The form or extent of each of
those initiatives may vary from light (just a contact point) to heavy (an institute), but the
European infrastructure will connect them into one knowledge infrastructure focused on this very
topic. ePLAN (in the Netherlands) and PLAN-E (in Europe) have adopted this idea and will help
promote it and perhaps also take the necessary steps towards implementation.

NDE project_final_report_software
sustainability_DEF.docx

 20 | 71

6 Use cases

6.1 Introduction
At the heart of this report are the use cases selected from different domains so as to cover as
many of the practical issues software preservation organisations are confronted with as possible.
Use cases have been gathered from various people and different sources. The cases have been
condensed to 1 or 2 pages wherever possible, using a single template for all of them. This should
enhance the readability and accessibility of this document.
Use cases help define the scope of the issue – “software sustainability across science and heritage
domains” - and should promote understanding of the matters at stake. Although they are
examples and snapshots and not all issues will be covered by them, together they reflect the
broadness of topics at hand and the nature of the matter, at least from the perspective of “users
in the field.” There may or may not be links between different use cases, as they have been
collected from a range of sources.

6.2 General conclusions based on the use cases
There are large variations in the nature of software products that play a role in the sustainability
discussions in the public cultural sector. There will definitely not be a one-size-fits-all solution to
sustainability issues. But from the various use cases brought together here, four useful
conclusions can be drawn:

1. There are serious legal problems to be overcome before software from the past can be
lawfully used;

2. Software maintenance goes well beyond keeping a copy of the text;
3. Having software properly maintained does not guarantee its sound use;
4. Criteria for keeping or discarding software are lacking.

These conclusions will be addressed in the discussions and the summary of this document.

6.3 Use case: Pineapple, a semantic search engine for
historians

Author: Dirk Roorda (DANS)

Discussed with: Alexander O’Connor (http://oconnoat.com)
Time frame: 2012-2016

Abstract: The European FP7 project CENDARI (http://www.cendari.eu) has brought together a
number of heterogeneous historical archives. There were two focuses: (1) medieval manuscripts
and (2) World War I. What the historians needed was a search engine for concepts occurring in
archived materials. The software, consisting of a UI (Pineapple) and CENDARI, a semantic
repository, has been developed in the course of the four-year FP7 project. The issue at hand is
what to do to maintain this code.

" The software:

The software consists of PINEAPPLE (the UI) and CENDARI, a semantic search engine, structured
around collections of documents, in which entities with semantic relations and attributes are
represented. Its purpose is to disclose – mainly to historians – a heterogeneous collection of
documents and archives by finding concepts rather than strings in full texts. It was developed in a
four-year FP7 project with many partners. The net development cost was 2 FTE.

" Domain software specifics:
Different groups use different programming languages, either due to local rules or due to the
different skills of the international participants. In practice both Java and Python were used, glued
together through API’s.
There was a common OS: Linux (Ubuntu).

" Software dependencies:
Semantic technology is dependent on “triplestores”. Other dependencies mentioned are Virtuoso,
Prolog and CKAN.

NDE project_final_report_software
sustainability_DEF.docx

 21 | 71

" Software structure:
Cendari and Pineapple consist of a collection of loosely coupled services.
The backend works with a unifying API. The frontend builds services on top of that, hiding the
specifics of the backend. This functionality wrapping results in an ecology of services.

" Development environment:
The system was set up using Github (with CENDARI as institutional owner). The final
documentation is also available there. The source code docs, deployment recipes and user
manuals were added at a later stage of the project.

" Software distribution:
The software is not distributed. There is a single installation that serves the community. The user
interface is a Web application.

" Re-use and development:
Basically, the existing triplestore software was used. The software itself was designed from
scratch.

" Organisation:
Many parties were involved, from three different professional backgrounds (archivists, computer
scientists and historians). It took one year to get a time frame for the development and to collect
requirements. An agile-ish method of iterations was used to compile it. Because there was a lot of
back-end programming required, the developers could not rely on purely user-centric design
methods. One complication was the big turnover of people without a stringent documentation
policy in place. Also, the collections at hand were quite heterogeneous, with different metadata
schemes.

" Users:
Requirements and pseudo-testing were realised by using scholars as proxy users.
Maintaining provenance and ingesting the materials into the repository, including all conversions,
was a major requirement.
Users started appreciating the product only after initial performance frustrations.

" Sustainability aspects:
Concerning re-use, the software is intended to be used indefinitely, with modifications as needed.
The software is presently maintained by the Cendari Sustain Working Group, which is part of
DARIAH. Prior to the start of the project a Data Sharing Agreement and a Licence were signed by
Cendari and DARIAH-EU to secure future maintenance. The knowledge-intensive software system
should continue to follow the needs of the community, which means that maintenance involves
more than keeping the lights on. The software is owned by the Cendari Working Group. It is
unclear how ownership will evolve after the Working Group will be dissolved.
Ideally, a “CENDARI in the box” (virtual machine solution) would have come into existence, but
this has turned out to be pretty complex. Because the machine would also have to be patched
with security updates, there still is no guarantee that the software will continue to work. The
community, however, seems more concerned with keeping the data than with keeping the
software.

" Referencing:
The computer scientists have published about the data model and the wrapper API:
https://www.researchgate.net/publication/281835833_The_Taste_of_Data_Soup_and_the_Creati
on_of_a_Pipeline_for_Transnational_Historical_Research.
For historians it seems too early for the software to be quoted. No special measures have been
taken to reference the software beyond its residence in Github.

NDE project_final_report_software
sustainability_DEF.docx

 22 | 71

6.4 Use case: CATCH (Continuous Access To Cultural
Heritage)

Author: Patrick Aerts (DANS)

Discussed with: Jaap van den Herik (https://www.universiteitleiden.nl/en/staffmembers/jaap-van-
den-herik)
Time frame: 2004-2016

Abstract: The aim of the CATCH programme is to make the collections of museums, archives and
historical associations and the like more accessible and help heritage managers to do their work
more efficiently. Software development was an essential part of the project. This use case
describes the way the software came into development and the measures taken for future
maintenance.

" The programme:

The CATCH programme was carried out between 2004 and 2016. It was a brand new concept to
rejuvenate methods of access to and disclosure of cultural heritage in general and serve
researchers, scholars, “service organisations” (i.e. the staff of museums, archives, data and music
banks, etc.) and the general public in particular. Under the programme some 18 projects were
granted. Each project was carried out by at least one post-doc, one PhD student, a programmer
and a principal investigator (the applicant). Also, at least two parties had to be involved: one from
the science/research domain and one from the cultural sector (private or public).
At the beginning of the programme a zero measurement was made to outline the current situation
in order to enable comparisons at a later stage. Basically, that measurement returned a zero-
facilities situation: some parties (in 2004) did not even have Internet access.

" The software:
Within each project software was developed to archive, disclose, list and make otherwise
accessible a special case of cultural heritage objects. The software was to serve mostly scholars,
staff and the general public. There were large variations in the types of software to be developed,
from a song base to audio services for tourists in museums.

" Domain software specifics:
As described above, the software had to serve different communities. Analysis tools for scholars
had to be implemented as well as scaling for access by the general public.

" Software dependencies:
The most critical dependencies concern the operating systems and the browser versions.

" Development environment:
Originally, when the programme started, most of the software consisted of standalone programs.
Most of them ran under Windows. Later on, more and more Web based code was developed.
No stringent git type procedures or version controls were used across the programme, but
versioning was internally used for communication and progress reporting.
Documentation was kept in a separate database. Because the software had to be used by the
general public (including tourists), the codes had to be proven full/fool proof.

" Software distribution:
The software is not distributed. There is a limited set of instalments that serve the three user
groups.

" Re-use and development:
Standard Web tools were re-used, but most of the specifics were developed from scratch.

" Organisation:
A lead programmer was appointed, who managed all project programmers for the sake of
uniformity, interoperability and programming strategies.
The post-docs and PhD students involved had to spend 60% of their time on site at the relevant
cultural sector party. This was to ensure they would perfectly understand the culture, language
and methodologies of the organisation while designing and implementing the software.

" Users:
For testing purposes, early adaptor scholars and staff were involved rather than the general
public. In the course of the project the codes could be adapted to new insights and experiences.
In particular, the students had to learn from the software: for example, to learn to group painters
in categories and/or find interrelations between painters, personally or technologically.

" Sustainability aspects:

NDE project_final_report_software
sustainability_DEF.docx

 23 | 71

Concerning re-use, again, the software was intended to be used indefinitely. Regarding future
sustainability, it is to be noted that in addition to the programme funds additional financing was
received for valorisation purposes (valorisation being the term used for the deployment in
practice, beyond the scope of the project). This allowed for a stronger involvement of the end-
users of the software, i.e. the service providers (the cultural sector parties involved). As a
consequence, they are now basically made responsible for future maintenance and thus for the
sustainability of the software. If this is enough guarantee is not a priori clear, but to a large
extend it is obviously in their own interest that they will take this task seriously. In addition, a
software broker was involved for some time, but this seems not to have made much difference in
this respect.
Regarding the coding aspects of the software, the code was written in a state-of-the-art way due
to the involvement of professional programmers. Beyond that – and the documentation policy –
no further precautions were taken to guarantee ease of maintenance.

" Referencing:
All projects involved a PhD scholar and all finalised their research with a thesis. So the minimum
referencing possibility to the software could point to that thesis. But frequently separate papers
were produced along the way, which also allow for formal referencing. As a rule, no git type
archives have been used for direct referencing, although in an individual case this may have been
the case.

NDE project_final_report_software
sustainability_DEF.docx

 24 | 71

6.5 Use case: Software for access to legacy CD-ROM
collection

Author: Johan van der Knijff (National Library of the Netherlands, KB)
Time frame: 2012-2016

Abstract: The National Library of the Netherlands (KB) owns an extensive (> 15,000 items)
collection of offline optical media carriers. The majority (about 63%) of these carriers are CD-
ROMs; the remainder is mostly made up of audio CDs (32%) and DVDs (4%). In an effort to
preserve its extensive collection of offline optical media, the KB is investigating the use of
emulation as a means of providing long-term access to legacy CD-ROMs and DVD-ROMs. Since
many CD-ROMs in the collection rely on technical environments that are now obsolete, the
availability of the original installers of old operating systems, hardware drivers and legacy
software is an essential prerequisite of an emulation strategy.

" Problem description:
The contents of these carriers are standalone publications, or supplementary to printed books.
The long-term accessibility of this collection is threatened by three factors:

1. Data loss due to gradual degradation of the physical carrier.

2. Gradual obsolescence of the hardware to read the physical carriers. In recent years the use
of CD and DVD drives in computers has become less common, which means that over time it
will become increasingly difficult to obtain the hardware that is needed to read these carriers.

3. Most of the CD-ROMs contain legacy software that requires a specific technical environment
(hardware and operating system). This becomes problematic if the original environment is no
longer available, in which case the content may not be rendered or interpreted in a
meaningful way.

" Required steps:
Action is needed to keep this collection accessible for future generations. More specifically, the
following steps are necessary:

• Stabilise the information on the physical carriers.
• Migrate the information to a modern carrier.
• Re-create the technical environment that is required to render the content.

" Proposed solution

For CD-ROMs and DVDs, the stabilisation and migration steps can be realised by creating (ISO
9660/UDF) disc images of the physical carriers25. These images can then be stored to hard disc.
For CD-ROMs and DVD-ROMs, emulation is the most practical strategy to re-create the required
technical environments26. Using emulation, old software can be run on a virtual machine that runs
inside a modern environment (e.g. Windows 10 or Ubuntu). This approach is now widely used to
provide access to legacy software. In the KB’s case, the aim would be to give users in our reading
rooms access to the CD-ROM images, with the ability to load an image in one or more pre-created
emulated environments.

" Software engineering:
Based on a limited sample, it appears that most of the CD-ROMs in the KB’s collection have
dependencies on old versions of Windows or MS-DOS operating systems. Common environments
include MS-DOS 5.0, Windows 3.1, Windows 95, Windows 98, Windows ME and Windows NT.
Although the KB has never systematically collected old software, installation CDs of most of the
above operating systems from Windows 95 onward could still be located in our IT department’s
software archive. The older operating systems were not as readily available, but installers can

25 Audio CDs must be handled differently: unlike CD-ROMs and DVDs, the data on an audio CD isn’t formatted according to a
real file system. As a result, the audio stream must be “ripped” to audio files (e.g. in WAV format).
26 Images of audio CDs and video DVDs can be rendered with standard media player software (e.g. VLC Media Player),
without any need for emulation.

NDE project_final_report_software
sustainability_DEF.docx

 25 | 71

often be bought second-hand on websites such as eBay. Often, these older operating systems
have additional dependencies. Some examples:

• MS-DOS and early Windows versions required a third-party driver for accessing a CD-ROM

drive. Even within an emulator this driver is necessary, because without it the operating
system will not recognise the file system on (an ISO image of) a CD-ROM. These drivers
can be difficult to obtain legally, although downloads can be found on some computer
hobbyist websites.

• In some emulators, older Windows versions require third-party display drivers in order to
get sufficient graphical resolution. These drivers can be difficult to track down as well.

• The original installation CD-ROMs of Windows 95 and Windows 98 are not bootable, which
means that a separate “Start-up Disc” (a 3.5" floppy disc) is needed to install these
operating systems.

Moreover, the content of some CD-ROMs requires additional legacy software, such as (old
versions of) Microsoft Office. Since the above dependencies are mostly stored on vulnerable
physical data carriers (CD-ROMs, 3.5" floppy disks), these need to be imaged and stored at a
safe, sustainable location as well.

" Current status:
The work on the preservation of optical media at the KB is currently in an early research phase.
So far we have created ISO images from a small sample of carriers. We created a limited number
of legacy environments (MS-DOS 6.0, Windows 3.11, Windows 95 and Windows 2000) as virtual
machines within Oracle VirtualBox. This enabled us to successfully render the ISO images.
Although the VirtualBox setup provides a useful proof-of-concept, it is not ideally suited for
providing access in a reading room setting. A better solution would be the “Emulation as a
Service” framework by the University of Freiburg, and we will investigate this more in-depth at a
later stage. Finally, we have made an initial effort at preserving the software that is needed to
render the CD-ROMs by making disc images of the installation CD-ROMs and floppy disks.

NDE project_final_report_software
sustainability_DEF.docx

 26 | 71

6.6 Use case: NDL (Naive Discriminative Learning), an
implementation in R

Author: Dirk Roorda

Place, Date of interview: Tübingen, 23-2-2016

Discussed with: Harald Baayen

(http://www.sfs.uni-tuebingen.de/~hbaayen/contact.html)

Abstract
Naive Discriminative Learning implements classification models based on the Rescorla-Wagner
equations and the associated equilibrium equations. This package provides three kinds of
functionality: (1) discriminative learning based directly on the Rescorla-Wagner equations, (2) a
function implementing the naive discriminative reader, and a model for silent (single-word)
reading, and (3) a classifier based on the equilibrium equations. The classifier is provided to allow
for comparisons between machine learning (svm, TiMBL, glm, random forests, etc.) and
discrimination learning.

" Problem description

The software concerns the modelling of learning behaviour according to basic principles of error-
driven learning that characterises animal and human learning. The learning agent is eventually
modelled as a network with weighted edges, and behaviour is modelled using choice paths
through the network while being stimulated by activation inputs. The network may have
thousands or millions of nodes, so modelling requires computing power. One of the interests of
the project is to reproduce language production and language comprehension by humans in such
a way that actual behaviour of humans while learning can be reproduced by the model, including
typical mistakes, the amount of effort needed to learn a specific pattern, and so on. The project is
the Alexander von Humboldt Professorship granted to Harald Baayen (€5 M for 5 years).

" Software engineering:
The program is written from scratch in R and C++ and operates under Linux, although NDL is
basically cross-platform and being continued as a newer version, NDL2, which is in development
and currently operates under Linux only. No strong version control system has been implemented.
The program uses rccp (seamless R and C++ integration) see: https://cran.r-
project.org/web/packages/Rcpp/index.html.
Because it is an R package written in C, it is one module of software.
Faithful interpretation of a new kind of classifier and performance were the most important
implementation criteria.

" Software distribution:
CRAN (R's package manager) was used for distribution. More info can be found on the NDL home
page: http://cran.xl-mirror.nl/web/packages/ndl/. The software has a GPL-3 license and is Open
Source (the source is contained in the R package).

" Organisation:
A small group of people has been responsible for the creation and development of the software for
several years. The initial concept was created by R. Harald Baayen with contributions from Petar
Milin and Peter Hendrix. After that, the algorithms and packaging of the software in R were done
by the same people, plus Cyrus Shaoul, Antti Arppe. All software requirements are driven by the
research to be conducted and the needs of packaging and distribution.

" Referencing:
The software makes it possible to replicate the simulation results for Experiment 1 of Corpus
linguistics and naive discriminative learning Baayen et al. (2011) DOI 10.1590/S1984-
63982011000200003 and is citable by proxy of the original paper that describes the model. A
reference of this paper is on the README file of the R package, including a download link for it:
Baayen, R. H., Milin, P., Filipovic Durdevic, D., Hendrix, P. and Marelli, M. (2011), An amorphous
model for morphological processing in visual comprehension based on naive discriminative
learning. Psychological Review 118, 438-482. Download from here. (accessed 2016-02-24).
Furthermore, there are also github repositories for using NDL on specific datasets, such as
https://github.com/cyrus/ndl-examples.

" Users:
The developers/creators of the software are also the principal users (software by researchers for
those same researchers). The rest of the audience consists mainly of linguists (computational and
corpus linguists, psycholinguists). The spectrum of users is most likely pretty limited: most users

NDE project_final_report_software
sustainability_DEF.docx

 27 | 71

quickly proceed beyond the advanced stage. Conferences, videos
(https://www.youtube.com/watch?v=ee3p4canV8k), scientific articles and collaboration with
Harald Baayen and his group are the most important vehicles to attract new users.

" Documentation:
The documentation can be found inside the R package, readily available through the R interface
and also by browsing the source package. The documentation mainly consists of research papers:
no tutorials, manuals or cookbooks. A few things regarding installation can be found on stack
overflow.

" Sustainability:
The software is intended for (re-)use and for the long term; it is presently maintained by a
member of the development group. No further precautions presently apply.
However, today there is a stable NDL package with further active development of the NDL2
package. This is not yet ready for CRAN distribution. NDL2 will be overhauled by professional
software engineers before release. The software is owned by Harald Baayen and his team, and
those who have contributed in the past and who are still involved with it formally (inside or
outside the Harald team).
Packages on CRAN meet quite a few requirements that are beneficial for sustainability, one of
them being cross-platform properties.

NDE project_final_report_software
sustainability_DEF.docx

 28 | 71

6.7 Use case: eSTeP (eScience Technology Platform)

Author: Patrick Aerts

Place, Date of interview: Amsterdam, 17-3-2016

Discussed with: Mateusz Kuzac

Abstract
eSTeP, the eScience Technology Platform, is the development environment for the software
created and developed and/or certified for further use by the Netherlands eScience Center
(NLeSC). For NLeSC, eSTep should be the exemplary way software is to be created, maintained
and distributed for direct and future use and maintainability. http://estep.esciencecenter.nl/ .

" Problem description:

The Netherlands eScience Center operates as a bridge between science and IT and e-
infrastructures in order to “accelerate discovery”. The software that is developed because it is not
readily available elsewhere, is required to be fit for purpose, re-usable, excellently written,
practical and maintainable. To this end, rules are being designed and developed, also taking into
account that NLeSC is not necessarily the original designer of the codes. These types of rules of
conduct are rarely adoptable from elsewhere, whether in industry or science, so NLeSC is learning
on the job.
Managing a programme such as eSTeP is complicated in that it is concerned with a huge variety of
codes in many languages for many different purposes. Within the projects that NLeSC is involved
in, most of which are (co)funded by NLeSC, software development and adaptation to new use
cases are the main contribution from NLeSC to the project.

" Software engineering:
Software in the domain of interfaces (in the most general sense of the word) is mostly developed
in HTML or Java Script. Software for data analysis is mostly written in Python and scientific codes
are dominantly written in C, C++, Fortran or sometimes Cuda.
Doing so, generally accepted guidelines for framework use and engineering approaches are
implemented and used wherever possible. For typical Fortran or Cuda environments, such
frameworks do not exist yet. There, best practices in programming and development are followed.
NLeSC hardly develops for Windows or Mac OS-X systems. Linux and Unix are the standard
operating systems under which the codes operate. Where applicable, Web interfaces allow usage
from Windows or OS-X.
The development environment is typically GIT-based. It is used for version control (unless an
older version control system was in use already), open git repositories, github for licensing of the
(generally) open source code.
Whenever possible, NLeSC tries to use or re-use existing software and tools and tailor it to the
application required for the research project at hand. But very often, new software needs to be
created. Then there is always the question of balance: how to meet the requirements for both
speed and efficiency and modular design with a view to re-usability and maintenance.

" Software distribution:
Distribution is done via the Web: each code has its Web domain (mentioned on the Git server),
available through cloud services, from where the packages can be downloaded in a format
suitable for the particular language used. Binary packages for Fortran, C, C++ codes, if required
packaged into containers, and other standard packaging tools for Java and Python.

" Organisation:
All software developed or adapted at NLeSC plays a role in cooperative projects with “external”
parties, except for a small fraction of the eSTeP codes which have a general purpose character
(for example methods to link different resources over the Internet in a simple manner). As NLeSC
works mostly on the basis of granted projects, the organisation is able to define principal
conditions for software development in the granting conditions. For the rest, this is a matter of
negotiations with the applicant.
Internally, NLeSC has defined strong regulations regarding the way software is written, versioned,
documented, and conceptualised in terms of modularity and performance. Although this is not a
formal internal directive, NLeSL seeks to maintain industry standards to the industrial strength
software it creates.

" Referencing:
All software plays a major role in (scientific) publications, because that is the very reason the
software is being created in the first place. Use of eSTeP software and tools must be cited in all
publications. This includes the name of the code, its version (release) and DOI (Digital Object

NDE project_final_report_software
sustainability_DEF.docx

 29 | 71

Identifier), with its persistent link. The documentation with the software describes the way the
software needs to be referenced (can be found through GIT or Zenodo). The various software
releases may or may not be backwards compatible. However, through the Git system all previous
versions remain available. If so required, they are put into a container that enables using the code
in a virtualised older system environment.

" Users:
Most (co)applicants of projects are at the same time the major software users. As a rule, being
co-developers, they set the minimum requirements for the scientific goals, the user interface and
the user requirements and are the principal sparring partners for quality, effectiveness and user
friendliness of the software and tools. No special testing regime applies to make the software fool
proof, as usually this is not an a priori requirement. Code cracking sessions are under
consideration at NLeSC to test the fool-proof score of the code.
The user groups are generally not differentiated into beginners/advanced/expert levels. However,
after the first operational tests involving the principal investigators, more levels of users come on
board and adaptations can still be made to the code during the project phase. The rest will have
to learn through the extensive documentation facilities.

" Documentation:
The documentation is considered an essential part of the software. The git environment, the
website with all its demos, documentation and specifications serves as extended documentation.
Furthermore, screenshot-supported YouTube/Vimeo movies are available to demonstrate software
installation and use.

" Sustainability:
The principal investigator (the applicant of the project) is considered the software owner for all
practical purposes (even though it is mostly open software). He generally is a member of a larger
community which is also served by this software. NLeSC feels responsible for delivering optimum
ease of maintenance and future sustainability, but cannot formally be held responsible for any
future maintenance. Bug fixes and similar issues are a matter of good will. Requiring future
maintenance of the software to some degree to be agreed before project start is under
consideration as a granting precondition, to be signed by the applicant.

6.8 Use case: Tündra, treebank repository and search tool

Author: Dirk Roorda

Place, Date of interview: Tübingen, 23-2-2016

Discussed with: Alexandr Chernov (University of Tübingen), developer of Tündra

Marie Hinrichs (University of Tübingen), researcher

Abstract
A treebank is part of a standard linguistic tool chain from text processing through parsing to
semantic analysis. Treebanks represent the results of syntax parsing. They are being used to
visualise sentence structure and to facilitate queries on particular sentence structures. See
https://weblicht.sfs.uni-tuebingen.de/Tundra/. To enter Tündra you have to go through a process
of authentication via your home institution or CLARIN, which is identical to accessing WebLicht
(see: https://weblicht.sfs.uni-
tuebingen.de/weblichtwiki/index.php/FAQ#How_do_I_log_in_to_WebLicht.3F).

" Problem description

The immediate reason to undertake Tündra was that an older treebank tool, Tiger Search
(http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/tigersearch.html), was becoming
obsolete. The construction of Tündra can be seen as an act of software sustainability: it replaces
obsolete software with new software, though not in a backwards-compatible way. [The query
language is preserved (with minor changes) so that Tiger Search users can switch to Tündra without
learning yet another query language.]
Syntax parsing of natural language is mostly an automated process, but human decisions are
frequently needed, partly depending on the treebank – some are annotated automatically, some
fully manually, and some use a combination. Extracting sentences with particular structures is a
typical information retrieving task.
People can use the tool to search treebanks for particular structures and/or gather statistics on
those structures. Tündra is a treebank system, developed at the University of Tübingen within the
wider context of CLARIN-D, which is the German department of the CLARIN ERIC, the legal

NDE project_final_report_software
sustainability_DEF.docx

 30 | 71

organisation that represents the results of the FP7 project CLARIN (Common LAnguage Resources
INfrastructure and technology). In terms of funding, the project presently represents a dedicated
researcher for three years.

" Software engineering:
The software is written in Java, Javascript and XML. The software system is cross-platform, but
developed in Linux. The development environment was a local git (GitBlit), not github. Github is
scheduled for when the software is more mature. Currently there is only one version of the
software, with a new version under development which focuses on improvements in modularity
(separating frontend and backend), performance, and presentation (better look and feel through
use of more modern Javascript libraries). For the Web application itself, backwards compatibility is
not an issue since the query language and execution remain unchanged.
The Tündra treebank format is highly flexible to accommodate all of the annotations that various
treebanks contain. This does not affect backwards compatibility, however, since a new version of a
treebank does not replace an older version, rather the new version is added as a separate
treebank. There are currently no plans to modify the treebank deposit format.
The trees in the treebanks can be linked individually, but at the moment there are no particular
measures in place to keep those links stable. As long as the treebanks themselves are available, it
will be possible to make queries and retrieve trees.
A detailed dependency scheme is available:
◦ ZK 6.5.2 CE: Open source Ajax framework for Java-based Web applications.
◦ BaseX 7.7.3: XML Database engine and XPath/XQuery processor.
◦ Jetty 9: Open source embedded Web server and servlet engine.
◦ JavaCC 5.0: Java parser and compiler generator.
◦ Bootstrap 2.3.2: Frontend for Web development.
◦ jQuery 1.9.1: Cross-platform Javascript library.
◦ canvg: HTML5/Javascript canvas tools for SVG graphics.
◦ Mouse Trap: A library for handling keyboard shortcuts in Javascript.
◦ Roboto: Google Web font licensed under Apache 2.0.
◦ Gentium: Summer Institute of Linguistics Web font licensed under SIL Open Font License.

The current production version is rather monolithic. The code is being refactored into modular
pieces which can also be used by other projects (e.g. the frontend will be used for visualisation in
WebLicht in the future). It has a backend with a REST-API for retrieving treebanks, and a Web
frontend. This is in contrast to the tool it is built to replace, Tiger Search, which is a standalone
tool with a graphical interface that must be installed on the user's computer. The division into
frontend and backend will make future changes easier.
Everything is built from scratch, but Tündra is used by Weblicht (http://weblicht.sfs.uni-
tuebingen.de/weblichtwiki/) for tree visualisation and searching. CLARIN functionalities used are:
◦ CLARIN authentication (http://clarin.eu/content/federated-identity)
◦ Helpdesk button (http://clarin-d.de/de/hilfe)
See also the open source libraries mentioned above.

" Software distribution:
It is a Web application which is not being distributed for two reasons. It is being heavily
developed right now. And it is meant for an institution that serves a community, not for individual
end users.

" Organisation:
The project was mainly an in-house development, close to the people who also determine the
requirements. Requirements collection seems to be very much an ongoing process. For the rest is
was basically an incremental approach.
Legal issues were to be addressed for each treebank.

" Referencing:
A journal article by Prof. Erhard Hinrichs, soon to be published, uses Tundra extensively.
The software is citable by proxy of a journal article: Scott Martens (2013). TüNDRA: A Web
Application for Treebank Search and Visualisation. In: Proceedings of The Twelfth Workshop on
Treebanks and Linguistic Theories (TLT12), Sofia, pp. 133—144. URL:
http://bultreebank.org/TLT12/TLT12Proceedings.pdf.
Currently, results can be reproduced by simply re-running the query. Use of PIDs for query results
is under consideration.

" Users:
Ideas for enhancements have come from the Help Desk ticketing system as well as from
researchers using the software. Easy access with single sign-on for academic users, performance
and a flexible format for treebank import were the most prominent wishes.
The target audience is made up of language researchers and philologists, and other digital
humanists. The treebanks in the repository give an indication of the disciplines involved:

NDE project_final_report_software
sustainability_DEF.docx

 31 | 71

• Kafka: Der Prozess
• German newspapers (85,000 texts)
• Tübingen Treebank of spoken German (38,000 sentences)
• Index Thomisticus (15,000 sentences from three works of Thomas Aquinas)
• Corpora in English, Bulgarian, Japanese
• German Wikipedia.
The software is also aimed at institutional users, administrators, infrastructure providers.
Treebanks date back as early as the 1950s, so they are well-known among linguistic researchers.
There is active usage. The main point of contact is the help-desk.

" Documentation:
There is an in-page tutorial. When the software is fully in production, courses for end-users will be
planned. Extensive documentation and tutorials are available in the application itself
(https://weblicht.sfs.uni-tuebingen.de/Tundra/). End user help (user guides and tutorials) is
available. Treebanks can be deposited into the CLARIN-D repository in Tübingen
(http://www.sfs.uni-tuebingen.de/ascl/clarin-center/repository.html).

" Sustainability
General Computational Linguistics Staff at the University of Tübingen is presently maintaining the
software, which is being further developed right now, the top priority being to realise all of the
desired functionality. Currently, development and maintenance are tied with CLARIN-D. That will
end soon, but is expected to be extended. If nothing comes of that, the current staff feels it is
their responsibility to keep the system alive. They experience a keen interest from their user
community. The software is formally owned by the General Computational Linguistics department.
Future sustainability is not a priority in the current stage of development. The software is being
mirrored at the Garching computing centre, and another host is being planned. But these
concerns have to do with day-to-day reliability rather than long-term usability. How the results
obtained by means of the system can be made available for the long term is being considered.
been implemented.

NDE project_final_report_software
sustainability_DEF.docx

 32 | 71

6.9 Use case: Gaming software
Author: Patrick Aerts
Place, Date of interview: Virtual interview Hilversum, Beeld&Geluid, 16-2-2016
Virtual interview with: Eric Kaltman, previously computer game architect at Stanford University
and researcher at the University of California, Santa Cruz.
The interview report is based on a presentation at Beeld&Geluid given by Eric Kaltman and written
material he subsequently provided to the author for the purpose of this use case.

Abstract
Preserving games is a complex business that goes well beyond keeping the software executable.
In the US a few institutions keep large collections of games, some dating back to the early days of
computing. The problems and issues related to keeping the software running under modern
conditions are presented together with some guidelines.

" Problem description

Computer-based games have been around since the early sixties. While originally such games
were implemented on the very type of computer systems in use for other, general, purposes, in
due course an industry arose around computer games introducing special devices and equipment,
while other games remained executable on laptops and more modern handheld devices, including
mobile phones. Keeping all these different types of games alive in a way that enables people to at
least understand what the fun was all about is a very complex matter, if only because the
industry, in order to protect itself and its investments, hardly shows any interest in games
preservation. Indeed, the industry tries to speed up obsolescence of software and devices as to be
able to sell newer versions to keep the money flowing. Yet the development of games provides an
enriching view of cultural history as they represent an image of the time in which they were
developed and deployed.

" Software engineering:
Games software has been written in all sorts of languages, from C to Javascript, and possibly
even Fortran and assembler. Modern computer games are written modularly, just as in most
modern computer codes. Versioning of games software is often pretty obscure, developing with
the device types brought onto the market and with operating system updates and upgrades as
customary on mobile phones and other handheld devices.

" Software distribution:
Depending on the origin of the software, various distribution schemes exits. The codes may be
open software, mostly developed at universities and research institutes, for example for
educational or other serious purposes (serious gaming), but games are also distributed through
physical stores or by downloads from the Internet or App stores.

" Hardware platforms:
A typical aspect of games compared with other forms of software is that the device on which the
software runs or for which it was specifically designed plays a major role in many games.
Nintendo, Xbox, etc. typically are based on first selling the device and then selling different games
that can only be played on that specific device and perhaps on its next hardware release, but
usually not beyond that, in order to promote the sales of new devices and software. This is a
typical additional aspect of games conservation beyond the software sustainability aspects per se.

" Organisation:
With some exceptions, games are designed in teams, although there have individual designers
too, both in the very beginning and in present times (Flappy Bird). Companies may grow
extremely fast due to a successful introduction of a game and may disappear just as quickly if no
new concepts come to mind to sustain success.

" Referencing:
In the US, metadata formats and collection coding systems have been and are being conceived,
but no international standards presently exist.

" Users:
All games have (or had) users. Some games even have large and strong communities. These
communicate beyond the domain of the game on all issues related to gaming. There are even
professional gamers, particularly where money is at stake. Modern games are tested first in small
test-user groups. A modern complication for gaming software sustainability is the fact that games
may be played over the Internet, involving one, a few or many users at the same time, which act
as opponents or co-players. Even children can play adventure or creative games together, each
using their own device (usually handheld).

" Documentation:

NDE project_final_report_software
sustainability_DEF.docx

 33 | 71

As far as we know there is hardly any publicly available documentation of games software. By
contrast, there is documentation about the way the game should be played, but increasingly so as
part of the game or the gaming process itself (for example in adventure games). A Help button is
the most obvious, today even “clumsy” way of providing background or directives. Sometimes
indications for next steps in the game can be earned throughout the game. Some games are by
nature adventurous and no documentation exists. That this can work nonetheless can be derived
from the many very young children that seem to be able to play a game that does nog even
communicate in their own language or in a language they cannot (yet) read. It is not known if
games software producing companies keep proper documentation at all.

" Referencing:
Gaming software citation is complex and no standards have been adopted yet. One can
distinguish between citing (and linking to) the software proper and citing the emulator
environment in which the software might run. The complexity arises from facts such as that the
software resided on a cartridge of a certain (physical) format, with its own version and specific
characteristics (some cartridges contained extra chips for additional processing capabilities) in
addition to the software versioning and the versions of the main device (think Nintendo).
One serious document on this topic can be found at https://gamecip.soe.ucsc.edu/about.

" Sustainability:
The nature of software is such that with some effort it can usually be made to run on any
computer that has the minimum specs (memory, processor speed, etc.). This is probably true for
much software, but here it extends to at least gaming software. One can now define a virtual
machine in a cloud environment and/or access an emulator, which has also become available
more often. Emulation involves translation of instructions from one platform to another. This
requires computational performance beyond the original device performance, all the more so if
tricks have been implemented in the game software, such as playing around with the difference in
speed of a processor and a co-processor in the same device. This way a MHz-scale device may
require a multi GHz processor to do the emulation right, i.e. to make the game playable. Another
type of problem arises when a game involves getting access to some proprietary software (owned
by the game copyright holder/creator), either as part of the game process, or to verify the
legitimacy of the player’s ownership/rights (authentication). And then there are games which are
community based. Even if one is able to emulate the game, one does not get the experience back.
Games that are downloadable, in particular on a mobile device (mobile phone) are disastrous as
far as sustainability is concerned. Versions are strictly linked to the mobile OS versions. You
cannot save the game (or get rid of it, once installed).
Extracting software from hardware media: an example of an extensive effort is that of a
collaborative project by Stanford University and NISC (the National Institute of Standards) under
the name of Cabrinety27, which creates forensic disc images and high-resolution photographic
scans of materials in the software series of the Stephen M. Cabrinety Collection in the History of
Microcomputing, ca. 1975-1995. It involves software from dozens of media formats (such as
floppy disks, computer cassettes, and game cartridges). For this purpose, custom made reading
devices have been made.
An authoritative publication on games preservation is “Preserving virtual worlds”28 by Jerome
MacDonough et al. dating back to August 2010. It is still one of the best contributions to the
discussion in this domain.

27 See https://library.stanford.edu/projects/cabrinety-nist-project, https://library.stanford.edu/blogs/stanford-
libraries-blog/2016/04/preservation-week-5-questions-charlotte-thai
28 http://mith.umd.edu/wp-content/uploads/2012/03/whitepaper_PVW.FinalReport.pdf

NDE project_final_report_software
sustainability_DEF.docx

 34 | 71

6.10 Use case: HSN (Historical Sample of the Netherlands)
Author: Peter Doorn (DANS)

Based on information from and discussed with: Kees Mandemakers, IISH/EUR
(https://socialhistory.org/en/hsn/about-hsn)

Time frame: 1987-2016

" Abstract:
The Historical Sample of the Netherlands (HSN) is spanning 30 years of construction,
development and maintenance of databases and related software. The HSN tools and data serve
to reconstruct life histories as completely as possible for a representative sample of the
nineteenth- and twentieth-century population of the Netherlands, drawn from all persons born
between 1812 and 1922. The HSN database will include individual data for 77,000 persons,
including items like age at marriage, religious affiliation, number of children born, occupation,
place of birth, literacy, social network and migration history.

" Software and development environment:
The software has been developed, maintained and adapted since 1987. In the late 1980s and
early 1990s data entry programmes were developed in dBASE (a popular dbms package for MS-
DOS) and Clipper (an xBase computer programming language and compiler) to make historical
population records machine-readable. Output routines and reports were developed to link and
present the information in the various database tables. When Windows overtook DOS, these tools
were replaced by MS Access and SQL queries. Later still, the HSN tools were migrated to Delphi, a
Rapid Application Development (RAD) tool which evolved from Borland's Turbo Pascal for
Windows. This change was not long-lived, and the data entry software then became Web-based,
with separate applications/web forms for each historical source.
Routines have been developed to check the data for completeness and consistency, to link data
and to identify individuals. Those routines have been written in Java, a choice based on the
software policy of the Institute made six or seven years ago. However, the institutional software
policy tends to change over time, leaving the researchers with legacy software that after some
time is no longer supported by IT staff.

" Domain software specifics:
Originally the database design and tools to operate and manage the data were developed by the
HSN Principal Investigator (PI) Kees Mandemakers himself, but in the course of time and due to
the changes in technology this became gradually unfeasible, and the software
development/maintenance task was taken over by the department of digital infrastructure of the
International Institute of Social History (IISH, in Dutch IISG). Currently the software is again
being renovated. The increased distance between researcher and tools is experienced by the PI as
having advantages as well as disadvantages.
One of the important changes in the course of time was the implementation of the concept of
what is called the Intermediate Data Structure (IDS), a format for exchange and integration of
historical life-course data adopted by the main international longitudinal population databases in
Europe and the US.
Data integration is one of the more complicated tasks of the software. From the IDS a general
data release and customised database tables are made, for example in STATA (Data Analysis and
Statistical Software) and R (another software environment for statistical computing and graphics).

" Software dependencies:
The researchers feel that they are dependent on the choices made by the IT department of the
institute, and sometimes they question whether the choices made are helpful for keeping their
software tools alive. Decisions to support some database systems or programming languages
rather than others may implicate that the expertise/support needed to maintain older software
can suddenly evaporate. Mandemakers has experienced the lock-in caused by choices made in the
past the hard way. He feels this lock-in is especially problematic when depending on others.
Sometimes the updates are technology-pushed rather than required by the user/researcher. The
latest trend is to make more use of Python, although Mandemakers would prefer to change as
little as possible.
Data security is also an example of a need that is created by certain institutional decisions. Now
that data-entry is taking place via the Internet, the data protection requirements have increased,
which is costly for the project.

NDE project_final_report_software
sustainability_DEF.docx

 35 | 71

Sometimes old machines and operating systems are used, particularly PCs running DOS, because
a software routine has not been upgraded to new machines and OSs.
The costs of software development and maintenance have never been separately calculated or
administered. Currently 0.5 FTE is working for 1-1.5 years to convert the data-entry software;
additionally, a developer has been working for 3 years on the output software (including checking
the consistency/validity and conversions); Mandemakers estimates the required maintenance
work at 10 hours per week.

" Software re-use, distribution and referencing:
The software has always served internal use only (data entry, cleaning, consistency checking,
linking, management, presentation). There is no distribution of the software itself. End users
import the HSN data into their own tools, which they use for further analysis. The software is
therefore generally not open source. The IISH has however recently implemented a new policy of
storing the software developed at the institute in Github, see: https://github.com/IISH. The
homegrown HSN software is stored on servers of the Institute itself.
The HSN data are distributed in a series of releases (in DBF or CSV format). Sometimes data
inconsistencies are found that have not been detected earlier; correcting them complicates the
replication of results.

" Organisation:
HSN is a foundation hosted by the ISSH, which has been funded by a range of successive
projects, with minimal sustainability guarantees by the institute. The HSN software policy is
necessarily ad hoc because of the scarcity of financial means.

" Users:
The user community of the HSN consists of social historians, historical demographers, and other
researchers interested in historical population data, including health care and other life sciences.

" Sustainability aspects:
The driving force behind HSN is Kees Mandemakers; his biggest worry is whether a successor can
be found to provide continuation. It is doubtful whether the Institute can take over the
responsibility without the drive of an involved researcher.
Without the software, the integrated HSN data will be impossible or very hard to use. New
software would have to be written to make the data usable again. Although extensive and
detailed documentation is available, describing all data processing at the various levels, the
development of such software would require a considerable effort.
The individual source files are accessible in raw (checked and corrected) form, but links between
persons in different sources and their mutual relationships will be lost without the software.

NDE project_final_report_software
sustainability_DEF.docx

 36 | 71

6.11 Use case: Preserving sound and vision

Author: Patrick Aerts

Place, Date of interview: Amsterdam, Netherlands eScience Center 21-4-2016

Interview with: Jesse de Vos, researcher at Beeld en Geluid, Hilversum, the Netherlands

Abstract
Beeld en Geluid (B&G) holds all broadcasting information, digital and analogue, of the Netherlands
broadcasting organisations. It has also acquired a large collection of games of Dutch origin.
B&G offers services to the public broadcasting organisations and through them also to the general
public. B&G services involve a variety of software products, of which the sustainability is not
always a big issue. Issues on the horizon mostly involve the future of Web services.

" Problem description

The collection of B&G includes physical (music and speech) records of different making, sound
collections on records or tapes of many formats, photographs, film, video in various formats,
archives, websites and some Web archives. The additional concern for games preservation is due
to B&G’s general knowledge in the domain of graphics and sound, which is more extensive than
the National Library’s. The B&G software collection is the sum of customised off-the shelve
packages, homegrown and open source software. Software is involved in the copy/reformatting
workflows to make useable digital versions of all physical digital and analogue sources, to make
those new sources accessible and findable and to deliver products on demand to broadcasting
organisations. B&G experiences no further specific problems, except for bit rot, as they still have
most of the original physical equipment on site to feed the workflows from the origin and most
modern software tools can be applied to make the best copies in today’s formats. The collection is
extensive: about 25 Petabytes (including copies).

" Software engineering:
There are no strict software engineering rules in place, and writing homegrown software from
scratch is not part of the core business, but is done when nothing is readily available from
elsewhere. Where applicable, emulation as a service is used to run older pieces of software, or
software is made to run again by invoking Javascript and use the browser.
B&G does experiment with Web archiving, which is considered the next big issue.

" Users:
There are three types of users: internal users (employees), the broadcasting organisations and
the general public. None are actually involved in any testing of homegrown software products.

" Sustainability:
Software sustainability is not seen as a primary issue for B&G. There are concerns about the
preservation of the underlying, mostly analogue materials, which suffer from deterioration. So a
best effort is made to make digital copies of all the analogue material in formats that will be
accessible for future software programs. In addition, the original materials will be kept under the
best possible conditions.
An exception to this general practice is the games collection, which is discussed as a separate use
case.

6.12 Use case: TSTC, software to manage Dutch language
data

Author: Peter Doorn (DANS)
Based on information from: Remco van Veenendaal, Griet Depoorter, Martin Everaert (http://tst-
centrale.org/)
Time frame: 2004-2016

Abstract
The Taal- en Spraak Technologie Centrale (TSTC, Language and Speech Technology Centre)
maintains software to manage a collection of Dutch language data resources of national
importance. TSTC is the knowledge and distribution centre for Dutch text collections, (scientific)
dictionaries, speech corpora and language and speech technology software. Those materials
include results from grant programs such as STEVIN, outcomes of PhD research and items
developed by organisations such as the Institute for Dutch Lexicology (INL). TSTC collects and

NDE project_final_report_software
sustainability_DEF.docx

 37 | 71

manages these products and makes them available for reuse in education, research and
development. TSTC was founded on the initiative of the Dutch Language Union (Nederlandse
Taalunie - NTU) in 2004.
TSTC was hosted by INL from 2004 to 2012, and by NTU from 2013 to March 2016. Since April
2016, INL has again been the host, with the intention of integrating the facility into the core
services of the institute in a new form, as Instituut voor Nederlandse Taal (INT).

" The software:
The product overview of TSTC in March 2016 mentioned 114 products, 12 of which were
categorised as "tool". However, several of the other products (corpora, databases, dictionaries)
require specific Web applications or other software to access them. An example of the latter
category is the Dictionary of the Dutch Language (Woordenboek der Nederlandsche Taal). In
April 2016, the TST catalogue (again under the responsibility of INL) listed 107 materials, 7 of
them tools. The characteristics of the tools are reflected in a table, based on the documentation
available from the TSTC catalogue.

" Domain software specifics:
Every tool in the TSTC software catalogue29 has its own specifics, depending on the original group
of developers. The same is true for the availability of the software and its documentation. See the
"Software" row in the table29.

" Software dependencies:
Software dependencies vary from tool to tool. Some tools require a Windows PC and specific
Windows versions; other tools are available for Linux or DOS, or Debian or Ubuntu. See the
"Operating system" row.

" Software structure:
This is different for every tool, further details can be found in the documentation, a link to which
is provided for most tools in the "Documentation" row. One tool uses Github for documentation.

" Development environment:
See the "Software" row in the table29.

" Software distribution:
The software tools are aggregated and distributed via the ordering system of TSTC. There are
references to the original project websites. In March 2016, some of the links no longer worked
(link rot). Those tools have now disappeared from the product list. This makes the problem of
sustainability painfully clear.

" Re-use and development:
The projects were finished between 2007 and 2014 (see "Year" row). The TSTC website does not
provide information on reuse statistics of the tools. All tools except one are freely available. One
has a non-commercial license of 500.

" Organisation:
Before 2013 a team of about four people was responsible for the maintenance of the products and
services of TSTC. In March 2016 just one member of staff was responsible for the upkeep, with
the additional support of an external company hosting the servers and storage. Since April 2016,
the development team of INL has been responsible.

" Users:
There are three target groups who most frequently avail themselves of the TSTC services:
researchers, companies and the general public.

• The products distributed by TSTC are mainly used as research materials by scholars in
the field of Dutch language, linguistics, and language and speech technology. Students
make use of the materials, usually through their faculty or research institute.

• Technology companies use the products to deal with commercial applications. Examples
include spelling checkers and voice telephony.

• Others, i.e. anyone working with source materials regarding the Dutch language,
professionally or out of interest. Most popular in this category are the online dictionaries
such as the Dictionary of the Dutch language (WNT).

" Sustainability aspects:
As a result of the project agreements, the ownership of project results was usually transferred
to the Dutch Language Union (NTU) at the end of the project. When ownership is transferred to
NTU, TSTC becomes responsible for the resource’s lifecycle.
Although TSTC is not a software company and has a finite budget and capacity, several software
packages are taken care of and are being maintained. Within NTU this was based on ITIL best

29 See table in appendix 9

NDE project_final_report_software
sustainability_DEF.docx

 38 | 71

practices. As it is not possible to maintain all software resources all the time, choices have yet to
be made. One possibility is to distinguish and choose between minor and major maintenance.
Another option is to back up (open source) communities via some form of “escrow”. These
possibilities at least provide the assurance that someone will (be prepared to) look after the
sustainability and lifecycle of certain software packages in the future.
The ITIL-based lifecycle model for software sustainability includes the following:

• Management (archiving) keeps software available as is it.
• Maintenance keeps software usable or improves it.
• Making software available gives users access to software.
• Supporting software shortens learning curves.

TSTC distinguishes between minor and major maintenance, which is one solution for the
problem of having a finite budget and capacity – choices are made based on use, user feedback,
severity of bugs, complexity of the software and availability of time, skills and money.

• Minor software maintenance - The aim of minor maintenance is to keep resources
usable, which means fixing critical bugs, updating manuals and documentation and
upgrading the software to work on newer versions of operating systems or with newer
versions of programming languages. Minor maintenance is done by TSTC or their
maintenance partners. Periodically, TSTC checks if resources require minor maintenance
and starts the work after having consulted the owner – often NTU. Feedback from users
is included in these maintenance checks. The result of minor maintenance is usually a
patch or update of a resource. News on any updated versions is published, so that users
can request an update.

• Major software maintenance consists of significantly improving or expanding a
resource. It usually requires additional funding and collaboration with developers and
external experts. Information and advice on which resources should be improved or
expanded is gathered from the various advisory committees that assist NTU and TSTC
and from user feedback collected by the service desk. From this information it is
possible to gather how urgent and/or important the major maintenance is. Major
maintenance usually results in a new version of a resource rather than a patch or
update. News on any new versions is published and users must accept a (new) license.

• “Escrow” - In some cases, software is not handed over to the community, but still to
some extent looked after by TSTC. Agreements with the communities that developed
the software packages ensure that if the community stops supporting the software, NTU
will take over the responsibility for the software’s future lifecycle. This agreement is not
an actual source code escrow, but has some aspects of it and at least ensures future
management and maintenance of the software.

" Referencing:
The website of TSTC is http://tst-centrale.org/nl/.
In the table29 there are references to the individual software tools

NDE project_final_report_software
sustainability_DEF.docx

 39 | 71

6.13 Use case: Digital archaeology – De Digitale Stad

Author: Patrick Aerts

Place, Date of interview: Amsterdam, 14-4-2016

Discussed with: Tjarda de Haan, e-archaeologist at Amsterdam Museum

Abstract
De Digitale Stad (“The Digital City”) was an early nineties project (1994-2001), set up by an
Amsterdam collective to create a virtual city that mimics real city life, or in other words, using the
city as a metaphor to structure and shape the then rather unknown cyberspace, using the most
modern techniques for messaging, communication, information sharing, focused on the city of
Amsterdam. Initially, it was financially supported by the city of Amsterdam. However, at some
point in time in 2001 the project was discontinued. Because the project reflects many aspects of
digital life at the time there is strong renewed interest in all aspects of the former project and
people have started diving into what is left of it. The tapes, servers, codes written, etc. have to be
found back, retrieved from all dispersed sources and made to work again.

" Problem description and background

The Digitale Stad project was conceived by many fathers and mothers, but the best description of
their involvement would be to call them a “collective”. At the heart of the collective were the
cultural centre De Balie and a periodical entitled Hack-Tic (now known as the Internet provider
XS4ALL). Among the driving forces was Marleen Stikker. The group succeeded in getting funds
from the city of Amsterdam, twice €50,000, and some additional funding from other sources.
Much of the work, however, was done by volunteers. It was the first-ever free for all Internet
experience in Europe. The problem today is that since 2001, when the endeavour ended, all of the
materials that made the Digitale Stad operate as it did got dispersed, devices have become
obsolete, software got lost, tapes drift around at various places, data are unknown, link rot and
bit rot, etc.
The Amsterdam Museum started a pilot project in 2010 to safeguard the Amsterdam digital
heritage because this unique heritage, and especially the digital memory of the early Web, is at
risk of being lost. Or worse: already gone. The aim is to answer the questions, involving many
partners: how to excavate, reconstruct, present, preserve and sustainably store born-digital
heritage and make it accessible to future generations? The project is loosely called digital
archaeology, because getting the old stuff together requires a lot of tracing, physical, social,
technical and digital as well. One tape drive was in use as a foot step under a desk, tapes are
being found in cellars and attics, snapshots of websites are being found in Web archives, etc. The
ultimate goal is to get it all working again and display it interactively as a piece of digital history
of Facebook-type dimensions.
There is a follow-on activity hosted at dds.nl: De echte Digitale Stad (“the true digital city”).
Further details about Digitale Stad can be found at https://nl.wikipedia.org/wiki/De_Digitale_Stad
(in Dutch).

" Software engineering:
De Digitale Stad is a complex information system with various applications linked together. It is
interactive, internally networked and process and context aware. It used a telnet interface, static
HTML (2) and interactive Web pages. The operating system was Unix. All tools and designs were
highly sophisticated at the time, but hardly any records were kept, no documentation was made,
there should have been “freezes” but there are not.

" Software distribution:
The software as such was not distributed. Everything ran on central servers, with tape drives and
communication servers directly attached. Users had to log in, using telephone lines and modems.
The rest could be done through the Web interfaces.

" Organisation:
The creators worked together with the local “anarchistic” hackers’ collective, which may give an
idea of the level of organisation at the time. Probably the description “just enough organisation”
would do right to the effort, because after all things worked properly, certainly taking into account
the level of funding. Of course, it makes the archaeological efforts required to get things working
again all the more challenging. On the other hand, a foundation, “Stichting De Digitale Stad”, was
set up in 1995 to provide the funding parties and other governmental organisations with a formal
party to do business with.

" Users:
Basically, everyone was the audience. The heart of the activities was in Amsterdam, but anyone

NDE project_final_report_software
sustainability_DEF.docx

 40 | 71

with an account could participate. Users were called “inhabitants” who could meet up in cafés,
squares, streets, groups. The general public was the audience, which was ground breaking at the
time: Facebook avant la lettre.
Users were not as such involved in testing but the response would guide the designers towards
improvements. The number of users grew relatively fast, given the fact that telephone bills were
still enormous, compared to today: 1994: 12,000; 1997: 60,000; 1998: 80,000; 2000: 140,000.

" Documentation:
Communication and information were considered important for the quick proliferation of the
concept and its use. The national Ministry of Economic Affairs even ordered and financed a book
entitled Handboek Digitale Steden30 (“Manual for the development of Digital Cities”), which was
actually used by other cities than Amsterdam to set up their own cities’ digital versions.

" Sustainability:
Obviously, in this case the lack of sustainability made it necessary to set up an archaeological
quest to find back all the necessary materials, the programs and HTMLs, the equipment on which
the software and peripheral devices worked. As sometimes happens, people took other directions
in life, were interested more in creating than in maintaining, while at the same time access to the
Internet as such became much more affordable for the general public. Anyway, De Digitale Stad
ended pretty suddenly.
Follow the project:

• http://hart.amsterdammuseum.nl/re-dds
• http://hart.amsterdammuseum.nl/23dingenwebarcheologie.

“The reconstruction of The Digital City, a case study of Web archaeology”, by Tjarda de Haan and Paul
Vogel: http://www.bitsandbytesunited.com/?portfolio=publication-the-reconstruction-of-the-digital-city-
a-case-study-of-web-archaeology.

30 Kees Schalken, Joost Flint, Handboek Digitale Steden, January 1995.

NDE project_final_report_software
sustainability_DEF.docx

 41 | 71

6.14 Use case: Born digital art – SHFT-34

Author: Gaby Wijers
Concerns time frame: 1982-2007

Discussed with: Peter Struycken

Abstract
This case concerns the process that the SHFT-34 program went through from its origin to its
present form. It is an historic form of digital art, formerly owned by the Groninger Museum, but
the original code got lost. The case describes the preservation route and the issues faced on this
journey, which may be a prototype of other similar challenges in digital art preservation.

" Problem description and background

Peter Struyken (Den Haag, 5 January 1939) is a Dutch figurative artist and colour expert. He
started producing computer art as early as 1969.
SHFT-34 is a version of the SHFT program. Different sets of parameters determine its behaviour.
Peter Struycken has produced other works that include the name SHFT followed by a number.
Examples are “SHFT-30” and “SHFT-31” (1982). SHFT works can also be photographs, paintings
etc. on which the computer program was used to extract stills.
SHFT-34 is a computer program written between 1981-1982 in the Pascal programming language.
The work was created for permanent display in a coffee corner of the Groninger Museum. Due to
a reorganisation of the museum, the permanent positioning was postponed. After the
reorganisation it turned out that a vital part of the machine had gone missing; it was never found
again. Only ten years later, SHFT-34 was found on the computer of a retired technical staff
member of the museum. Thanks to this discovery the work could be exhibited again, but with the
standalone machine missing, not in its original setup.
Several attempts were made to make the program run again.
In 2006 an attempt was made to run SHFT-34 on a modern computer. Technology had advanced
considerably since the conception of SHFT-34 and it did not work on the prevalent systems. In
2007 Floris van Manen reprogrammed SHFT-34 to Java. Whereas the hardware in the 1980s held
a lot of restrictions in terms of speed and overall possibilities of the program’s functioning,
contemporary technology in 2007 allowed for enhancement. Van Manen and Struycken did make
some changes that according to them improved the work while staying true to the authentic
version. The changes consisted of two different view modes and a click-and-drag option which
allows the viewer to “move” through the colour space by hovering the mouse. The interactive
options in the reprogrammed version help the viewer to better understand the colour space as a
whole.

" Software (re-)engineering:
There were no versions of the original code in existence, so the SHFT-34 software was rewritten
in Java, although Java is rarely used by artists. Java runs on most operating systems among
which the most popular ones: Windows, MacOSX and Linux. So SHFT-34 with Java Runtime
Environment is OS-independent. Today SHFT-34 also runs on Java 8 update 91 (2016).
Because even in Java there are no guarantees that the software will keep running on ever newer
technologies, sustainability methods were explored to freeze the present running environment. An
open source operating system for SHFT-34 that also runs as a virtual machine is Debian 7. For
this open source all versions remain available.
Furthermore, the virtual machines Vmware and Virtual Box were tested under Windows, MacOSX,
and Linux (Debian en Ubuntu). On all these versions SHFT34 kept on working.
As a result of this research, LIMA was able to design a workflow for intake and handling of
digital/software based art. These and related findings will be published in the summer of 2016.
At the time of development, no development environments other than text editors were in
existence.

" Distribution:
The art work has a limited scale distribution on CD-ROM. On the CD-ROM the SHFT-34 program is
distributed together with Java JRE for Windows, MacOSX and Linux. A double click is sufficient to
start it up, but in the OS the system can also be made to auto run.

" Organisation:
At the start of the reprogramming project, there was close cooperation between Peter Struycken
and Floris van Manen. For the virtualisation Paul Jansen Klomp came to assist them.

NDE project_final_report_software
sustainability_DEF.docx

 42 | 71

The broader context was the Transformatie Digitale Kunst project with the Behoud Moderne Kunst
foundation.

" Documentation:
The use of SHFT-34 is described in a pdf on the above-mentioned CD-ROM. The documentation is
rather extensive and an interview with the artist is available at LIMA.
SHFT is fairly “fool proof” because as an art object it was designed to be open to the general
public. Basically, it is available for anyone who cares to buy it. In practice this means museums
and art collectors.

" Users:
The software is well appreciated by the users (basically the general public).

" Ownership:
The artist, the programmer, the conservation manager and all who bought the object consider
themselves owners of the artefact.

" Sustainability:
The art work in its present form (in Java) is made for sustainability. The formal owners (Rabo
Kunstcollectie and Kröller-Müller Museum) have handed the conservation task to LIMA.
The workflow resulting from the project can and will be re-used.
The cost of the conservation project will be some €10,000 excluding hardware, software and other
equipment.

6.15 Observations from the use cases
The use cases presented are of course just snapshots of individual events, processes and
situations. As they show, each of them is primarily a standalone case. But in addition to the
common elements described in Paragraph 6.2, it is safe to state that software generally does not
seem to have been created with sustainability in mind, with the exception of the very recent
eSTeP case. The outcome is discomfort with the situation: service disruption, data inaccessibility,
non-functioning digital art objects, history gaps, etc. It seems that in most cases such
consequences could basically have been avoided if some precaution measures had been taken
from the outset.

NDE project_final_report_software
sustainability_DEF.docx

 43 | 71

7 International initiatives

7.1 Introduction
Although no attempt will be made to give a full account and an exhaustive overview of
international activities, some elements of international programs and organisations will be
presented to show that international cooperation in this domain may well be effective and
worthwhile.
Part of this overview is composed from an earlier inventory made by the Alliance for Software
Sustainability in the Netherlands, whose members deserve credit for it.
Wikipedia also has an entry on Digital Preservation Projects/activities31 with over 20 projects,
which however seems far from complete.

7.2 Knowledge Exchange group (KE)
In 2005 the Knowledge Exchange (KE) group was formally established by four partners, Jisc,
SURF, DFG and DEFF. In January 2013 they were joined by CSC as a fifth member. The KE group
focusses on digital technologies for innovative opportunities to advance research and higher
education in which open scholarship is one of the opportunities. The KE group decided in 2015 to
also focus attention to software sustainability. They organised their first workshop, with more to
follow.

7.3 UNESCO Persist
[https://www.unesco.nl/digital-sustainability]
UNESCO is concerned with cultural heritage in general. The UNESCO Persist programme focusses
on software sustainability, among other topics. The UNESCO works closely together with major
vendors to address digital heritage issues to come to practical solutions to legislative, copyright or
patented digital material barriers.

7.4 Digital Preservation Coalition
On 1 August 2016, this UK-based organisation turned itself into an international organisation. Due
to the recent nature of this decision, the DPC will be discussed under “UK” here.

7.5 Software Heritage Project
On 30 June 2016 a new international project started in France, presently referred to as the
Software Heritage Project. It involves a huge effort, which emerged from INRIA with
acknowledged support from significant parties such as UNESCO, IEEE Software, ACM Sig Soft,
Informatics Europe, FSF, OSI and others. From the Netherlands, the NLnet foundation has
donated funds to this unique project to help kick-start it. The Software Heritage mission is to
collect, organise, preserve and share as much software (especially source code) for posterity as
possible. This is complementary to other efforts, such as the Internet Archive, which do not have
an adequate preservation strategy for these kinds of complex code resources. The project was
due to go public by the end of June 2016 and has already collected 2.5 billion artefacts from tens
of millions(!) of software projects so far – a collection of significant cultural, scientific and
historical importance. Not only was the Software Heritage able to take over the entire Google
Code archive (which was taken down with millions of projects), it has also salvaged all projects on
Gitorious and a few other online repositories with large amounts of code. It also keeps track of
other large live sources, such as Github and GitLab.
As of 1 July, DANS is official partner in this project, where it will provide access to the material at
hand once a user interface has been developed.

31 https://en.wikipedia.org/wiki/List_of_digital_preservation_initiatives

NDE project_final_report_software
sustainability_DEF.docx

 44 | 71

7.6 PLAN-E
[http://Plan-Europe.eu]
The Platform of National eScience Centers in Europe (PLAN-E) was formed in 2014 by the public,
mostly university-linked eScience centres in Europe that have a national or regional role. This
platform is concerned with promoting eScience and data research as a research domain and with
sharing and promoting the common interests of this community. Software sustainability and data
stewardship are on the permanent agenda of this platform. This is all the more important because
the members of this platform are supposed to have direct and concrete access to the educational
channels of the universities, both for graduate and for post-graduate education.
PLAN-E membership is based on agreed Terms of Reference and the platform now has members
from over 20 countries. Conceptually PLAN-E resembles the Dutch ePLAN platform.

7.7 Commercial initiatives
This is just a reminder that industry is concerned with heritage preservation, in particular digital
heritage, mostly but not entirely data-oriented. Mentioning names means missing out most, but
IBM, Google and EMC are worth mentioning. IBM were involved in software preservation at an
early stage, Google are investing a lot in digitizing documents and creating archives (on the other
hand, they show more link rot than any other party, which is not their fault) and EMC32, originally
mainly involved in storage solutions and now offering complete cloud solutions and more, has a
very nice page on cultural heritage initiatives33.

7.8 UK
The UK has been active in the field of Digital Heritage and data and software curation as well as
hardware conservation.

7.8.1 Centre for Digital Heritage, University of York
[https://www.york.ac.uk/digital-heritage/]
The Centre for Digital Heritage is an international research centre that brings together researchers
from the Universities of Aarhus (Denmark), Leiden (Netherlands), Lund (Sweden), Uppsala
(Sweden), Zhejiang (China) and York to undertake interdisciplinary research into digital heritage,
including data management, analysis and visualisation. The Centre is open to all researchers in
these exciting fields, and to their external collaborators. No special attention is dedicated to
software.

7.8.2 Digital Preservation Coalition
[http://www.dpconline.org/]
The Digital Preservation Coalition (DPC) enables its members to deliver resilient long-term access
to digital content and services, helping them to derive enduring value from digital collections and
raising awareness of the attendant strategic, cultural and technological challenges they face. It
achieves its aims through advocacy, workforce development, capacity-building and partnership.
The DPC has a very extensive list of members, private and public, from the Bank of England and
the European Central Bank to the British Library, from universities to the BBC. It also boasts an
extensive list of associate partners around the world.
DPC has scheduled a publication on software sustainability in 2017.
From 1 August 2016, membership of the DPC has been open to international organisations (the
NCDD was already an associated member). From now on, the DPC will therefore be considered an
international organisation.

7.8.3 The Software Sustainability Institute (SSI)
[http://www.software.ac.uk/]
The SSI is a national facility in the UK for cultivating world-class research through software. The
Institute is based at the universities of Edinburgh, Manchester, Oxford and Southampton, and
draws on a team of experts with a breadth of experience in software development, project and

32 http://www.emc.com/corporate/emc-at-glance/corporate-profile/index.htm
33 http://www.emc.com/corporate/sustainability/strengthening-communities/heritage.htm

NDE project_final_report_software
sustainability_DEF.docx

 45 | 71

programme management, research facilitation, and publicity and community engagement.
Sustainability means that the software of today will be available – and continue to be improved
and supported – in the future. The goal of the SSI is to make it easier to rely on software as a
foundation of research. They help people to learn the skills needed to build better software, and
ensure that people get credit and encouragement for developing sustainable software. They work
with research groups from all disciplines, which gives them a broad understanding of the
problems researchers face when using software. They use this expertise to ensure that the right
choices are made about the software used – and pitfalls are avoided. The SSI works with
researchers, developers, funders and infrastructure providers to identify the key issues and best
practices surrounding scientific software.
One of the instruments the SSI uses to get their message across and develop tools and problem
insights in different disciplines is the fellowship. The Institute has appointed 17 fellows to take
forward their plans to improve research software and make a difference in their research
domains.
The fellows represent domains ranging from archaeology to psychology and from computer
science to earth systems.
How do scientists develop and use scientific software? Many researchers spend time programming
new software tools for their research. Software testing is usually neglected, and sustainability is a
subject that is often overlooked. According to SSI director Neil Chue Hong, sustaining the function
of scientific software is more important than sustaining its form. The challenges of sustaining
software involve much uncertainty surrounding authorship, boundaries, versioning and
granularity.

The core of the SSI mission is to stimulate the reuse of software. This is not an easy task,
because there is little reward in it. The problems are as difficult in the humanities as they are in
the sciences. What the SSI started doing more than ten years ago is not the same as what it is
doing today. In 2001, the UK eScience programme prepared the ground for the SSI. OMII-UK
(http://www.omii.ac.uk/) provided and supported free, open-source software for the UK e-
Research community. The project came to an end in December 2010. OMII-UK helped new users
get started with e-Research, and provided software and support. The project also improved the
provision of e-Research software by commissioning developers to create software to meet the
needs of the research community. However, OMII appeared to be too expensive to be effective in
the long run.

In a second effort, a project approach was followed. Project funding works fine to sustain software
as long as you have project money.

A third endeavour concentrated on cultivating and nurturing software, for instance in the Engage
programme. This worked better, and from this grew the SSI in its present form (see
http://www.software.ac.uk/).

There is now less money available for software sustainability. EPSRC, for instance, estimated that
over the last five years it has invested approximately £9m a year in software.

SSI offers expertise, not money. SSI has the policy and the tools to support community software
development. The key drivers are researchers who want to be productive and at least not worse
than their peers. This is their reward for sustaining their software. The approach is one of self-
reliance. Researchers should be selfish about their software: they do it primarily for themselves.
Better software leads to better research. Approaches relying on the altruism of researchers run a
great risk of failing.

Sustainability is less about the robustness of the code than about the robustness of the team that
developed the software.

The SSI now has nine staff members. Their main activities are community engagement (e.g. by
providing fellowships), consultancy (such as software evaluation), policy development, and
providing publicity and training.
The SSI works in cooperation with CeRCH (Centre for eResearch) at King’s College London. The
size of the community that wants the software to survive is crucial, which can be demonstrated by
the use of the software. The software needs to be so robust that it can be installed and used by
others.
Services of SSI are:

• SSI Guides
• Briefing papers
• Blogs to spread information and opinions

NDE project_final_report_software
sustainability_DEF.docx

 46 | 71

• The much appreciated service “Ask Steve!” (for technical questions)
• International software carpentry initiative to teach software-development to researchers
• Software sustainability surgeries: advice on code that users are developing
• The meta journal “Journal of Open Research Software”.

The SSI has 15 fellows, who act as software ambassadors in their domain. They are not
developers, but researchers who lead the software development and who use software. Their
costs taken together are less than one staff member (FTE).

Lessons learned:

• Providing general training on software development for research tools is not cost effective.
• It is easier and more efficient to build and sustain products built on platforms and pipelines

than to make existing tools more generic.
• Setting priorities for the reuse of software is unavoidable.
• Build and sustain the right skills.
• International, large scientific collaborations and joint software efforts are useful.
• In summary: do not focus on preserving software, focus on efficiency of research, re-use,

skills, and collaboration. Software sustainability is not easy, but it is possible.

7.8.4 Future-Proof Computing Group, University of Portsmouth
[http://www.port.ac.uk/centre-for-cultural-and-industrial-technologies-research/research-
areas/#future]
The Future-Proof Computing Group at the University of Portsmouth is part of the wider Creative
and Cultural Industries Faculty. One of the themes that have emerged from recent experiences is
that many complex objects in software, art and archaeology are hybrid, i.e. partly physical, partly
digital. This presents a new level of challenge for memory institutions that may have a different
set of rules for each kind of object (such as for paintings, drawings, sculptures per material type,
musical instruments, etc.).

7.8.5 The Computer Conservation Society
[http://www.computerconservationsociety.org/]
This UK-based society is concerned with the conservation of hardware (computers and
peripherals), but also devotes attention to developing preserved software for historical computers,
many of which have long since passed into oblivion. According to the CCS’s website34, in order to
make this activity meaningful and to allow for the possibility of writing new programs for dead
computers it is sometimes necessary and always useful to implement emulators: programs which
run on modern computers but which interpret programs written for the target machine and cause
them to be executed in much the same way as the hardware of the original computers once
interpreted the instructions of their programs and carried out those instructions. So they create
emulators and keep a list of them. That also the emulators themselves get outdated can be
deducted from the fact that some of them are written for MS-DOS machines! Interesting website,
anyway.

7.9 Australia: Australian National Data Service (ANDS)
[http://ands.org.au/]
The Australian National Data Service (ANDS) was established in January 2009. ANDS was
originally created as part of the National Collaborative Research Infrastructure Strategy (NCRIS)
initiative to ensure that research data is used as effectively as possible by Australian researchers.
The Super Science initiative announced in May 2009 provided additional funding from the
Education Investment Fund (EIF) to establish the Australian Research Data Commons (ARDC).
ANDS exists to transform Australia’s research data environment by making Australian research
data collections more valuable though managing, connecting, enabling discovery and supporting
the multiple use of this data. The purpose of this activity is to enable richer research, more
accountable research, more efficient use of research data, and improved provision of data to
support policy development. The outcome of this activity will be that Australia’s research data as
a whole will become a nationally strategic resource. Rather than institutions just meeting ANDS’

34 http://www.computerconservationsociety.org/software/software-index.htm

NDE project_final_report_software
sustainability_DEF.docx

 47 | 71

goals, the team will encourage organisations, research groups and researchers to realise their
research data ambitions.
Since the end of 2013 researchers across all disciplines that use research data are represented in
the Australian Research Data Commons, and nearly all research institutions have improved their
research data management, leading to routine publication of their data with ANDS persistent
identifiers into a data store that feeds information to the ANDS collections registry. In addition,
researchers are able to find a wide variety of datasets using the ANDS data pages through a
variety of discovery paths, and more institutions will be successfully engaged in meeting their
responsibilities described in the Australian Code for the Responsible Conduct of Research. Most
importantly, ANDS has engaged the research community to the extent that for researchers to
publish their research data has become standard practice.
Suggested questions to assess software development according to ANDS:

• Does the institution have the capacity to develop or modify software as required?
• Does the institution have the expertise to recommend alternate solutions to time-intensive

custom-developed development or modification?
• If a dataset is generated by custom-developed software, has that software (and the relevant

documentation) been archived?
• If a dataset is generated by commercial or off-the-shelf software, have any customisation or

configuration settings been archived? Are there alternative open-source tools available for other
researchers without access to commercial software?

• If a dataset requires custom or off-the-shelf software for basic access (e.g. decompression),
have any settings or customisations needed to access the data been specified with the
metadata?

ANDS does not presently have a direct link to software sustainability.

7.10 Denmark: Royal Library

7.10.1 DEFF, the Danish Electronic Research Library
[http://www.deff.dk/english/]
DEFF, the Danish Electronic Research Library, is a member of the Knowledge Exchange Group and
therefore involved in software sustainability research.

7.10.2 Danish Royal Library
[http://www.kb.dk/en/nb/]
The Royal Library maintains two collections containing electronic games; one physical and one
completely digital. Through the Danish Legal Deposit Act the library acquires games published on
physical media types (CD-ROM, DVD-ROM, cartridge, etc.). Presently their collection of physical
video games comprises approximately 1.300 "Danish" games for a wide range of game systems
and OSs. The other collection is the Web archive Netarkivet which is maintained by The Royal
Library and The State and University Library in Aarhus. They perform extensive harvests of
Danish websites including online game publications. Presently they have at least 120 functioning
(Danish made) online games in their Web archive and probably an even larger number of defunct
or partially defunct games. The games are in various formats including Unity3d, Flash, and Java.
The Library also is in possession of a small number of "download only" console games (WiiWare,
Xbox Live Arcade, etc.) that are currently only stored on the consoles themselves. No app games
(iOS, Android, etc.) are in the collection yet. (Taken from the website.)

7.11 France
Biblothèque Nationale de France (BNF) has a Web archiving team which is, among other things,
working on Flash, Flash video and streaming content.
The French academic research landscape is scattered35: in terms of national budget there are 20
main research institutes, among which CNRS (19%), CEA (14%), INRA (5%), Inserm (5%) and
Inria (<2%). There is presently no software-specific policy in place and the academic software

35 The following is based on information provided by the French membership of PLAN-E (Dublin, 9-10 May
2016)

NDE project_final_report_software
sustainability_DEF.docx

 48 | 71

producers are free to organise their software production and diffusion. However, there are a few
initiatives regarding software sustainability with a national scope: SourceSup, CeCILL, Plume, and
some professional networks and entities to link academic work to industry and SME’s.

- SourceSup36: national academic forge "La forge Enseignement supérieur et Recherche",
provided by CRU and after that by Renater (NREN) since 2004. This project hosts software
development projects for academic research and universities and their collaborations.
Currently there are 489 visible hosted projects, all open source technologies (subversion, git,
Jenkins, Sonar, Nexus...). Authentication is done with the "federation Éducation-Recherche"
identity federation (266 identity providers and catch all for external collaborations). It has a
complete set of functionalities: link with Renater mailing lists server (Sympa37), possibility of
project website, building, deploying and automating tools (Jenkins), code quality (Sonar),
documentation management (Nuxeo). There are other institutional or thematic forges.

- CeCILL licenses38. The CeCILL family licenses are developed by CEA, CNRS and Inria since
2005. The arguments: “Today Free Software is important in the scientific community as well as
in administrations and in the enterprise. Nevertheless, the use of licenses created in the US,
such as the GNU General Public License raises some legal issues. These issues may lead to
uncertainties that may prevent some companies and organisations to contribute Free Software.
To provide a better legal safety while keeping the spirit of these licenses, three French public
research organisations, CEA, CNRS and Inria launched a project to write Free Software licenses
conforming to French law. " CeCILL-A is designed to be fully compatible with GNU GPL.

- Plume39: to Promote economicaL, Useful and Maintained softwarE For the Higher Education
And THE Research communities. Plume is mainly supported by CNRS 2006-2013. The portal
provides a software catalogue, mainly Free/Libre Open Source Software (FLOSS) that is used
and/or produced in universities and national research organisations, laboratories or
departments. It presently involves 2200 members, 950 contributors, 18 themes, 1270 index
cards, several keywords levels including institutes and user's classification, and is based on
open source technologies (Drupal...). Typical actions: topical workshops and training sessions
oriented to software development (tools, dissemination, IPR and licenses...) or targeting
community building around software interest, cross-disciplines experience sharing. Due to lack
of resources the project was frozen in mid-2013, but the information and the platform are still
online.

Plume & research software: Several research units (ICJ, LAAS, LIGM) required research software
descriptions in Plume to disseminate their software production. Some results: 350 research
software products produced in French laboratories descriptions (1/3 translated in English); actions
on software dissemination (documentation, guidelines, about 10 workshops); work on legal issues
(French IPR laws and licenses); PLUME-FEATHER: https://www.projet-plume.org/eng.
Professional networks:

- DevLOG40: software developers, officially supported by CNRS since 2001. Mailing list: 1000
subscriber. Main actions: JDEV annual conference, topical workshops and training sessions
(software development, dissemination, IPR and licenses), community building, cross-disciplines
experience sharing

- RBDD41: databases professional network officially supported by CNRS since 2012. Mailing list:
350 subscribers. Main actions: recommendations, workshops and training sessions (databases
and related tools development, dissemination, IPR and licenses, cross-disciplines experience
sharing).

Other professional networks are focused on regions, disciplines (scientific computation such as
"Groupe Calcul"...) or institutes. They are federated at the national level.
Future initiative: IdGC together with other CNRS laboratories and European partners have
submitted a proposal about software, awaiting granting.

36 https://sourcesup.renater.fr/
37 Sympa is an open source mailing lists server created by CRU and provided as a service by CRU then Renater
since 1997 for the research and universities members
38 http://www.cecill.info/index.en.html
39 https://www.projet-plume.org
40 http://devlog.cnrs.fr/
41 http://rbdd.cnrs.fr/

NDE project_final_report_software
sustainability_DEF.docx

 49 | 71

7.12 Germany
The DFG is a member of the Knowledge Exchange Group.

7.12.1 Technical University of Munich
1) [https://sustainability.wiki.tum.de/Sustainable+Software]
The Technische Universität München has attention for sustainable software rather than for
software sustainability at large. The emphasis is on designing software that not only can be
maintained but is also environment-friendly (green software).
2) [http://www4.in.tum.de]
The Fakultät für Informatik, dep. „Software and systems Engineering Research Group”, does
research and provides services on software maintenance. It has a competence centre for software
maintenance (http://www4.in.tum.de/research/maintenance/index.shtml) and a competence
centre for the assessment of software quality.
3) A recent publication by Joan Morales Tua presented at the university, “Metrics for

Sustainability and applicability to Software” addresses sustainability criteria to software
(http://www4.in.tum.de/lehre/seminare/WS1112/UPC-EnviroSiSE/Joan_KPIforES.pdf), in the
context of environmental sciences, but not specifically the sustainability of the software itself.

7.12.2 University of Freiburg
[http://bw-fla.uni-freiburg.de/wp-uploads/bw-fla.uni-
freiburg.de/2012/03/strategy_paper_KEEP_expert_workshop_Joining_Forces_Berlin_final.pdf]

The University of Freiburg has a digital preservation group at the computer science department
working on different aspects of emulation, such as emulator integration (offering, among other
things, emulation to library and archive users), emulator testing (automatic testing of new
versions, regression tests, unit testing, workflows to integrate new versions of emulators before
using them), measurement and metrics for runtime, extended object life-cycle management. They
design systems that can be virtualised and later emulated to ensure accessibility after the out-of-
service declaration, workflow automation of any interactive GUI digital ecosystems (independent
of operating systems such as Windows, Mac OSX or Linux).
The group is also working on software archiving on different levels: from archiving the single
software components to complete installations of original environments and complete machine
dumps.

7.12.3 Karlsruhe University
Another publication, realised by the Forschungszentrum Informatik of the University of Karlsruhe,
is called Towards Software Sustainability Guidelines For Long-living Industrial Systems, by Heiko
Koziolek, Roland Weiss, Zoya Durdik, Johannes Stammel, Klaus Krogmann, Industrial Software
Systems, ABB Corporate Research Ladenburg, Germany, Forschungszentrum Informatik (FZI),
Karlsruhe, Germany (http://subs.emis.de/LNI/Proceedings/Proceedings184/47.pdf).

7.13 The Netherlands

7.13.1 SURF
[www.surf.nl]
SURF is the collaborative IT organisation for Dutch higher education and research.
Among many other things SURF runs the Coordination Office for Research Data Management
including, for the time being, software sustainability. This activity is allocated to SURFsara. SURF
is also a member of the Knowledge Exchange group (but leaves the practical representation to
NLeSC and DANS).

7.13.2 NWO
[www.nwo.nl]
NWO is the Netherlands Organisation for Scientific Research (the national funding organisation). It
has funded CATCH (Continuous Access To Cultural Heritage), one of the projects in the use case
list (see 6.4). In that sense NWO has demonstrated the importance of actions towards the
sustainability of cultural heritage. However, the software developed under that programme was

NDE project_final_report_software
sustainability_DEF.docx

 50 | 71

not yet constructed with sustainability in mind in the practical sense, as can be read in the use
case. NWO, however, is involved in the SURF coordination efforts for research data management
and is preparing action towards sustainability of data and software resulting from funded projects.

7.13.3 DANS
[www.dans.knaw.nl]
DANS (Data Archiving and Networked Services) is an institute founded by NWO and the KNAW
(Royal Academy for the Arts and Sciences). DANS is concerned with providing data services to
researchers. DANS provides various sorts of data storage, archiving and access services, adds
value to datasets and archives by adding metadata and making them searchable. DANS hosts no
storage facilities. Together with NLeSC, DANS is responsible for putting software sustainability on
the map and on the national and European agendas. Although SURF is the KE member from the
Netherlands, in practice DANS (with NLeSC) fills in this membership regarding software
sustainability, both policy-wise and technical. Together, DANS and NLeSC have issued the vision
document Research Software at the Heart of Discovery, which deals solely with software
sustainability. DANS has also published a policy document directed to the practical
implementation of policies: A Conceptual Approach to Data Stewardship and Software
Sustainability. Moreover, DANS has conceived the idea of a Software Seal of Approval to be
allocated to software creators and/or software products that have taken into account prescribed
conditions. This idea is being implemented internationally, together with the SSI (UK) and the KE
for starters.

7.13.4 NCDD and NDE
[http://www.den.nl/pagina/511/netwerk-digitaal-erfgoed/]
[http://www.ncdd.nl/]
The Nationale Coalitie Digitale Duurzaamheid (NCDD) (National Coalition for Digital
Sustainability), part of the Netwerk Digitaal Erfgoed (NDE) (Network for Digital Heritage), has
started research activities towards software sustainability for the Cultural Heritage sectors, the
National Archive, the National Library, and the Sound and Vision and Science domains. The
Science domain is represented by DANS, to which the compilation of this document has been
allocated. This document is a result of that activity.

7.13.5 NLeSC
[http://www.esciencecenter.nl]
The Netherlands eScience Center (NLeSC) is a public organisation with a national scope,
concerned with accelerating scientific discovery, through the supported use of the most modern IT
and innovative ways to deploy the IT-infrastructure as a whole in scientific cooperative projects.
Together with DANS, NLeSC contributes to national policies regarding data stewardship and
software sustainability. Policy documents are issued and presented to policy and funding
organisations in the Netherlands. NLeSC has defined an eScience Technology Platform (eSTeP –
see Paragraph 6.7), covering the internal research within NLeSC to sustain the quality of its
services together with a catalogue of quality approved software (either developed at NLeSC or
adopted from elsewhere but with proven quality). NLeSC is concerned with re-usability of
software and data and with creating software with a minimal maintenance footprint.

7.13.6 ePLAN
[http://escience-platform.nl]
The Platform of eScience/Data Research Centers in the Netherlands (ePLAN) is formed by the
public, mostly university-linked eScience and Data Science/Data Research centres in the
Netherlands. This platform is concerned with promoting eScience and data research as a research
domain and with sharing and promoting the common interests of this community. Software
sustainability and data stewardship are on the permanent agenda of this platform. This is all the
more important because the platform members are supposed to have direct and concrete access
to the educational channels of the universities for both graduate and post-graduate education.

7.13.7 Legacy Coalitie NL
https://www.dutchdigitaldelta.nl/en/about-us
http://www.nwo.nl/over-nwo/organisatie/nwo-onderdelen/ew/bijeenkomsten/legacy+coalitie+nl
(only in Dutch)

NDE project_final_report_software
sustainability_DEF.docx

 51 | 71

The Dutch Digital Delta, a cooperative organisation supported by NWO, EZ, TNO and ECP, has
launched an initiative under the name of Legacy Coalitie NL. The goal of this effort is to improve
the management of the negative effects of software legacy (in order to improve the
competitiveness of Dutch business and industry). This initiative, the contents of which are led by
NWO and Inseit (http://www.inseit.nl/) started with a kick-off meeting on 12 January 2016. The
idea behind this initiative is that a large amount of IT expenditure, (75% is mentioned) goes to
maintaining legacy software. Improving this situation should yield a competitive advantage.
An activity like this touches on the domain of software sustainability, but from quite a different
point of view and not aimed at maintaining heritage. Rather the opposite. From the outcome of
the research by this coalition, however, a lot may be learned regarding proper coding practices for
building maintainable software. This adds to the eSkills that should be part of education and
training schemes for making software in the first place.

7.14 USA

7.14.1 CSESSP Workshop
[https://www.orau.gov/csessp2015/agenda.htm]
The Computational Science and Engineering Software Sustainability and Productivity Challenges
(CSESSP) Workshop (Hilton Washington DC/Rockville Hotel & Executive Meeting Center, Rockville,
MD, 15-16 October 2015) yielded quite a lot of relevant presentations, which can be obtained via
the Web link above.

7.14.2 Software Infrastructure for Sustained Innovation (SI2 -
SSE&SSI)

Software is an integral enabler of computation, experiment and theory and a primary modality for
realizing the Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21)
vision, as described in http://www.nsf.gov/pubs/2010/nsf10015/nsf10015.jsp. Scientific discovery
and innovation are advancing along fundamentally new pathways opened by development of
increasingly sophisticated software. Software is also directly responsible for increased scientific
productivity and significant enhancement of researchers' capabilities. In order to nurture,
accelerate and sustain this critical mode of scientific progress, NSF has established the Software
Infrastructure for Sustained Innovation (SI2) programme, with the overarching goal of
transforming innovations in research and education into sustained software resources that are an
integral part of the cyberinfrastructure.

SI2 is a long-term investment focusing on catalysing new thinking, paradigms, and practices in
developing and using software to understand natural, human, and engineered systems. SI2's
intent is to foster a pervasive cyberinfrastructure to help researchers address problems of
unprecedented scale, complexity, resolution, and accuracy by integrating computation, data,
networking, observations and experiments in novel ways. NSF expects that its SI2 investment will
result in robust, reliable, usable and sustainable software infrastructure that is critical to achieving
the CIF21 vision and will transform science and engineering while contributing to the education of
next generation researchers and creators of future cyberinfrastructure. Education at all levels will
play an important role in integrating such a dynamic cyberinfrastructure into the fabric of how
science and engineering is performed.

It is expected that SI2 will generate and nurture the interdisciplinary processes required to support
the entire software lifecycle, and will successfully integrate software development and support
with innovation and research. Furthermore, it will result in the development of sustainable
software communities that transcend scientific and geographical boundaries. SI2 envisions vibrant
partnerships among academia, government laboratories and industry, including international
entities, for the development and stewardship of a sustainable software infrastructure that can
enhance productivity and accelerate innovation in science and engineering. The goal of the SI2

programme is to create a software ecosystem that includes all levels of the software stack and
scales from individual or small groups of software innovators to large hubs of software excellence.
The programme addresses all aspects of cyberinfrastructure, from embedded sensor systems and
instruments, to desktops and high-end data and computing systems, to major instruments and
facilities. Furthermore, it recognises that integrated education activities will play a key role in
sustaining the cyberinfrastructure over time and in developing a workforce capable of fully
realizing its potential in transforming science and engineering.

NDE project_final_report_software
sustainability_DEF.docx

 52 | 71

8 Software types
8.1 Semantics

Various terms are being used to refer to software, of which software, (computer) program, tool,
application, app, code, source, interface and firmware seem to be the most common. We will not
try to produce strong definitions, as these terms have grown their own domains of deployment
over decades and are commonly used quite synonymously to a large extent. Yet their differences
are characteristic as well. As an introduction to a more detailed classification of software, a
shorter and more intuitive approach to characterizing these common terms is given below.
Software will be defined as the generic term denoting any piece of readable computer code in any
type of language including assembler and microcode, from which by an interpreter or compiler an
executable version can be made to be executed on a specific or general computer system. It is to
be noted that in some cases42 a distinction has been made between software and application in
that software were to be synonymous to system software in contrast with an application. An
application is then a code that uses system software to run on a computer. We do not follow that
distinction.
Under system software a whole new category of distinct functionalities can be discerned, such as
the operating system, the runtime system, the compilers, the scheduler and more.
A (computer) program, although basically the same as software, will be used more as a synonym
to application.
A tool is a piece of software that serves a specific mostly technical function on a computer or in a
computer program. So there are tools to analyse data, to apply specific changes to photos, to
tune the behaviour of a program or a computer, to convert formats or data or file types into each
other, and other comparable actions. Specifically, linguists’ tools encompass parsers, tokenisers,
taggers, named entity recognisers.
An application is a piece of software that serves a specific (end-user) goal to conduct research,
process and analyse data, up to and including running major processes, such as in banking,
insurance companies’ transactions, traffic control and other monitoring and basically all other
computer activities not named differently. It can also be considered a piece of software that is
shipped as a unit, can be installed (using installers) on a computer system, and – when properly
created – has a history of versions and updates. Enterprise applications can be very extensive in
nature.
An app is a relatively new phenomenon that emerged with the smartphones. It is basically a pre-
compiled piece of software (mostly of the “tool” type), running on a specific type of hardware or
even only under a specific version of the operating system to perform a specific and mostly rather
limited number of functions. But games and other types of programs are also called apps if
designed to run on a smartphone or mobile device. Although it is the purpose of this exposé to try
to distinguish between the terms mentioned, in actual fact there is a continuum from website to
app to application.
The term code refers to the very content of a piece of software, either in original readable form
(source or source code) or in machine readable format (machine code). The physical contents of
all other terms can be referred to as code. Running Java involves Java producing readable
instruction code (comparable to an assembler) for a virtual machine. This code is called “byte
code”.
A source is any piece of software that is still in readable form (in its “original” state) in contrast to
the end stage before the software can run on a computer, namely the executable code.
An interface is a piece of software that communicates with two (or more) different environments.
Such an environment can be different programs, operating systems, devices or also a device
(computer) and a user (user interface).
Firmware is software installed by “the firm” that produced the hardware and comes with the
device (a CPU, memory module, disc drive, USB device, …). Often, it is not changed after
installation, but increasingly more often it is updated.

8.2 Software classification
In order to get a better view of what it takes to certify software, an attempt is made to distinguish
different types of software. The way in which this is done is by no means unique, but below
different axes of characteristics are presented, which provide a multidimensional picture of the
matter. After that the domains from this multidimensional space can be selected that could be

42 This distinction was introduced by the US partners in the EXASCALE PROJECT and was not
agreed upon

NDE project_final_report_software
sustainability_DEF.docx

 53 | 71

addressed by a seal of approval. This can subsequently be used to narrow down a particular
discussion on software sustainability in a domain to a limited set of software types.

8.2.1 Firmware
Firmware is software of which the executable runs at the heart of a device: the disc drive, the
network interface, the CPU, the USB-device and many other small devices such as used in
automobiles. It is essential software to make the hardware function as it should. It resides on the
hardware component as an essential part of it and is as such not part of the operating system.
The term is presently eroding because in the world of smartphones the Operating System is often
also denoted as firmware. And Operating Systems generally interact closely with the firmware of
the peripherals (disc, memory, sound and video cards, screen, USB ports etc.).
Firmware used to be rarely adapted after installation, but increasingly more often is needs to be
changed. Changes may introduce additional functionality or improvement of the behaviour of the
device, but may also be necessary to adapt to changing environments (the OS of the most
machine for example).
For the sake of this document a mobile device’s operating system will not be called firmware but
be classified as an operating system.
In the context of software sustainability firmware may be relevant when emulating the
environment in which obsoleted software once ran.

8.2.2 Embedded software
Embedded software is quite comparable with firmware. The term is mostly used for non-computer
and even non-IT types of equipment. Such as washing machines, Microwave ovens, DVD-players,
TV-equipment, but also in automobiles, robots and manufacturing machines.

8.2.3 System software
System software refers to the software environment that enables a (computer) system to function
and interact at whatever minimum level with a user. User in this case may be a system
administrator or end user depending on the device and/or on experience and/or organisational
circumstances.
System software may be written in assembler code or in higher computer languages or may
consist of a mixture of both. It consists of a suite of programs that together provide the
functionality a computer system can deliver to its user(s), individually or collectively, and makes
the computer system generally usable. System software is largely dependent on the composition
of the computer in terms of processors (one or more CPUs, GPUs, FPGAs, etc.), their
interconnect(s), the memory and memory hierarchy, the connections to the world outside the
computer (network, external devices) and the services the computer is to provide.

8.2.3.1 Operating system
Standalone computer systems normally have a single operating system (OS). Through emulation
other operating systems may be enabled to run on the leading operating system. The operating
system provides most of the characteristics that the system software provides to the user.
These days, virtualisation has entered the arena. Through virtualisation users may bring their own
operating system on to a system in a multi-user environment. This means that the basic
operating system is a thin layer on top of which a variety of operating systems, up to and
including homegrown operating systems can be temporarily installed. This type of virtualisation
comes on top of other types of virtual machines or devices, such as a virtual disc spanning several
physical disks (could be RAID technology).
Examples of today’s operating systems are Microsoft’s Windows-n, Apple’s OS-n and IOSx, Unix,
and Linux.

8.2.3.2 Drivers
Because computers are composed of different individual components, drivers are required to
interact to and from these components with the operating system. Components are the CPU or
other processing units, the memory, the disks, the video and audio devices, the various ports
(USB, VGA, HDMI, Ethernet, phone, etc.) and the equipment attached to these ports, the mouse,
touchpads, touchscreen, and more. Drivers are sufficiently independent from the OS so they can
be individually updated when the devices change, to improve functionality, correct errors or when
the operating system (version) changes. Drivers can often be installed on the fly when new
equipment is attached to any of the ports, but sometimes the operating system requires to be
rebooted in order to correctly address (“recognise”) the new drivers.

8.2.3.3 Networking software
To a certain extent networking software acts as a driver to an operating system. But the
interwovenness of the general purpose OS with the networking environment is often more
complex.

NDE project_final_report_software
sustainability_DEF.docx

 54 | 71

Another reason to distinguish networking software is the existence of so called routers. Routers
are computers dedicated to handle the routing of data to and from their origins and their
destinations. In such computers the networking software, the different protocols that may exist in
handling data in their various formats is the dominant component.
Networking software may be divided in software handling the communication with the
environment external to the computer (“the Internet” for example) and the environment that is
internal to the computer. The distinction is only partly valid, as most larger computer systems are
composed by a cluster of individual systems through a dedicated network, of which the
complexity may be to the extent that such a cluster behaves as a single computer to the user. As
most computers today have more than one processor on a chip and more than one chip, most
computers have an internal network to do the communication between the processors and the
physically distributed memories.

8.2.3.4 Compilers and interpreters, runtime systems
For a computer to actually do something for a user the user must be able to tell the computer
how to use its resources to come to a result. The way to do that is by writing a computer
program, however small or large. This can be done by writing in assembler, in which case one
writes the code more or less at the level of hardware instructions, or using any type of higher
computer language43. The higher computer language needs then to be translated into hardware
instructions. If the computer language allows the written code as a whole to translated into
instructions one says the code is “compiled” and the compiler is a piece of computer code that
does just that. The compiled code is then called an executable. The executable requires a
“runtime system” that provides for various links between the executable and operating system.
Some languages only are supported by an interpreter. The interpreter is a piece of computer code
that translates the higher level language lines one by one. So no separate executable is produced
first.
Examples of languages that use compilers are Fortran, C, C++. Examples of languages that are
interpreted or compile to byte code are Java, Python, Shell, PHP. Also scripting/mark-up
languages are interpreted. Examples are HTML, XML, etc.
Strictly speaking compilers do not need to be part of the system software, although the runtime
system may be required to part of the system software, either for the privileges that may be
required to access parts of the system and/or because the runtime system and the compilers are
to be shared by all users of a system. If the runtime system only uses system features that the
operating system allows all to use, user can install private versions of compilers (such as a
Fortran compiler under MS Windows or Apple OS).

8.2.3.5 Script
The term script is ambiguous – even within the context of computers – and therefore difficult to
position in this overview. There will be a second item for scripts under “Internet software”. By also
placing it here under system software, another type of scrips can be described: a man-readable
set of instructions directing the runtime system to perform a series of tasks, semi-automated, or
repeatable. The scripting language has to have a prescribed format and the runtime system must
have the feature to support/understand the script being offered for execution. Scripts are also
used to establish the environment in which a user-program works, where the files are or have to
go, what pre-or post-processing needs to be done etc.
A script could also be defined as a user program in its own right, but because it will usually
involve formal OS-type tasks rather than computation, it is for the sake of this overview placed
under system software.

8.2.3.6 Libraries
Libraries are collections of frequently required programs or sub-programs, provided ready to use
to programmers and developers. Libraries contain pieces of code that can be re-used, often in
optimised form. It helps users not having to redo what has been done already and most likely
better than individual users can, except for very experts. This may concern pieces of scientific
routines, statistical routines up to codes for Web design or visualisation. Because libraries are
often provided to all users in an environment, the libraries may be considered part of the system
software, but the same considerations apply to libraries as to the compilers and interpreters.

43 We will not dive into the very formal definitions of what defines a computer language, compared to other code generating
facilities that have all the characteristics of a language but are formally not accepted as such. Fortran, the most widely
distributed tool for writing computer programs in the scientific computational domain, being one of those examples.

NDE project_final_report_software
sustainability_DEF.docx

 55 | 71

8.2.4 Application software
Application software is generally what end users write or use to get a computer do what the end
user wants to be done by the computer. Whereas the number of operating systems, languages
and compilers is large but countable, the number of applications is numerous and growing. One
can still distinguish applications after their nature. Application software uses system software and
the hardware to run.
Applications in science, but also in other environments, may or may not be implementations of an
algorithm. The algorithm itself is not considered “software”, but rather a mathematical concept.

8.2.4.1 Administrative applications
Computers have been used for administrative applications from an early stage. Such applications
encompass financial administrations (banking, insurance, general business), spread sheets, and
perhaps also statistical applications. Also packages such as MS Office or Open Office can be
considered administrative applications, however broadly used by all. Many early administrative
applications have been written in COBOL, a special computer language for such purposes, and are
still in use. Applications in this domain are dominantly written by commercial software companies,
although typically in the database technology domain innovations are being brought in from
scientific research.

8.2.4.2 Business applications
Early customer relation applications (large companies and SME’s), trade market (trending) and
CAD/CAM applications are examples of business applications. Due to today’s exponential growth
in data and the interest in data, many business intelligence applications are being developed and
used. They concern data analysis in all its aspects, both structured (databases, spreadsheets) and
unstructured data (Facebook, Twitter, email). The market for business software was rather limited
until five to ten years ago business intelligence and data analysis became booming and many
companies are trying to cover parts of that market. For security intelligence, too, many new
methodologies are being developed and brought to market as general purpose tools. Applications
in this domain are also predominantly written by commercial software companies, although in the
data analysis domain new technologies are being brought in from the science domain.

8.2.4.3 Educational applications
This application type encompasses the many resources often distributed as CD-ROM or CD-I
applications, that have been used for educational purposes (at schools, as supplements to
textbooks), but also for gaming or administration (tax forms etc.). Today, a lot of education is
conducted through MOOCs (Massive Open Online Courses) and Blackboard (course
administration).

8.2.4.4 Scientific applications
Security intelligence, scientific research and physical construction design have been the main
drivers for hardware and software development from the onset of digital and pre-digital
(analogue) computers. It is the domain of scientific software applications that is presently raising
and addressing the software sustainability issue.
Scientific software is predominantly written by individual users or user groups. But there are also
commercial parties operating in this domain. For example for chemistry (Gaussian),
Environmental Impact Assessments, Scientific Libraries (NAG), and so on. Even within the science
domain a distinction is often made between application software (software used and often
developed in all science domains except for computer science) and software developed in
computer science.

8.2.4.5 Visualisation software
Visualisation software is developed by both research groups and commercial companies. The
software focusses on the representation of data on computer displays and other kinds of screens.
New developments concern typically 3D perceptions and the representations of enormous
quantities of data for analytical purposes or for communication (advertisement).

8.2.4.6 Games
The development of and interest in games have driven the directions of special-purpose hardware
in support of these developments. Today GPUs, Graphical Processor Units, the direct result of the
requirements of the gaming industry, are being brought back to the non-graphics application
domain in the form of computational accelerators. Games are basically the same in nature as
other software applications, but special attention is paid to both the graphical design of the output
and the attractiveness of the user interface. The same techniques are used in animation. Some
games are designed specifically to run on specially designed hardware (for example Nintendo,
Xbox, PlayStation).

8.2.4.7 Miscellaneous
This is just to note that this list is most likely incomplete.

NDE project_final_report_software
sustainability_DEF.docx

 56 | 71

8.2.5 Internet applications
The Internet allows for fast exchanges of data in all shapes and formats. Early typical Internet
applications are mailers, which send rather strictly formatted messages from sender to addressee.
But the “killer app” for the Internet was the software that allowed for the World Wide Web, the so
called browsers. Browsers developed after the introduction of HTML (Hyper Text Mark-up
Language). These browsers completely superseded earlier versions called Gopher, because HTML
allowed for the exchange of non-ASCII documents, such as pictures and other graphics, sound
and more.

8.2.5.1 Web applications
Web applications refer to those Internet applications that function within the scope of the World
Wide Web (rather than on the Internet at large).

8.2.5.1.1 Browsers
The most important Web applications are the browsers. The browsers are software with a
communication aspect, a representation aspect, an interface aspect and many handles that can
be used by third parties to add functionality. They form the main vehicle for the representation of
Websites and the execution of special tasks within these Websites. Browsers allow users to
represent and share with the rest of the Web users their own websites, homegrown or
commercially developed, increasing often using predefines templates with lots of variation options
in design.
Codes that use browsers are written in HTML-n or XML and are becoming increasing complex.
They require libraries for special functionality and can even be generated on-the-fly. This makes
them extremely volatile. Other tools for developing browser interpretable code are for example
JavaScript. JavaScript in turn is also used in games development and other products, like PDF44.

8.2.5.1.2 Browser tools/add-ons
Browsers generally allow for third party additions of functionality of the browsing capabilities.
Such additions are often called add-ons and often have the nature of a tool. Examples are add-
ons for interpreting graphics formats, including video, functionality for downloading files, links to
third party applications (Adobe pdf, MS Office), security functions, special user interfaces, etc.
Such tools or add-ons were often written in Java, Perl, Python, etc., but today Microsoft Active
Server Pages is sometimes used and the rest is by JavaScript.

8.2.5.1.3 Server side browser tools
On the server side, it is more differentiated. Perl is still there, PHP is still strong, Python is a niche
here, and Javascript is sneaking in at the server side (Node.js)!

8.2.5.1.4 Portals
Portals are basically just Web sites, but they have a special function as an entry point to a special
service, such as for accessing archives, social communities or a particular type of resources.

8.2.5.1.5 Scripts
Within the context of Internet applications, a script is software to enable “dynamic” Web content.
This can be done at the browser side and at the server side. Functions that have to do with
security and data access are typically done at the server side, functions that support the
interactions between user and webpage are typically done in the browser. Nowadays, every
browser is also a scripting engine. It has been a long and winding road before the major browsers
supported the same scripting language with the same semantics. The standardisation of
Javascript as ECMA script in successive stages has done a lot to remedy this. With the advent of
the Google Chrome browser in 2008, the performance of Javascript in the browser has improved
dramatically, and all major browsers have since then upgraded their Javascript engines to a
comparable performance. Both of these factors, standardisation and performance have two
consequences:

1. Javascript is well underway to be the most universally supported programming language (all
desktops, tablets and phones).

2. Client side scripting has become much more prominent: from accommodating mouse clicks to
complete applications with extensive architecture and elaborate business logic.

Despite the fact that Javascript is on the rise now, it might well be that there will be a return to
ordinary programming languages for coding the business logic of a website client side. For this it
is needed that browsers implement a standardised bytecode, to which programming languages
can be compiled. An attempt into this direction is already underway and is called WebAssembly
(https://en.wikipedia.org/wiki/WebAssembly).

44 https://en.wikipedia.org/wiki/JavaScript

NDE project_final_report_software
sustainability_DEF.docx

 57 | 71

8.2.5.2 Mail applications
Mailing (or emailing) applications may be independent Internet applications or be embedded in a
browser. The concept of email is older than that of the World Wide Web, but HTML explicitly
knows “MAIL” as a type. Basically email is used to send (man-readable) messages over the
Internet, just like normal letters (now referred to as “snail mail”). Email is becoming increasingly
more sophisticated and is not limited any more to asci-characters, but may include the whole
HTML arsenal of features, including graphics, images, links, etc.

8.2.5.3 (Data) transfer protocols
The Internet protocols are pieces of software that reside on the computers that route the Internet
traffic as well as on the resources that have been linked to the Internet. Data transfer protocols
are the most basic vehicle that makes the Internet work. They encompass the data that have to
be transferred from A to B and describe the nature of the data. The most common basic Internet
protocol is TCP/IP (Transmission Control Protocol/Inter Protocol) and UDP (for example for
telephony). Applications on top of this basic layer are for example FTP.

8.2.5.4 Malware/viruses
Malware and viruses are pieces of software that one way or another misuse the gaps in the
security of both the Internet and the systems linked onto the Internet (computers, other types of
devices, up to household equipment). The Internet and laptop type of operating systems while not
being designed with their present use in mind have many exploitable leaks and security gaps that
malware and viruses are using to intrude or destroy data and/or systems and/or communication.
Examples of such exploits are categorised as spammers, port scanners, denial of service attacks,
ransomware, key loggers or honeypots. Also social engineering may pose a thread, but that is not
of a machine intrusive nature.

8.2.5.5 Service
This term falls somewhat outside the scope of this document, because a service by itself is not a
software product. And in as far as it is, it is already described elsewhere in this document. The
term service is mostly related to background processes where communication plays a role, such
as a process that handles printing, or communication to an environment outside the computer
system. But it is also used to denote the interaction between programs, or as part of other terms
such as Internet Service Provider (ISP), Software as a Service (SaaS) and similar expressions.

8.2.6 Mobile apps
Apps for mobile devices (smart cell phones, laptops, tablets, etc.) are applications with a mostly
limited but precisely defined purpose. Many apps could as well have been browser add-ons or are
not far from being webpages for a single Web domain. But smartphone games are also referred to
as apps. Some apps make use of hardware components for very different purposes than those for
which they were on board the device in the first place. Examples include positioning, 3D
acceleration and horizontal levelling.

8.3 Other characteristics axes
Software can also be distinguished along other axes:

8.3.1 Open software versus closed (proprietary) software
Open software or open source software is software of which at least the source code is available
for inspection, but of which regularly the creator(s) permit others to read, modify, re-use and
improve the source code, provided the result remains open. Proprietary software is mostly of a
commercial nature and has to be taken as is, without the right to inspect the source code.

8.3.2 Commercial software versus freeware
Commercial software can be obtained from companies on the basis of payable licenses. Freeware
can be downloaded from the Internet at no cost. Licenses may be attached, however, limiting the
use or requiring benefits for the provider in return. Often a payable version of the freeware exists
as well, allowing the user more options and capabilities.

8.3.3 Licensed software versus unlicensed freeware
Software may be distributed with an explicit license attached, but occasionally also without one.
In those cases the license is implicit (the original developer’s copyrights may still exist). The
original rights to the software remain in place, even if the software has become obsolete or is no
longer executable due to hardware no longer being available or the operating system (version) no
longer being supported.

NDE project_final_report_software
sustainability_DEF.docx

 58 | 71

8.3.4 Off-the-shelve software versus tailor-made software
Business applications have been delivered to companies as off-the-shelve copies. Often such
programs have been adopted to the specific needs of the client, using options available in the
software or with minor additions.
On the other end of that spectrum is software that has been designed from scratch, (re-)using
existing tools from libraries or not. Such codes are most difficult to keep alive after major
(operating) system upgrades or hardware refreshes.

8.3.5 Individual programs versus software packages
Programs often are standalone tools, but they may also be part of a software suite of related or
interrelated programs. Microsoft Office and Open Office are examples of related programs. They
can be used as standalone programs, but they share common parts (such as the help functions)
and exchange of data is often easier within the suite. But in other situations a suite is really a
suite: programs rely on other programs producing their input first before they can run.
Sometimes libraries of (sub-)routines are also called packages.

8.3.6 Owned software versus software as a service
These days a transition can be witnessed from program ownership towards program sharing. This
is one of the consequences of cloud developments. The introduction of Office 365 by Microsoft is a
typical example. Rather than installing an owned copy of the Office software on a laptop, one
shares a Web supported version that resides on a Microsoft resource. In cloud terminology this is
called “Software as a Service” (SAAS).

NDE project_final_report_software
sustainability_DEF.docx

 59 | 71

9 Appendix

NDE project_final_report_software
sustainability_DEF.docx

 60 | 71

NDE project_final_report_software
sustainability_DEF.docx

 61 | 71

10 Abbreviations and terms used

ABB Company, dating back to 1883, concerned with power technology.
http://new.abb.com/about/technology/corporate-research-centers/corporate-research-
center-germany

ACM Association for Computing Machinery http://www.acm.org
ACM SigSoft ACM-Special Interest Group on Software Engineering http://www.sigsoft.org/
Android Android is an open-source operating system for mobile phones, tablet computers,

cameras etc., based on Linux and Java. https://www.android.com/
ANDS Australian National Data Service http://www.ands.org.au/
Arcade See Xbox
API Application Programming Interface: a set of routine definitions, protocols, and tools for

building software and applications.
ARDC The Australian Research Data Commons (http://www.ands.org.au/guides/discovery-

ardc). The term 'commons' traditionally refers to resources that are made available for
community use. ANDS is creating a digital realisation of this concept for research data
to enable greater data sharing and reuse.

B&G Beeld en Geluid, the Netherlands Institute for Sound and Vision, is a cultural-historical
organisation of national interest. It collects, preserves and opens the audiovisual
heritage for as many users as possible: media professionals, education, science and
the general public. www.beeldengeluid.nl/en

BnF Biblothèque Nationale de France (BnF)
http://www.bnf.fr/en/tools/a.welcome_to_the_bnf.html

C C, originally developed by Dennis Ritchie between 1969 and 1973 at Bell Labs, is a
general-purpose, imperative computer programming language, supporting structured
programming, lexical variable scope and recursion, while a static type system prevents
many unintended operations. By design, C provides constructs that map efficiently to
typical machine instructions, and therefore it has found lasting use in applications that
had formerly been coded in assembly language, including operating systems, as well as
various application software for computers ranging from supercomputers to embedded
systems. See: https://en.wikipedia.org/wiki/C_(programming_language)

C++ C++ is a general purpose object oriented programming (OOP) language, developed by
Bjarne Stroustrup and first published in 1985, and is an extension of C language. It is
therefore possible to code C++ in a "C style" or "object-oriented style." In certain
scenarios, it can be coded in either way and is thus an effective example of a hybrid
language. It is considered to be an intermediate level language, as it encapsulates both
high and low level language features. See:
https://www.techopedia.com/definition/26184/c-programming-language (watch out for
advertisement pop-ups)

CATCH Continuous Access To Cultural Heritage (CATCH) and CATCHPlus are NWO-funded
research programmes that ran from 2004-2012 (http://www.nwo.nl/en/research-and-
results/programmes/Continuous+Access+To+Cultural+Heritage+(CATCH)) and later
extended by http://www.catchplus.nl for another four years.

CCDD Culturele Coalitie voor Digitale Duurzaamheid (Cultural Coalition for Digital
Preservation) is a knowledge network of cultural heritage institutions aimed at
collectively ensuring sustained access to digital information.
http://www.ncdd.nl/en/about-the-ncdd/partners/cultural-coalition-digital-preservation/

CCS Computer Conservation Society http://www.computerconservationsociety.org/, is a
cooperative venture between the British Computer Society, the Science Museum of
London, and the Museum of Science and Industry in Manchester. The CCS was
constituted in September 1989.

CD Compact Disc (CD) is a digital optical disc data storage format, co-developed by Philips
and Sony. The format was originally developed to store and play only sound recordings
but was later adapted for storage of data (CD-ROM). Several other formats were
further derived from these, including write-once audio and data storage (CD-R),
rewritable media (CD-RW), Video Compact Disc (VCD), Super Video Compact Disc
(SVCD), Photo CD, Picture-CD, CD-i, and Enhanced Music CD. Audio CD players have
been commercially available since October 1982, when the first model was released in
Japan. (From: https://en.wikipedia.org/wiki/Compact_disc)

CD-ROM See: CD

NDE project_final_report_software
sustainability_DEF.docx

 62 | 71

CEA Commissariat à l'énergie atomique et aux énergies alternatives (CEA) is a modern
research institute organisation, consisting of various individual research facilities across
France (http://www.cea.fr/english)

CeCILL CEA-CNRS-INRIA-Logiciel Libre is a French based software license system
(http://www.cecill.info/index.en.html).

CENDARI Collaborative EuropeaN Digital Archive Infrastructure (CENDARI) is a European FP7-
supported project, led by Trinity College, Dublin, Ireland from 2012-2016 with the
purpose to provide and facilitate access to existing archives and resources in Europe
for the study of medieval and modern European history (specifically the First World
War period) through the development of an ‘enquiry environment’
(http://www.cendari.eu/)

CKAN Data Management System (Comprehensive Kerbal Archive Network (CKAN))
http://ckan.org/faq/

CeRCH Centre for e-Research was established by King’s in November 2007 in response to the
Arts & Humanities Research Council’s decision to withdraw funding from the AHDS at
the end of March 2008. http://dh2010.cch.kcl.ac.uk/about/the-local-hosts-cch-and-
cerch/centre-for-e-research-cerch.html

CIF21 Cyberinfrastructure Framework for 21st Century Science and Engineering (CIF21) is an
NSF-programme (US). http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504730

CLARIAH-NL Common Lab Research Infrastructure for the Arts and Humanities. CLARIAH, as a
national counterpart to CLARIN and DARIAH, is directly and deeply embedded in the
Europe-wide ESFRI enterprise. CLARIN and DARIAH are the only two humanities
infrastructures under development on the ESFRI Roadmap, both projects were on the
2008 national roadmap, and they joined forces in CLARIAH, which was put on the 2012
national roadmap. The Netherlands has played an important role in establishing a
consortium of national infrastructure projects united at the European level in the so-
called CLARIN ERIC, which was established in February 2012 and is hosted by the
Netherlands. www.clariah.nl

CLARIN (-D) See for information the lemma over CLARIAH-NL. http://www.clarin-d.de/en/
CKAN CKAN, The Comprehensive Kerbal Archive Network (CKAN), is an open-source data

portal platform. It is a complete out-of-the-box software solution that makes data
accessible – by providing tools to streamline publishing, sharing, finding and using
data. www.Ckan.org

CMS Content Management System. Usually a software environment that allows one to
create and maintain websites.

CNRS Centre National de Recherche Scientifique, the French national research council.
http://www.cnrs.fr/index.php

CPU Central Processing Unit, every computer has at least one.
CRAN CRAN is a network of ftp and Web servers around the world that store identical, up-to-

date, versions of code and documentation for R (see also: R) https://cran.r-
project.org/

CRU Computing Resource Unit (probably). Unit and system used by Renater (French
Research and Education Network) for access to public (computing) resources.
https://cru.renater.fr/sac/

CSC Finnish national computing and data centre. http://www.csc.com/
CSESSP Computational Science & Engineering Software Sustainability and Productivity

Challenges (CSESSP Challenges). A programme by the US NITRD (The Networking and
Information Technology Research and Development Program)
https://www.nitrd.gov/csessp/

CSIRAC First Australian (and fifth in the world) digital computer
http://www.cs.mu.oz.au/dept/about/csirac/

Cuda CUDA is a parallel computing platform and programming model invented by NVIDIA. It
enables dramatic increases in computing performance by harnessing the power of the
graphics processing unit (GPU).
http://www.nvidia.com/object/cuda_home_new.html#sthash.Ay8XxBKq.dpuf

DANS Data Archiving and Networked Services, a Dutch institute by NWO and KNAW,
concerned with advanced data archiving (storing, enriching (metadata) and searching).
Dans.knaw.nl

DARIAH (-EU) DARIAH is a network connecting several hundreds of scholars and dozens of research
facilities in currently 17 European countries, the DARIAH member countries.
www.dariah.eu/

dBASE dBase (also stylised dBASE), originally published by Ashton-Tate for microcomputer
operating system CP/M in 1980, and later ported to Apple II and IBM PC computers

NDE project_final_report_software
sustainability_DEF.docx

 63 | 71

running DOS, was one of the first and successful database management systems for
microcomputers. It includes a core database engine, a query system, a forms engine,
and a programming language that ties all of these components together. dBase's
underlying file format, the .dbf file, is widely used in applications needing a simple
format to store structured data. https://en.wikipedia.org/wiki/DBase and
www.dbase.com/

DEC Digital Equipment Corporation, also known as DEC, and using the trademark, Digital,
was a major American company in the computer industry from 1957 till 1998. Digital
was a leading vendor of computer systems, including computers, software, and
peripherals. Their PDP and successor VAX products were the most successful of all
minicomputers in terms of sales. Digital was acquired in June 1998 by Compaq, which
subsequently merged with Hewlett-Packard (HP) in May 2002. Some parts of Digital,
notably the compiler business and the Hudson, Massachusetts facility, were sold to
Intel. See http://www.digital.com/ and
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation

DEFF Danmarks Electroniske Fag- og Forskningsbibliohek (DEFF) is an organisational and
technological collaboration between academic, research and education libraries, which
is co-funded by the Ministry of Higher Education and Science, the Ministry for Children,
Education & Gender Equality, and Ministry of Culture in Denmark.
www.deff.dk/english/

DevLOG Réseau des acteurs du Développement LOGiciel au sein de l'Enseignement Supérieur et
de la Recherche. A collaborative network of French researchers involved in the design,
programming, distribution, maintenance of software within Higher Education and
Research (ESR). http://devlog.cnrs.fr/region

DFG Deutsche Forschungsgemeinschaft (The German Research Council).
http://www.dfg.de/en/

DOI International DOI Foundation (IDF), a not-for-profit membership organisation that is
the governance and management body for the federation of Registration Agencies
providing Digital Object Identifier (DOI) services and registration, and is the
registration authority for the ISO standard (ISO 26324) for the DOI system. The DOI
system provides a technical and social infrastructure for the registration and use of
persistent interoperable identifiers, called DOIs, for use on digital networks. From:
www.doi.org

DOS Disc Operating System, practically synonymous with MS-DOS (for MicroSoft’s DOS).
Originally developed in 1981 by Microsoft for IBM, and the standard operating system
for IBM-compatible personal computers. The initial versions of DOS, a command line
type OS, were simple but subsequent versions became increasingly sophisticated as
they incorporated features of minicomputer operating systems. DOS is a 16-bit
operating system and does not support multiple users or multitasking. Elements of
DOS still survived today’s MS Windows operating systems.

DPC Digital Preservation Coalition (UK). http://www.dpconline.org/
DRM Digital Rights Management (DRM) schemes are various access control technologies

that are used to restrict usage of proprietary hardware and copyrighted works. DRM
technologies try to control the use, modification, and distribution of copyrighted works
(such as software and multimedia content), as well as systems within devices that
enforce these policies. The use of digital rights management is not universally
accepted. See https://en.wikipedia.org/wiki/Digital_rights_management

Drupal A Open Source Content Management System (to create and maintain websites).
Acronym derived from the words “dorp”, “drop” and “druppel”, Dutch words, as
explained in the history section of the Drupal website.
https://www.drupal.org/about/history

DVD Digital Versatile Disc or Digital Video Disc is a digital optical disc storage format
invented and co-developed by Philips, Sony, Toshiba, and Panasonic in 1995. The
medium can store any kind of digital data and is widely used for software and other
computer files as well as video programs watched using DVD players. DVDs offer
higher storage capacity than compact discs while having the same dimensions.

DVD-ROM A new type of read-only compact disc that can hold a minimum of 4.7GB (gigabytes),
enough for a full-length movie. The DVD-ROM specification supports disks with
capacities of from 4.7GB to 17GB and access rates of 600 KBps to 1.3 MBps. One of
the best features of DVD-ROM drives is that they are backward-compatible with CD-
ROMs. This means that DVD-ROM players can play old CD-ROMs, CD-I disks, and video
CDs, as well as new DVD-ROMs. Newer DVD players can also read CD-R disks. DVD-

NDE project_final_report_software
sustainability_DEF.docx

 64 | 71

ROMs use MPEG-2 to compress video data.
http://www.webopedia.com/TERM/D/DVD_ROM.html

EC European Commission. http://ec.europa.eu/index_en.htm
ECP Electronic Commerce Platform Nederland (ECP) is a Dutch Platform for the information

society, in which government, business and social organisations cooperate and
exchange knowledge for the deployment of information and communication technology
in Dutch Society. https://ecp.nl/ (Dutch only)

EIF The Education Investment Fund (EIF) was established by the Nation-building Funds Act
(Australia) 2008. It replaced the Higher Education Endowment Fund (HEEF), which was
established in 2007. The EIF was initially credited with $6.48 billion.
https://www.education.gov.au/education-investment-fund

EMC EMC is an US-based company, focusing on large scale storage and cloud solutions and
founded in 1979 by Richard Egan and Roger Marino (the E and M in EMC).
http://www.emc.com/en-us/index.htm

ePLAN Platform of eScience/Data Research Centers in Europe, an as yet informal network in
the Netherlands. escience-platform.nl

eSTeP eScience Technology Platform, an organisational module by NLeSC, to store, distribute
and exchange eScience-qualified software. estep.esciencecenter.nl

EWI “Elektrotechniek, Wiskunde en Informatica”: the Faculty for electrical engineering,
mathematics and computer science of Delft University of Technology.
http://www.ewi.tudelft.nl/en/

EZ “Economische zaken”: the Dutch Ministry of Economic Affairs. www.minez.nl
Flash Flash is a multi-media tool and programming environment developed and distributed

by Adobe Systems Incorporated. Flash (sometimes: Macromedia Flash or Shockwave
Flash) is used for the production of animations, browser games, rich Internet
applications, desktop applications, mobile applications and mobile games. Flash
displays text, vector graphics and raster graphics to provide animations, video games
and applications. It allows streaming of audio and video, and can capture mouse,
keyboard, microphone and camera input. https://en.wikipedia.org/wiki/Adobe_Flash
(http://www.adobe.com/software/flash/about/

FLOSS FLOSS stands for “Free/Libre and Open Source Software”. Compare to “FOSS,” which
stands for “Free and Open Source Software.” The term Libre (from French) emphasises
the freedom in use, not freedom in cost (“for free”). In that sense the term FLOSS is
more concise. https://www.gnu.org/philosophy/floss-and-foss.en.html

FP7 Seventh Framework Programme for Research and Technological Development (2007-
2013). The EU works with multi-annual work programs to boost science and economy.
FP7 refers to the seventh of such programs, with its official legislation, application and
report structures and funded projects. http://cordis.europa.eu/fp7/

FTE Full Time Equivalent. Unit of personnel employment (one person-year)
FSF The Free Software Foundation (FSF) is a non-profit organisation with a worldwide

mission to promote computer user freedom. Founded in 1985, FSF defends and
promotes computer users' right to use, study, copy, modify, and redistribute computer
programs. The FSF promotes the development and use of free (as in freedom)
software. http://www.fsf.org/press

Git Git is a version control system created by Linus Torvalds (the guy that created Linux),
used for software development and other version control tasks. As a distributed
revision control system it is aimed at speed, data integrity, and support for distributed,
non-linear workflows. See https://en.wikipedia.org/wiki/Git_(software)

GitBlit Gitblit is an open-source, pure Java stack for managing, viewing, and serving Git
repositories. It's designed primarily as a tool for small workgroups who want to host
centralised repositories. Gitblit.com

Github GitHub is a Web-based Git repository hosting service. It offers all of the distributed
revision control and source code management (SCM) functionality of Git as well as
adding its own features. Unlike Git, which is strictly a command-line tool, GitHub
provides a Web-based graphical interface and desktop as well as mobile integration. It
also provides access control and several collaboration features such as bug tracking,
feature requests, task management, and wikis for every project. GitHub offers both
plans for private repositories and free accounts, which are usually used to host open-
source software projects. See: https://en.wikipedia.org/wiki/GitHub and
https://github.com

Glm Generalised linear model (GLM) is a flexible generalisation of ordinary linear
regression. Some consider it a statistical model, others consider it as a machine
learning model. Both these elements are not mutually exclusive (see:

NDE project_final_report_software
sustainability_DEF.docx

 65 | 71

http://datascience.stackexchange.com/questions/488/is-glm-a-statistical-or-machine-
learning-model)

GNU GNU (GNU’s Not Unix) is a free and open source operating system with lots of adjacent
software. https://www.gnu.org/home.en.html

GPL(-3) General Public License (GPL) is a Copyleft license. Copyleft is a framework that permits
ongoing sharing of a published work, with clear permissions that both grant and defend
its users' freedoms — in contrast to other free licenses that grant freedom but don't
defend it. https://sfconservancy.org/copyleft-compliance/principles.html,
https://www.gnu.org/licenses/gpl-3.0.en.html

HSN The Historical Sample of the Netherlands (HSN). The HSN offers a representative
sample of about 78.000 people born in the Netherlands during the period 1812-1922.
The HSN-database containing individual life-courses is a unique tool for research in
Dutch history and demography. https://socialhistory.org/en/hsn/index

HTML (-n) Hyper Text Mark-up Language is the elementary man-readable language, used to
format and visually represent the contents of a webpage. HTML adds "mark-up" to
basic text not only by adding graphics, tables and (bold, italic, fonts, -sizes, etc.) but
also (hyper-)links to other Web pages, or documents. The -n reflects that there are
subsequent versions of the language since its introduction. https://www.w3.org/html/ ;
https://developer.mozilla.org/en-US/docs/Web/HTML

Http(s) Hyper Text Transfer Protocol (HTTP) is an application protocol that basically executes
the link references in HTML. Whenever a link is clicked or a website’s address typed in
manually in a browsers address field, HTTP executes the command and diverts the
browser to show the addressed page. Development of HTTP was initiated by Tim
Berners-Lee at CERN in 1989. Since its introduction a few newer versions have been
defined, among which “Https”, a secure version that encrypts the data passed.
https://www.w3.org/Protocols/

I/O Input/Output
IBM Originally: International Business Machines (Cooperation), a multinational company

involved in basically all aspects of designing, manufacturing and selling calculating
machines and service provision. The name originates from 1924, the underlying
merged companies date back to 1911. www.ibm.com

ICJ The Camille Jordan Institute is a French Research Department in Mathematics located
at several institutes at multiple locations. http://math.univ-lyon1.fr/?lang=en

IdGC L’Institut des Grilles et du Cloud (IDGC) is a CNRS infrastructure organisation in charge
of the coordination and execution of CNRS research activities in the domain of grid and
cloud production. http://idgc.in2p3.fr/en/

IDS The Intermediate Data Structure (IDS) was developed to try to solve longitudinal
historical micro-level demographic data challenges for research by facilitating the
storing and sharing of such data. http://www.ehps-net.eu/content/ids

IEEE The Institute of Electrical and Electronics Engineers, dates back to 1963 is a US-based
professional organisation active in the domain of Electrical, Electronics,
Communications, Computer Engineering, Computer Science and Information
Technology with a global scope and over 400000 members worldwide. See
www.ieee.org. Its objectives are (according to its website) to foster technological
innovation and excellence for the benefit of humanity.

IISG or IISH Dutch International Institute for Social History (Internationaal Instituut voor Sociale
Geschiedenis). Conducts research and collects data on the global history of labour
relations. https://socialhistory.org/

INL Institute for Netherlands Lexicology. http://www.inl.nl/our-work-and-working-methods
INRA Institut national de la recherche agronomique, French National Institute for Agricultural

Research. An agricultural research institute and centre for the agricultural sciences,
focusing on solutions for society’s major challenges. http://institut.inra.fr/en

Inria Institut national de recherche en informatique et en automatique is a French national
research institution focusing on computer science and applied mathematics. It is a
public science and technology institution dedicated to computational sciences and
promotes “scientific excellence for technology transfer and society”.
http://www.inria.fr/en/

Inseit Instituut voor Supervisie op Enterprise IT & Innovatie is a Dutch organisation that aims
to strengthen corporate governance on digital innovation. inseit.nl (Dutch only)

Inserm Institut national de la santé et de la recherche médicale. Founded in 1964, the French
National Institute of Health and Medical Research (Inserm) is a public scientific and
technological institute which operates under the joint authority of the French Ministry

NDE project_final_report_software
sustainability_DEF.docx

 66 | 71

of Health and French Ministry of Research. http://english.inserm.fr/about-inserm/the-
institute-missions

iOS iOS “iPhone Operating System” is Apple’s operating system for Apple (mostly mobile)
hardware: iPhone, iPad, and iPod touch and iPad Mini. Today’s actual version is 9,
while iOS10 has been announced for fall 2016. http://www.apple.com/ios/ios10-
preview/

IPR Intellectual Property Rights concern the protections granted to the creators of
intellectual property (artistic works, text phrases, symbols, texts, software, etc.) and
may involve trademarks, copyrights, patents and industrial design rights.

ISO International Organisation for Standardisation is an independent, Switzerland-based
non-governmental international organisation with over 160 national standards bodies.
Through its members, it brings together experts to share knowledge and develop
voluntary, consensus-based, market relevant International Standards that support
innovation and provide solutions to global challenges. ISO issues certificates to
organisations that have proven to follow one of their standards. www.iso.org

IT Information Technology (in Europe, also: ICT, or Information and Communication
Technology).

ITIL ITIL is a best practice framework drawn from both the public and private sectors
internationally. It describes how IT resources should be organised to deliver business
value, documenting the processes, functions and roles of IT Service Management
(ITSM). https://www.axelos.com/best-practice-solutions/itil

Java Java is a general-purpose computer programming language -available as a free
download- developed by SUN Microsystems and introduced in 1995. It is designed to
have as few implementation dependencies as possible so that compiled Java code can
run on all platforms that support Java without the need for recompilation. Java
applications are typically compiled to bytecode that can run on any Java virtual
machine (JVM) regardless of computer architecture.
https://www.oracle.com/java/index.html and
https://en.wikipedia.org/wiki/Java_(programming_language)

Java JRE Java Runtime Environment is an implementation of the Java Virtual Machine which
actually executes Java programs. It is a plug-in needed for running java programs.
https://www.java.com/en/download/faq/techinfo.xml

Javascript Is a scripting language, largely complementary to Java, with which it only shares part
of the name. It was made public in 1995 by Netscape who had ordered its
development. It is now widely used. https://en.wikipedia.org/wiki/JavaScript

JDEV Productive Java-based Application Development (Oracle JDeveloper) and a free
integrated development environment that simplifies the development of Java-based
applications. http://www.oracle.com/technetwork/developer-
tools/jdev/overview/index-094652.html

Jenkins Jenkins is an open source continuous integration tool. This means it is a tool to support
merging all developer working copies of a software development to a shared mainline
frequently (up to several times a day). It is written in Java. https://jenkins.io/

Jisc Originally: Joint Information Systems Committee (UK), that supports higher education
and research by providing advice, digital resources and network and technology
services. (For the Netherlands: compare to SURF). Jisc is funded by a combination of
the UK further and higher education funding bodies, and individual higher education
institutions. https://www.jisc.ac.uk/

KB Koninklijke Bibliotheek (National Library of the Netherlands). https://www.kb.nl/en
KE The Knowledge Exchange (KE) partners are five key national organisations within

Europe tasked with developing infrastructure and services to enable the use of digital
technologies to improve higher education and research: CSC in Finland, DEFF in
Denmark, DFG in Germany, Jisc in the UK and SURF in the Netherlands.
www.knowledge-exchange.info

KNAW Koninklijke Nederlandse Academie van Wetenschappen. The Royal Dutch academy of
Sciences. https://www.knaw.nl/en

LAAS Laboratory for Analysis and Architecture of Systems, a CNRS Research Institute (Fr).
https://www.laas.fr/public/en

LIGM Laboratoire d'Informatique Gaspard-Monge, a French informatics (Computer Science)
institute belonging to PRES Université Paris-Est (UPE), located at the campus of
Champs-sur-Marne. http://ligm.u-pem.fr/

LIMA Founded by experts from the former NIMk (Nederlands Instituut voor Mediakunst
(http://www.nimk.nl/)), LIMA is the international platform for sustainable access to
media art. With knowledge and passion for both art and technology, these experts are

NDE project_final_report_software
sustainability_DEF.docx

 67 | 71

insuring that video, digital and performance artworks can and will be presented now
and in the future. http://www.li-ma.nl/site/

Linux Linux is a Unix-like, open-source operating system (OS) of which the kernel was
written and published in 1991 by Linus Torvalds. Linux.org

LP Long Playing record: an analogue sound storage medium (on vinyl), in use since 1948,
which is still being used for storing and reproducing music.
http://lprecord.umwblogs.org/history/invention/

Mac OS-X OS X is a series of Unix-based graphical interface operating systems (OS) developed
and marketed by Apple Inc. It is designed to run on Macintosh computers and forms
the second most used OS worldwide. It is the 1999 follow-up of the original series of
OS (up to version 9) that started in 1984. https://en.wikipedia.org/wiki/OS_X

MS-DOS Microsoft Disc Operating System) is a discontinued operating system for x86-based
personal computers mostly developed by Microsoft, originally for IBM (1981) and was
the main operating system for IBM PC compatible personal computers during the
1980s and the early 1990s and now superseded by the graphical Microsoft Windows
operating system. https://en.wikipedia.org/wiki/MS-DOS

NCDD Nederlandse Coalitie voor Digitale Duurzaamheid (Netherlands Coalition for Digital
Preservation) is a foundation funded and supported by the Dutch ministry of Science,
Culture and Education and with the following members: DANS, KB, NA, B&G and the
CCDD. http://www.ncdd.nl/en

NDE Netwerk Digitaal Erfgoed, Network Digital Heritage. Cooperation between KB, B&G,
RCE, KNAW and NA, partners concerned with digital heritage.
http://www.den.nl/pagina/511/netwerk-digitaal-erfgoed/ (in Dutch)

NDL Naive discriminative learning. Name of a software package that enables the user to
model a learning process based on single events using the learning model of Rescorla-
Wagner or predicting the final state of learning using the equilibrium equations by
Danks. NDL calculates weights and activations between a set of discriminative features
(cues) and their outcomes which they activate. http://frequenz.uni-freiburg.de/770

NDL2 Newer version of NDL.
Nuxeo
Nexus Nexus is a deposit management platform, allowing to host artefacts. These artefacts

are components generated e.g. to build a project, and then deposited on Nexus.
Nexus' interest is to be able to share artefacts with other project developers up to an
entire community. Look for “SourceSup nexus” to find
https://services.renater.fr/sourcesup/nexus in order not to be confused with any
Google-related products with the name Nexus.

NLeSC Netherlands eScience Center, a Dutch public body (foundation) funded and founded by
NWO and SURF. esciencecenter.nl

NREN National Research & Education Network. Name in use for national data communication
networks for science and education (usually publicly funded).
https://en.wikipedia.org/wiki/National_research_and_education_network

NSF National Science Foundation, the US national funding organisation.
https://www.nsf.gov

NTU Nederlandse Taalunie or Dutch Language Union. Based on a 1980 treaty between the
Netherlands and Belgium (Flanders), with Surinam as an associated member and
collaborations with Aruba, Curaçao and Sint Maarten to define (and keep up to date)
and preserve the Dutch language.

NWO Netherlands Organisation for Scientific Research, the Dutch national funding
organisation. www.nwo.nl

OCW Ministerie van Onderwijs, Cultuur en Wetenschap: the Dutch Ministry of Science,
Culture and Education. www.minocw.nl

OKF Open knowledge Foundation (http://okfn.org)
OMII-UK Open Middleware Infrastructure Institute. OMII-UK enables advanced e-infrastructure

solutions based on open source Grid middleware components which are engineered to
a high quality, interoperable and easily-used, drawing on the software generated by
the UK e-Science programme. OMII-UK is an expansion of the Open Middleware
Infrastructure Institute (OMII) that was originally established as a 3 year project in
Southampton in January 2004.
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/D076617/1

OS Operating System
OSI Open Source Initiative. Development based on the sharing and collaborative

improvement of software source code. OSI was formed in 1998 as an educational,

NDE project_final_report_software
sustainability_DEF.docx

 68 | 71

advocacy, and stewardship organisation at this important moment in the history of
collaborative development. https://opensource.org/

P.I. Principal Investigator
PC Personal Computer, usually also a Portable Computer. A small size computer for use by

an individual without external other computers.
PDP Programmed Data Processor (PDP) was a series of minicomputers designed and

manufactured by the Digital Equipment Corporation from 1957 to 1990. Many of series
(PDP-1 up to PDP-16) were commercially successful and some rather innovative
products.

PID Persistent Identifier. A code (or address), usually directly recognised by Web browsers
in the address field, issued by several organisations, to identify and locate digital
objects over the Internet. Whereas Internet links may disappear over time, Persistent
Identifiers ensure the long term addressability and accessibility of digital objects.
http://www.pidconsortium.eu/

PhD Doctor of Philosophy. The doctorate is minimally based on 3 or more years of graduate
study and a defended dissertation; the highest degree awarded graduate study.
Equivalent to the title “dr.”

PL/I Programming Language One (Roman I) is an imperative computer programming
language designed by and for IBM’s IBM System/360 in the sixties, a computer meant
for both business and scientific calculations. The language is still in use. http://www-
03.ibm.com/software/products/en/plicompfami

PLAN-E PLAtform of National eScience Centers in Europe. A cooperation by major eScience
(data science, computational science) centres in over 20 European countries. plan-
europe.eu

Plume Preuves et Langages, Un Manège Enchanté is a computer scidnce research ensemble.
The research carried out by the members of the Plume team is mostly centered on two
strongly intertwined themes: logical foundations of programming languages and theory
of computing systems. http://www.ens-lyon.fr/LIP/PLUME/

RABO RABObank, is a Dutch cooperative bank originating from credit banks for farmers, from
locally raised savings. In this document the link is with the RABO Art Collection.
https://www.rabobank.com/nl/about-rabobank/profile/history/index.html

RAD Rapid Application Development is a software development methodology based on a
development process rather than on strong a priori specifications. Experience gained
throughout the creation of the product is used to improve the product. Particularly
suited for user interfaces. http://www.tutorialspoint.com/sdlc/sdlc_rad_model.htm

RBDD Réseau Bases de Données, Database Network. A CNRS community Based on two
surveys on data bases in use and the issues related to them (including sustainability).
rbdd.cnrs.fr

RCCP R and C++ (“plus plus”) integration package. Dirk Eddelbuettel and Romain Francois
(2011). Rcpp: Seamless R and C++ Integration. Journal of Statistical Software, 40(8),
1-18. URL http://www.jstatsoft.org/v40/i08/ and Eddelbuettel, Dirk (2013) Seamless R
and C++ Integration with Rcpp. Springer, New York. ISBN 978-1-4614-6867-7.

RCE Rijksdienst voor het Cultureel Erfgoed, Ministerial service organisation for cultural
heritage, a department of the Ministry of Science, Culture and Education.
http://cultureelerfgoed.nl/

RENATER Réseau national de télécommunications pour la technologie, l'enseignement et la
recherche (National telecommunications network for Technology, Education and
Research) is the national research and education network (NREN) in France, founded in
the beginning of the nineties. https://www.renater.fr/?lang=en

REST-API REpresentational State Transfer (REST)- Application Programming Interface. REST is a
software architectural style used in World Wide Web applications and consists of a set
of style elements that implicitly impose some restrictions to building
webservices/interfaces (compared to all is free). An API build by using REST as basic
framework is referred to as REST(ful) API.

SCEN Stichting Computer Erfgoed Nederland (SCEN) (Foundation for Computer heritage).
Website presently being renewed. (http://www.computer-erfgoed.nl/)

SHFT(-nn) Series of born digital art programs written by Peter Struycken. http://www.li-
ma.nl/site/article/shft-34-1982-2007-peter-struycken

SI2 Software Infrastructure for Sustained Innovation - SSE & SSI (SI2: SSE & SSI), an
NSF programme for funding dedicated to sustainable software (developments)
https://nsf.gov/funding/pgm_summ.jsp?pims_id=503489

Sympa Système de multipostage automatique, a Renater hosted mailserver.
https://www.renater.fr/logiciel-sympa

NDE project_final_report_software
sustainability_DEF.docx

 69 | 71

Sonar Sonar is an open source Platform used by development teams to manage source code
quality. Sonar has been developed to make code quality management accessible to
everyone with minimal effort. Since version 2.0, Sonar enables to cover quality on 7
axes and so to report on Duplicated code, Coding standards, Unit tests, Complex code,
Potential bugs, Comments, Design and architecture. http://www.sonarqube.org/

SourceSup SourceSup is a project management Web platform for Higher Education and French
Research organisations. Every member of the community can create a project on
SourceSup. SourceSup is hosted by Renater. https://sourcesup.cru.fr/

SME Small and Medium Enterprise, defined in the EU recommendation 2003/361 on the
basis of staff headcount and either turnover or balance sheet total.
http://ec.europa.eu/growth/smes/business-friendly-environment/sme-definition_en

SQL Structured Query Language is a programming language for managing and processing
data held in a relational database management system. It is an ANSI and ISO standard
since the mid-eighties. http://www.w3schools.com/sql/sql_intro.asp

SSI Software Sustainability Institute, an Academic institute in the UK, providing knowledge
and support regarding software sustainability matters. It is supported by several
universities in the UK and linked to Edinburgh’s Parallel Computing Centre. SSI is also
being used recently for Software Sustainability Initiative and Software Sustainability
Infrastructure. https://www.software.ac.uk/

SSoA Software Seal of Approval, a development similar to the Data Seal of Approval, to
encourage and reward trends towards writing software properly from the point of view
of software sustainability. www.softwaresealofapproval.org.

STATA STATistical data Analysis, name of a Company (www.stata.com) and a software
package for statistical data analysis.

Subversion Apache Subversion (SVN) is a software versioning and revision control system
distributed as free software, to maintain current previous versions of documents
(mainly source code, Web pages), started in 2000. https://subversion.apache.org/

SUN Sun Microsystems, Inc. was a versatile computer company that created in addition to
hardware systems, lots of software still in use today (Such as Java, NFS (Network File
System)). It was founded in 1982 (with SUN being a reference to the Stanford
University Network (following wikipedia)) and acquired by Oracle in 2010, Sun was
acquired by Oracle Corporation. https://www.oracle.com/sun/index.html

STEVIN Subsidy Programme 2004-2010 for research and development in language and speech
technology. http://www.kennislink.nl/publicaties/stevin-2004-2010

SURF Originally “Samenwerkende Universitaire RekenFaciliteiten”, today: Collaborative
organisation for ICT in Dutch education and research. An organisation for and by Dutch
universities, vocational high schools and research organisations, in the domain of ICT
and infrastructure. Its scope compares to Jisc in the UK. Among other things
responsible for the national computing and networking infrastructure for research and
education. Two of its sub subsidiaries are SURFnet and SURFsara. www.surf.nl

TiMBL Tilburg Memory-Based Learner Packages, a machine learning system developed at
Tilburg University (NL). It is a fast, tree-based implementation of k-nearest neighbour
classification. https://languagemachines.github.io/timbl/

TLTn Treebanks and Linguistic Theories, name of an International Workshop on this topic.
The number (n) refers to the number of the (annual) workshop. From:
http://tlt14.ipipan.waw.pl/ ne can find back all previous TLT-events, back to nr. 1 in
2002.

TNO Nederlandse organisatie voor Toegepast Natuurwetenschappelijk Onderzoek
(Netherlands Organisation for Applied Physics research), which was founded in 1932 to
enable business and government to apply knowledge. As an organisation regulated by
public law, TNO is independent: not part of any government, university or company.
www.tno.nl/en/

Triple IN the context of this document, a triple is a data entity composed of subject-
predicate-object, like "Bob is 35" or "Bob knows Fred".

Triplestore A triplestore or RDF store is a purpose-built database for the storage and retrieval of
triples.

TST Taal- en Spraaktechnologie (Centrale). This entity is ceasing to exist. Its contents will
be temporarily stored at INL, the Institute for Netherlands Lexicology, which is set to
merge into the Institute for the Dutch Language (Instituut voor de Nederlandse Taal).
Original website: http://tst-centrale.org, now at http://www.inl.nl/

TSTC TST Centrale. See TST.
TV Television, a telecommunication medium and device, introduced to the public in the

fifties, now a mass medium.

NDE project_final_report_software
sustainability_DEF.docx

 70 | 71

Ubuntu Name of a Southern African philosophy, used for an open source software Linux
platform dating back from 2004, that runs from the cloud, to the smartphone,
including personal computers, and network servers. www.ubuntu.com

UDF Universal Disc Format is an open file system for data storage mostly used for DVDs
optical disc formats, UDF is developed and maintained by the Optical Storage
Technology Association (OSTA).
http://searchstorage.techtarget.com/definition/Universal-Disk-Format

UI User Interface
Unity3d Unity3d is a development platform for creating games and interactive 3D and 2D

experiences like training simulations, medical and architectural visualisations, across
mobile, desktop, Web, console and other platforms. Unity3d is a commercial globally
operating company. www.unity3d.com

UNESCO PERSIST A UNESCO activity which, among other matters will try to engage globally operating
software companies (such as Microsoft, IBM, Google, Apple, etc.) to allow their
obsolete software, including operating systems, to be used for heritage related
purposes at fair conditions. http://www.unesco.org/new/en/media-services/single-
view/news/persist_unesco_digital_strategy_for_information_sustainability/back/9597/
#.V6xJGzWIVZE

URL Universal Resource Locator is a standard formatted scheme to locate an object on the
Internet. If the protocol referenced in the URL happens to be “http”, the URL is
identical to the not defined term “Web address”.
http:/www.webopedia.com/TERM/U/URL.html

US United States (of America)
USB Universal Serial Bus. Since the mid-nineties a standardised connector type with the

software to make the connect link work. A USB-stick is synonymous to a data storage
medium with a USB connector. https://en.wikipedia.org/wiki/USB

UVA University of Amsterdam. One of the two main universities in Amsterdam. www.uva.nl
UVC A Universal Virtual Computer (UVC) is a virtual machine (VM) specially designed for

preservation of digital objects such as held by libraries, archives and institutions alike.
The method is based on emulation but does not require hardware or full emulation.
https://en.wikipedia.org/wiki/UVC-based_preservation

Virtuoso Virtuoso is a modern enterprise grade solution for data access, integration, and
relational database management (SQL Tables and/or RDF based Property/Predicate
Graphs) provided by the company Openlinksoftware. http://virtuoso.openlinksw.com/

VLC VideoLan Client, an open source portable software product to play video files on
computers. http://www.videolan.org/vlc/index.html

WiiWare WiiWare is a service provided by Nintendo (computer games company) that allows Wii
users to download games and applications for the Wii video game.
https://www.nintendo.co.uk/Wii/WiiWare/WiiWare-Download-Games-on-Wii-Wii-
Nintendo-UK-621696.html

WNT Woordenboek der Nederlandsche Taal (Dictionary of the Dutch Language)
xBASE Xbase is a loose reference to dBASE-like database languages and products.
Xbox Xbox Live Arcade (XBLA) is Microsoft’s Xbox Games Store, a download site for games

from various publishers and game developers www.xbox.com/livearcade
XML eXtensible Mark-up Language is a mark-up language that defines a set of rules for

encoding documents in a format that is both human-readable and machine-readable,
defined by the W3C's XML 1.0 Specification (and subsequent additions/updates).
http://www.w3schools.com/xml/

XS4ALL “Access for all”, a major Dutch Internet Service Provider with a long history (from
1993) and originating from the anarchistic state the Internet developed from in the
early nineties. https://www.xs4all.nl/over-xs4all/wie-wij-zijn.htm

Zenodo Zenodo builds and operates a simple and innovative open digital repository that
enables researchers, scientists, EU projects and institutions to share, preserve and
showcase multidisciplinary research results (data and publications) that are not part of
the existing institutional or subject-based repositories of the research communities.
http://zenodo.org/

NDE project_final_report_software
sustainability_DEF.docx

 71 | 71

11 Article from De Telegraaf (in Dutch)

DEN HAAG - Gemeenten hebben problemen met het archiveren van informatie die op verouderde
wijze is opgeslagen. Het gaat onder meer om materiaal op floppy's, cd-roms en taperecorders.
Deze informatie blijkt inmiddels moeilijk vindbaar, niet doorzoekbaar en is soms in zijn geheel niet
toegankelijk. Dat blijkt uit een steekproef van het vakblad Binnenlands Bestuur onder 26
gemeenten.

Aan het onderzoek deden gemeenten als Rotterdam, Utrecht, Breda en Eindhoven mee. Dertien
eindverantwoordelijken voor het gemeentelijk archief geven aan dat ze soms of vaak moeilijkheden
ondervinden bij het zoeken naar informatie. Daarnaast zeggen vijftien gemeenten informatie te
missen. Twee van de ondervraagde gemeenten kampen bovendien met bitrot in hun
archiefmateriaal. Door dit verschijnsel dooft de elektrische lading van een bit langzaam waardoor
programma's niet meer werken. Vooral data op tapes blijken hier gevoelig voor.

Ongeveer de helft van de geïnterviewden vindt dat gemeentemedewerkers zich niet voldoende
bewust zijn van het belang van goede archivering. Zij beoordelen hun kennis hierover als matig of
onvoldoende. Het Nationaal Archief zegt tegenover Binnenlands Bestuur bekend te zijn met ,,de
uitdagingen van digitale duurzaamheid''. De organisatie wil daarom kennisontwikkeling over dit
onderwerp stimuleren.

Informatie die gemeenten willen bewaren, moet volgens de Archiefwet na maximaal twintig jaar
verhuisd zijn naar bepaalde digitale bewaarplaatsen. In het verleden is ervoor gekozen materiaal
op te slaan op inmiddels verouderde software en hardware. Nu blijkt die informatie grotendeels
onleesbaar te zijn.

