
Introduction to GraphBLAS

A linear algebraic approach for concise, portable,
and high-performance graph algorithms

Gábor Szárnyas
2020/12/12

Motivation

GRAPHBLAS

 Graph algorithms are challenging to program

o irregular access patterns → poor locality

o caching and parallelization are difficult

 Optimizations often limit portability

 The GraphBLAS introduces an abstraction
layer using the language of linear algebra

o graph ≡ sparse matrix

o traversal step ≡ vector-matrix multiplication

≡
𝐀       














74

6

5

1 2

3

GRAPHBLAS

 Graph algorithms are challenging to program

o irregular access patterns → poor locality

o caching and parallelization are difficult

 Optimizations often limit portability

 The GraphBLAS introduces an abstraction
layer using the language of linear algebra

o graph ≡ sparse matrix

o traversal step ≡ vector-matrix multiplication

≡

      

𝐯

𝐀       














      

74

6

5

1 2

3

What makes graph computations difficult?

GRAPH PROCESSING CHALLENGES

the “curse of connectedness”

contemporary computer architectures are good at
processing linear and hierarchical data structures,
such as lists, stacks, or trees

a massive amount of random data access is required,
CPU has frequent cache misses, and implementing
parallelism is difficult

B. Shao, Y. Li, H. Wang, H. Xia (Microsoft Research),
Trinity Graph Engine and its Applications,
IEEE Data Engineering Bulleting 2017

connectedness

computer
architectures

caching and
parallelization

http://sites.computer.org/debull/A17sept/p18.pdf
http://sites.computer.org/debull/A17sept/p18.pdf

GRAPH PROCESSING CHALLENGES

Graph algorithm have a high communication-to-computation ratio.

Speedup with a CPU that has better arithmetic performance:

 machine learning → a lot

 relational queries → some

 graph processing → very little

Standard latency hiding techniques break down, e.g. pre-fetching
and branch prediction provide little benefit.

Use a data representation and computation model which are
expressive, machine-friendly, and portable.

LINEAR ALGEBRA-BASED GRAPH PROCESSING

 Graphs are encoded as sparse adjacency matrices.

 Use vector/matrix operations to express graph algorithms.







 

       

𝐟 1 1

𝐀       

 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

1 2 𝐟𝐀

frontier

The GraphBLAS standard

THE GRAPHBLAS STANDARD

BLAS GraphBLAS

Hardware architecture Hardware architecture

Numerical applications Graph analytical apps

LAGraphLINPACK/LAPACK

S. McMillan @ SEI Research Review (Carnegie Mellon University, 2015):
Graph algorithms on future architectures

Goal: separate the concerns of the hardware, library, and application designers.

 1979: BLAS Basic Linear Algebra Subprograms

 2001: Sparse BLAS an extension to BLAS (little uptake)

 2013: GraphBLAS an effort to define standard building blocks
for graph algorithms in the language of linear algebra

https://www.youtube.com/watch?v=-sIdS4cz7-4
https://www.youtube.com/watch?v=-sIdS4cz7-4

GRAPHBLAS TIMELINE

…

2016 2017 2018 20192011 2020 2021

2020:
• SuiteSparse:GraphBLAS

v4.0.1draft
• C++ API proposal
• Distributed API proposal

https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964
https://arxiv.org/pdf/1606.05790.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://people.eecs.berkeley.edu/~aydin/LAGraph19.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://arxiv.org/pdf/1606.05790.pdf

GRAPH ALGORITHMS IN LINEAR ALGEBRA

problem algorithm
canonical

complexity Θ
LA-based

complexity Θ

breadth-first search 𝑚 𝑚

single-source shortest paths
Dijkstra 𝑚 + 𝑛 log 𝑛 𝑛2

Bellman-Ford 𝑚𝑛 𝑚𝑛

all-pairs shortest paths Floyd-Warshall 𝑛3 𝑛3

minimum spanning tree
Prim 𝑚 + 𝑛 log 𝑛 𝑛2

Borůvka 𝑚 log 𝑛 𝑚 log 𝑛

maximum flow Edmonds-Karp 𝑚2𝑛 𝑚2𝑛

maximal independent set
greedy 𝑚 + 𝑛 log 𝑛 𝑚𝑛 + 𝑛2

Luby 𝑚 + 𝑛 log 𝑛 𝑚 log 𝑛

Based on the table in J. Kepner:
Analytic Theory of Power Law Graphs,
SIAM Workshop for HPC on Large Graphs, 2008

Notation: 𝑛 = 𝑉 ,𝑚 = |𝐸|. The complexity cells contain asymptotic bounds.
Takeaway: The majority of common graph algorithms can be expressed efficiently in LA.

See also L. Dhulipala, G.E. Blelloch, J. Shun:
Theoretically Efficient Parallel Graph Algorithms
Can Be Fast and Scalable, SPAA 2018

http://www.graphanalysis.org/SIAM-PP08/Kepner.pdf
http://www.graphanalysis.org/SIAM-PP08/Kepner.pdf
https://people.csail.mit.edu/jshun/spaa2018.pdf
https://people.csail.mit.edu/jshun/spaa2018.pdf

KEY FEATURES OF GRAPHBLAS

 Portable: supports x86; GPUs (WIP), Arm (planned)

 Efficient: within one order-of-magnitude
compared to hand-tuned code

 Concise: most textbook algorithms can be
expressed with a few operations

 Composable: the output of an algorithm can be used
as an input of a subsequent algorithm

 Flexible: can express algorithms on typed graphs
and property graphs

Theoretical foundations of the GraphBLAS

DENSE MATRIX MULTIPLICATION

Definition:
𝐂 = 𝐀𝐁

𝐂 𝑖, 𝑗 = Σ
𝑘
𝐀 𝑖, 𝑘 × 𝐁 𝑘, 𝑗

Example:

𝐂 2,3 = 𝐀 2,1 × 𝐁 1,3 +

𝐀 2,2 × 𝐁 2,3 +

𝐀 2,3 × 𝐁 3,3

= 2 × 5 + 3 × 0 + 6 × 4 = 34

0 0 0

0 0 34

𝐀   

 0 0 0

 2 3 6

𝐁   

 0 0 5

 0 0 0

 0 0 4

10+0+24
= 34

3×0 = 0

2×5 = 10

6×4=24

𝐂 = 𝐀⨁.⨂𝐁

SPARSE MATRIX MULTIPLICATION

34

𝐀   



 2 3 6

𝐁   

 5



 4

10 + 24
= 34

2×5 = 10

6×4 = 24

Definition:
𝐂 = 𝐀𝐁 = 𝐀⨁.⨂𝐁

𝐂 𝑖, 𝑗 = ⊕
𝑘∈ind 𝐀 𝑖,: ∩ind 𝐁 :,𝑗

𝐀 𝑖, 𝑘 ⨂𝐁 𝑘, 𝑗

Sparse matrix multiplication only evaluates
the multiplication operator ⨂ for positions
where there is a non-zero element in both
𝐀 𝑖, 𝑘 and 𝐁 𝑘, 𝑗 .

Example:

𝐂 2,3 = 𝐀 2,1 × 𝐁 1,3 +

𝐀 2,3 × 𝐁 3,3

= 2 × 5 + 6 × 4 = 34

𝐂 = 𝐀⨁.⨂𝐁

MATRIX MULTIPLICATION 𝐂 = 𝐀⨁.⨂ 𝐁
Multiplication on dense matrices

𝐂 𝑖, 𝑗 =⊕
𝑗
𝐀 𝑖, 𝑘 ⨂𝐁 𝑘, 𝑗

Multiplication on sparse matrices

𝐂 𝑖, 𝑗 = ⊕
𝑘∈ind 𝐀 𝑖,: ∩ind 𝐁 :,𝑗

𝐀 𝑖, 𝑘 ⨂𝐁 𝑘, 𝑗

0 0 0

0 0 34

𝐀   

 0 0 0

 2 3 6

𝐁
 0 0 5

 0 0 0

 0 0 4

10+0+24
= 34

3×0 = 0

2×5 = 10

6×4=24

Example: 𝐂 = 𝐀⨁.⨂𝐁

34

𝐀   



 2 3 6

𝐁
 5



 4

10 + 24
= 34

2×5 = 10

6×4 = 24

ADJACENCY MATRIX

𝐀       

 1 1

 1 1

 1

 1 1

 1

 1

 1 1 1

𝐀𝑖𝑗 = ൝
1 if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0 if (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸







 



ADJACENCY MATRIX

𝐀       

 1 1

 1 1

 1

 1 1

 1

 1

 1 1 1

𝐀𝑖𝑗 = ൝
1 if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0 if (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸





 



 

source

target

ADJACENCY MATRIX

𝐀       

 1 1

 1 1

 1

 1 1

 1

 1

 1 1 1

𝐀𝑖𝑗 = ൝
1 if (𝑣𝑖 , 𝑣𝑗) ∈ 𝐸

0 if (𝑣𝑖 , 𝑣𝑗) ∉ 𝐸







 



ADJACENCY MATRIX TRANSPOSED

𝐀⊤       

 1

 1

 1 1 1

 1 1

 1 1

 1 1

 1

𝐀𝑖𝑗
⊤ = ൝

1 if (𝑣𝑗 , 𝑣𝑖) ∈ 𝐸

0 if (𝑣𝑗 , 𝑣𝑖) ∉ 𝐸







 



ADJACENCY MATRIX TRANSPOSED

𝐀⊤       

 1

 1

 1 1 1

 1 1

 1 1

 1 1

 1

𝐀𝑖𝑗
⊤ = ൝

1 if (𝑣𝑗 , 𝑣𝑖) ∈ 𝐸

0 if (𝑣𝑗 , 𝑣𝑖) ∉ 𝐸





 



  source

target

GRAPH TRAVERSAL WITH MATRIX MULTIPLICATION

      

𝐟 1

𝐀       

 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

one hop: 𝐟𝐀

𝐟𝐀𝑘 means 𝑘 hops in the graph







 



1 1 1
      

GRAPH TRAVERSAL WITH MATRIX MULTIPLICATION

      

𝐟 1

𝐀       

 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

one hop: 𝐟𝐀

𝐟𝐀𝑘 means 𝑘 hops in the graph

1 1 1
      

𝐀       

 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

1 1 2
      

two hops: 𝐟𝐀𝟐







 



GRAPHBLAS SEMIRINGS*

The 𝐷,⊕,⊗, 0 algebraic structure is a GraphBLAS semiring if

 𝐷,⊕, 0 is a commutative monoid using the addition operation
⊕:𝐷 × 𝐷 → 𝐷, where ∀𝑎, 𝑏, 𝑐 ∈ 𝐷, if the following hold:

o Commutative 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎

o Associative 𝑎 ⊕ 𝑏 ⊕ 𝑐 = 𝑎 ⊕ 𝑏⊕ 𝑐

o Identity 𝑎 ⊕ 0 = 𝑎

 The multiplication operator is a closed binary operator
⊗:𝐷 × 𝐷 → 𝐷.

The mathematical definition of a semiring requires that ⊗ is a monoid and
distributes over ⊕. GraphBLAS omits these requirements.

SEMIRINGS

The default semiring is the conventional one:

 ⊗ defaults to the arithmetic multiplication operator.

 ⊕ defaults to the arithmetic addition operator.

semiring domain ⨁ ⨂ 0 graph semantics

any-pair {T, F} any pair F traversal step

integer arithmetic ℕ + × 0 number of paths

min-plus ℝ ∪ +∞ min + +∞ shortest path

      

𝐟

𝐀       















MATRIX-VECTOR MULTIPLICATION SEMANTICS







 



Semantics: traversal step

𝐟 any . pair 𝐀

semiring domain ⨁ ⨂ 0

any-pair T, F any pair F

MATRIX-VECTOR MULTIPLICATION SEMANTICS

Semantics: number of paths







 



semiring domain ⨁ ⨂ 0

integer arithmetic ℕ + × 0

      

𝐟 1 1

𝐀       

 1 1
 1 1
 1
 1 1
 1
 1
 1 1 1

1 2

1·1=1

1+1=2

1·1=1

𝐟 ⊕.⊗ 𝐀

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring domain ⨁ ⨂ 0

min-plus ℝ ∪ +∞ min + +∞

Semantics: shortest path

.2

.4

.5

.6







 

 .5

      

𝐟 .5 .6

𝐀       

 1 1
 1 1
 1
 .2 .4
 1
 .5
 1 1 1

.7 .9

min(0.9,1.1)=0.9 𝐟 min .+ 𝐀

0.5+0.4=0.9

0.6+0.5=1.1

ELEMENT-WISE MULTIPLICATION: 𝐀⊗𝐁

𝐀       















𝐁       















𝐀⊗𝐁       














⊗ =

⊗ =





 









 









 



ELEMENT-WISE ADDITION: 𝐀⊕𝐁

𝐀       















𝐁       















⊕ =

𝐀⊕𝐁       














⊕ =





 









 









 



TURNING A GRAPH INTO UNDIRECTED: 𝐀⊕𝐀⊤

𝐀       





















 



𝐀⊤      














𝐀⊕𝐀⊤       




















 



⊕

⊕

=

=







 



MASKING

Prevent redundant computations by
reducing the scope of an operation

Operations can be executed

 without a mask

 with a regular mask

 with a complemented mask

      

𝐟

𝐀       















𝐰 =
𝐟 ⊕.⊗ 𝐀

MASKING

      

𝐟

𝐀       















      

𝐦

Prevent redundant computations by
reducing the scope of an operation

Operations can be executed

 without a mask

 with a regular mask

 with a complemented mask

𝐰 𝐦 =
𝐟 ⊕.⊗ 𝐀

MASKING

      

𝐟

𝐀       















𝐰 ¬𝐦 =
𝐟 ⊕.⊗ 𝐀

      

𝐦

Prevent redundant computations by
reducing the scope of an operation

Operations can be executed

 without a mask

 with a regular mask

 with a complemented mask

NOTATION*

 Symbols:

o 𝐀,𝐁, 𝐂,𝐌 – matrices

o 𝐮, 𝐯,𝐰,𝐦 – vectors

o 𝑠 – scalar

o 𝑖, 𝑗 – indices

o 𝐌 , 𝐦 – masks

 Operators:

o ⊕– addition

o ⊗– multiplication

o ⊘ – division

o ⊤ – transpose

Vectors can act as both column and row vectors.

(Notation omitted for accumulator, selection, extraction, assignment…)

symbol operation notation

⊕.⊗

matrix-matrix multiplication 𝐂 𝐌 = 𝐀⊕.⊗ 𝐁

vector-matrix multiplication 𝐰 𝐦 = 𝐯⊕.⊗ 𝐀

matrix-vector multiplication 𝐰 𝐦 = 𝐀⊕.⊗ 𝐯

⊗
element-wise multiplication
(set intersection of patterns)

𝐂 𝐌 = 𝐀⊗𝐁

𝐰 𝐦 = 𝐮⊗ 𝐯

⊕
element-wise addition
(set union of patterns)

𝐂 𝐌 = 𝐀⊕𝐁

𝐰 𝐦 = 𝐮⊕ 𝐯

𝑓 apply unary operator
𝐂 𝐌 = 𝑓 𝐀

𝐰 𝐦 = 𝑓 𝐯

⊕⋯
reduce to vector 𝐰 𝐦 = ⊕𝑗 𝐀 : , 𝑗

reduce to scalar 𝑠= ⊕𝑖𝑗 𝐀 𝑖, 𝑗

𝐀⊤ transpose matrix 𝐂 𝐌 = 𝐀⊤

LINEAR ALGEBRAIC PRIMITIVES FOR GRAPHS #1

⊗

Sparse matrix times sparse vector:
process incoming edges

Element-wise multiplication:
intersection of non-zero elements

⊕.⊗

Sparse vector times sparse matrix:
process outgoing edges

⊕

Element-wise addition:
union of non-zero elements

⊕.⊗

⊤

LINEAR ALGEBRAIC PRIMITIVES FOR GRAPHS #2

Matrix transpose:
reverse edges

1 1 1

1 1
1

Reduction:
aggregate values in each row

⊕𝑖 𝐀 𝑖, ∶
3

2
1

1 2 3

3 2
1

Apply:
apply unary operator on all values

𝑓 𝑥 = 𝑥2
1 4 9

9 4
1

⊕.⊗

Sparse matrix times sparse matrix:
process connecting outgoing edges

Graph algorithms in GraphBLAS

Breadth-first search

BFS: BREADTH-FIRST SEARCH

 Algorithm:

o Start from a given vertex

o “Explore all neighbour vertices at the present level prior to
moving on to the vertices at the next level” [Wikipedia]

 Variants:

o Levels compute traversal level for each vertex

o Parents compute parent for each vertex

oMSBFS start traversal from multiple source vertices

Graph algorithms in GraphBLAS

Breadth-first search / Levels

BFS – LEVELS

level = 1







 



      

𝐟

𝐀       















      

𝐬 1

𝐟 ¬𝐬 = 𝐟 any. pair 𝐀level

semiring domain ⨁ ⨂ 0

any-pair T, F any pair F

BFS – LEVELS

level = 2







 



      

𝐟

𝐀       















      

𝐬 1 2 2

level

semiring domain ⨁ ⨂ 0

any-pair T, F any pair F

𝐟 ¬𝐬 = 𝐟 any. pair 𝐀

BFS – LEVELS

level = 3







 



      

𝐟

𝐀       















      

𝐬 1 2 3 2 3 3

level

semiring domain ⨁ ⨂ 0

any-pair T, F any pair F

𝐟 ¬𝐬 = 𝐟 any. pair 𝐀

BFS – LEVELS

level = 4







 



      

𝐟

𝐀       















      

𝐬 1 2 3 2 3 4 3
𝐟 is empty
→ terminate

level

semiring domain ⨁ ⨂ 0

any-pair T, F any pair F

𝐟 ¬𝐬 = 𝐟 any. pair 𝐀

BFS – LEVELS: ALGORITHM

 Input: adjacency matrix 𝐀, source vertex 𝑠, #vertices 𝑛

 Output: vector of visited vertices 𝐯 (integer)

 Workspace: frontier vector 𝐟 (Boolean)

1. 𝐟 𝑠 = T

2. for level = 1 to 𝑛 − 1 *terminate earlier if 𝐟 is empty

3. 𝐬 𝐟 = level assign the level value to the vertices in the frontier

4. clear 𝐟 clear the frontier 𝐟

5. 𝐟 ¬𝐬 = 𝐟 any. pair 𝐀 advance the frontier

Graph algorithms in GraphBLAS

Breadth-first search / Parents

BFS – PARENTS







 



      

𝐟 1 1 1

semiring domain ⨁ ⨂ 0

min-first ℕ min first 0

𝐟 ¬𝐩 = 𝐟 min . first 𝐀

      

2 4

first 𝑥, 𝑦 = 𝑥

      

𝐩 0 1 1

𝐟 𝐟 = 𝐢𝐝𝐩 𝐟 = 𝐟

𝐀       















BFS – PARENTS







 



      

𝐟 2 4 4 2 2

      

3 5 7
      

𝐩 0 1 4 1 2 2

𝐟 𝐟 = 𝐢𝐝𝐩 𝐟 = 𝐟

𝐀       















semiring domain ⨁ ⨂ 0

min-first ℕ min first 0

first 𝑥, 𝑦 = 𝑥

𝐟 ¬𝐩 = 𝐟 min . first 𝐀

BFS – PARENTS







 



      

𝐟 3 5 7 3

      

6
      

𝐩 0 1 4 1 2 3 2

𝐟 𝐟 = 𝐢𝐝𝐩 𝐟 = 𝐟

𝐀       















semiring domain ⨁ ⨂ 0

min-first ℕ min first 0

first 𝑥, 𝑦 = 𝑥

𝐟 ¬𝐩 = 𝐟 min . first 𝐀

BFS – PARENTS







 



      

𝐟 6

𝐟 is empty
→ terminate

      

𝐩 0 1 4 1 2 3 2

𝐀       















semiring domain ⨁ ⨂ 0

min-first ℕ min first 0

first 𝑥, 𝑦 = 𝑥

𝐟 ¬𝐩 = 𝐟 min . first 𝐀

BFS – PARENTS: ALGORITHM

 Input: adjacency matrix 𝐀, source vertex 𝑠, #vertices 𝑛

 Output: parent vertices vector 𝐩 (integer)

 Workspace: vertex index vector 𝐢𝐝𝐱 (integer), frontier vector
𝐟 (integer)

1. 𝐢𝐝𝐱 = 1 2 … 𝑛 we assume 1-based indexing here

2. 𝐟 𝑠 = 𝑠

3. 𝐩 𝑠 = 0

4. for 𝑙 = 1 to 𝑛 − 1 *terminate earlier if the frontier is empty

5. 𝐟 ¬𝐩 = 𝐟 min . first 𝐀 advance the frontier

6. 𝐩 𝐟 = 𝐟 assign parent ids to the frontier’s vertices

7. 𝐟 𝐟 = 𝐢𝐝𝐱 assign vertex ids 𝐟 𝑖 = 𝑖

BFS – PARENTS: OPTIMIZATIONS

 If getting deterministic results is not a requirement (i.e. any
parent vertex can be returned), instead of min. sel1st, one
can use the any. first semiring.

 This optimization is allowed by the GAP Benchmark Suite.

 Direction-optimizing traversal (push/pull) can be exploited.

 The secondi (note the “i”) semiring can be used to express
the BFS Parent algorithm. When using this semiring, one
does not even have to look at the values in either 𝐀 of 𝐟.

This algorithm is described in:
Evaluation of Graph Analytics Frameworks Using the GAP Benchmark Suite, IISWC 2020

https://scottbeamer.net/pubs/beamer-iiswc2020.pdf
https://scottbeamer.net/pubs/beamer-iiswc2020.pdf

Graph algorithms in GraphBLAS

Multi-source BFS

MULTI-SOURCE BFS – LEVELS

semiring set ⨁ ⨂ 0

any-pair T, F any pair F







 


𝐅 ¬𝐒 = 𝐅 any. pair 𝐀

𝐀       















𝐅       

t1

t2

t3

semiring domain ⨁ ⨂ 0

any-pair T, F any pair F

MULTI-SOURCE BFS – PARENTS







 


𝐅 ¬𝐏 = 𝐅 min . first 𝐀

semiring domain ⨁ ⨂ 0

min-first ℕ ∪ +∞ min first +∞

𝐅       

t1 1

t2 3

t3 4

1 1

3

4 4

𝐀       















BFS – PERFORMANCE

 Naïve BFS impls can be slow on real graphs with skewed
distributions – further optimizations are needed.

 Direction-optimizing BFS was published in 2012.

o Switches between push (𝐯𝐀) and pull (𝐀⊤𝐯) during execution:

• Use the push direction when the frontier is small

• Use the pull direction when the frontier becomes large

o Adopted to GraphBLAS in 2018 (Yang et al.’s ICPP paper)

S. Beamer, K. Asanovic, D. Patterson:
Direction-Optimizing Breadth-First Search, SC 2012

C. Yang, A. Buluç, J.D. Owens: Implementing
Push-Pull Efficiently in GraphBLAS, ICPP 2018

C. Yang: High-performance linear algebra-based graph
framework on the GPU, PhD thesis, UC Davis, 2019

A. Buluç: GraphBLAS: Concepts, algorithms, and
applications, Scheduling Workshop, 2019

https://arxiv.org/pdf/1804.03327.pdf
https://arxiv.org/pdf/1804.03327.pdf
http://www.scottbeamer.net/pubs/beamer-sc2012.pdf
http://www.scottbeamer.net/pubs/beamer-sc2012.pdf
https://escholarship.org/uc/item/37j8j27d
https://escholarship.org/uc/item/37j8j27d
https://scheduling2019.sciencesconf.org/file/566318
https://scheduling2019.sciencesconf.org/file/566318

Graph algorithms in GraphBLAS

Single-source shortest paths

SSSP – SINGLE-SOURCE SHORTEST PATHS

 Problem:

o From a given start vertex 𝑠, find the shortest paths to every other
(reachable) vertex in the graph

 Bellman-Ford algorithm:

o Relaxes all edges in each step

oGuaranteed to find the shortest path using at most 𝑛 − 1 steps

 Observation:

o The relaxation step can be captured using a VM multiplication

oUnlike in BFS, there is no masking here, as revisiting edges that
have been visited previously can be useful.

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 


.5

      

𝐝 0

𝐀       

 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

.3

.8

.8

.7 .1

.5

.1

.1

.5

semiring domain ⨁ ⨂ 0

min-plus ℝ ∪ +∞ min + +∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 


.5

      

𝐝 0

𝐀       

 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 .8

.3

.8

.8

.7 .1

.5

.1

.1

.5

semiring domain ⨁ ⨂ 0

min-plus ℝ ∪ +∞ min + +∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 


.5

      

𝐝 0 .3 .8

𝐀       

 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 1.2 .8 .4 1

.3

.8

.8

.7 .1

.5

.1

.1

.5

semiring domain ⨁ ⨂ 0

min-plus ℝ ∪ +∞ min + +∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 


.5

      

𝐝 0 .3 1.2 .8 .4 1

𝐀       

 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 1.1 .8 .4 .5 1

.3

.8

.8

.7 .1

.5

.1

.1

.5

semiring domain ⨁ ⨂ 0

min-plus ℝ ∪ +∞ min + +∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD

.2

.4







 



      

𝐝 0 .3 1.1 .8 .4 .5 1

𝐀       

 0 .3 .8
 0 .1 .7
 0 .5
 .2 .4 0
 0 .1
 .5 0
 .1 .5 .9 0

0 .3 1 .8 .4 .5 1

.5

.5

.3

.8

.8

.7 .1

.5

.1

.1

semiring domain ⨁ ⨂ 0

min-plus ℝ ∪ +∞ min + +∞

𝐝 min.+𝐀

SSSP – ALGEBRAIC BELLMAN-FORD ALGO.

Input: adjacency matrix 𝐀, source vertex 𝑠, #vertices 𝑛

𝐀𝑖𝑗 = ൞

0 if 𝑖 = 𝑗

𝑤 𝑒𝑖𝑗 if 𝑒𝑖𝑗 ∈ 𝐸

∞ if 𝑒𝑖𝑗 ∉ 𝐸

Output: distance vector 𝐝 (real)

1. 𝐝 = ∞∞…∞

2. 𝐝 𝑠 = 0

3. for 𝑘 = 1 to 𝑛 − 1 *terminate earlier if we reach a fixed point

4. 𝐝 = 𝐝min.+𝐀

Optimizations for BFS (push/pull) also work here.

Graph algorithms in GraphBLAS

Triangle count / Definition

TRIANGLE COUNT

 IEEE GraphChallenge: an annual
competition at the HPEC conference

 The task of the 2017 GraphChallenge
was triangle count: given a graph G,
count the number of triangles.

 Triangle = “set of three mutually
adjacent vertices in a graph”

 Many solutions employed a linear
algebraic computation model

GraphChallenge.org: Raising the Bar on Graph Analytic Performance, HPEC 2018







 



2

8

4

6

6

2

2

Number of unique triangles:

30

6

Graph algorithms in GraphBLAS

Triangle count / Naïve algorithm

TC EXAMPLE: NAÏVE APPROACH







 



2

8

4

6

6

2

2

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀      
1 1

1 1 1 1

1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1 1

2 1 1 1 1 1 2

1 4 2 2 1 2 2

1 2 3 2 2 1 1

1 2 2 5 3 1 2

1 1 2 3 3 1

1 2 1 1 3 3

2 2 1 2 1 3 4

2 6 4 7 4 3 4

6 6 6 11 8 5 9

4 6 4 8 4 7 9

7 11 8 8 5 10 12

4 8 4 5 2 8 9

3 5 7 10 8 2 4

4 9 9 12 9 4 6

𝐭𝐫𝐢𝟐 = diag−1 𝐀⨁.⨂𝐀⨁.⨂𝐀

2

6

4

8

2

2

6

𝐭𝐫𝐢𝟐

Graph algorithms in GraphBLAS

Triangle count / Masked algorithm

TC EXAMPLE: ELEMENT-WISE MULTIPLICATION

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

2 1 1 1 1 1 2

1 4 2 2 1 2 2

1 2 3 2 2 1 1

1 2 2 5 3 1 2

1 1 2 3 3 1

1 2 1 1 3 3

2 2 1 2 1 3 4

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

𝐓𝐑𝐈 = 𝐀⨁.⨂𝐀⨂𝐀

𝐭𝐫𝐢𝟐 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

2

6

4

8

2

2

6







 



2

8

4

6

6

2

2

𝐭𝐫𝐢𝟐

⊕𝑗 ⋯

𝐓𝐑𝐈

TC EXAMPLE: ELEMENT-WISE MULTIPLICATION

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐓𝐑𝐈 𝐀 = 𝐀⨁.⨂𝐀

𝐭𝐫𝐢𝟐 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗

2

6

4

8

2

2

6







 



2

8

4

6

6

2

2

𝐭𝐫𝐢𝟐

+𝑗⋯

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

Masking limits where the
operation is computed.
Here, we use 𝐀 as a mask
for 𝐀⨁.⨂𝐀.

Graph algorithms in GraphBLAS

The importance of masking

THE IMPORTANCE OF MASKING

Q: Is masking absolutely necessary?

A: Yes, it can reduce the complexity of some algorithms.
We demonstrate this with two examples.

𝐀     

 1 1 1 1

 1

 1

 1

 1

4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1





𝐀    

1 1 1 1

1

1

1

1

𝐀

A simple corner case is
the star graph: there
are 𝑛 − 1 2 wedges but
none of them close into
triangles.

We do quadratic work
while it’s clear that
there are no triangles in
the graph (it’s a tree).





#1

𝐀     

 1 1 1 1

 1

 1

 1

 1

𝐀⊕.⊗ 𝐀 𝐀⊕.⊗ 𝐀⊕.⊗ 𝐀

𝐀     

 1 1 1 1

 1 1 1 1

 1 1

 1 1

 1 1

𝐀     

 1 1 1 1

 1 1 1 1

 1 1

 1 1

 1 1

4 3 1 1 1

3 4 1 1 1

1 1 2 2 2

1 1 2 2 2

1 1 2 2 2

𝐀    

1 1 1 1

1 1 1 1

1 1

1 1

1 1

3 1 1 1

3 1 1 1

1 1

1 1

1 1

𝐀

A full bipartite graph 𝐾2,3
with the vertices in the top
partition connected.

A bipartite graph only has
cycles of even length, so
it’s easy to see that all
triangles will contain the
two vertices in the top
partition. Still, 𝐀⊕.⊗ 𝐀
enumerates all wedges
starting and ending in the
bottom partition, thus
performing a lot of
unnecessary work.

 



#2

𝐀⊕.⊗ 𝐀 𝐀⊕.⊗ 𝐀⊕.⊗ 𝐀

 



𝐀 𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀

𝐀     

 1 1 1 1

 1 1 1 1

 1 1

 1 1

 1 1

#2
Masking avoids the
materialization of large
interim data sets by
ensuring that we only
enumerate wedges whose
endpoints are already
connected.

6

6

2

2

2

𝐭𝐫𝐢

3 1 1 1

3 1 1 1

1 1

1 1

1 1

⊕𝑗 𝐓𝐑𝐈 : , 𝑗

𝐀     

 1 1 1 1

 1 1 1 1

 1 1

 1 1

 1 1

Graph algorithms in GraphBLAS

Triangle count / Cohen’s algorithm

COHEN’S ALGORITHM: PSEUDOCODE

J. Cohen: Graph Twiddling in a MapReduce World, Comput. Sci. Eng. 2009

Input: adjacency matrix 𝐀

Output: triangle count 𝑡

Workspace: matrices 𝐋, 𝐔, 𝐁, 𝐂

1. 𝐋 = tril 𝐀 extract the lower triangle from A

2. 𝐔 = triu(𝐀) extract the upper triangle from A

3. 𝐁 = 𝐋⊕.⊗ 𝐔

4. 𝐂 = 𝐁⊗𝐀

5. 𝑡 = σ𝐂 /𝟐 sum the values in C and divide by 2

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.3712&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.298.3712&rep=rep1&type=pdf

𝐀       
1 1

1 1 1 1

1 1 1

1 1 1 1 1

1 1 1

1 1 1

1 1 1 1







 



𝐋       


 1



 1 1 1

 1

 1 1 1

 1 1 1 1

𝐔       
 1 1

 1 1 1

 1 1 1

 1 1

 1 1





𝐁

1 1

1 3 1 1 2

1 1 1

1 3 3

2 1 3 4

COHEN’S ALGORITHM

⊗

𝑡 = σ𝐂/𝟐
𝐂

1

1 1 2

1

1

2 1

𝐋       


 1



 1 1 1

 1

 1 1 1

 1 1 1 1

𝐔       
 1 1

 1 1 1

 1 1 1

 1 1

 1 1





COHEN’S ALGORITHM: MASKING







 



𝐂

1

1 1 2

1

1

2 1

𝐂 𝐀 = 𝐋⊕.⊗ 𝐔

𝑡 = σ𝐂 /𝟐

Graph algorithms in GraphBLAS

Triangle count / Sandia algorithm

SANDIA ALGORITHM

M.M. Wolf et al. (Sandia National Laboratories):
Fast linear algebra-based triangle counting with KokkosKernels, HPEC 2017

Input: adjacency matrix 𝐀

Output: triangle count 𝑡

Workspace: matrices 𝐋, 𝐔, 𝐁, 𝐂

1. 𝐋 = tril 𝐀 extract the lower triangle from A

2. 𝐂 𝐋 = 𝐋⊕.⊗ 𝐋 multiply matrices L and L using mask L

3. 𝑡 = σ𝐂 sum the values in C

https://www.osti.gov/servlets/purl/1506222
https://www.osti.gov/servlets/purl/1506222

𝐋       


 1



 1 1 1

 1

 1 1 1

 1 1 1 1

𝐋       


 1



 1 1 1

 1

 1 1 1

 1 1 1 1

SANDIA ALGORITHM







 



𝐂

1

1

2 1

𝐂 𝐋 = 𝐋⊕.⊗ 𝐋

𝑡 = σ𝐂

Graph algorithms in GraphBLAS

Triangle count / CMU algorithm

CMU ALGORITHM

 Iterates on the vertices of the graph,
extracts corresponding submatrices and
computes 𝑡 = 𝑡 + 𝑎10

⊤ ⊕.⊗ 𝐴20 ⊕.⊗ 𝑎12
 Tradeoffs:

o does not require mxm, only vxm and mxv

o slower than mxm-based algorithms

 The formula is derived using the matrix trace tr 𝐀 =
σ𝑖=0
𝑛−1 𝐀𝑖𝑖 and its invariant property under cyclic permutation,

e.g. tr 𝐀𝐁𝐂 = tr 𝐁𝐂𝐀 = tr 𝐂𝐀𝐁 . See the paper for details.

T.M. Low et al. (Carnegie Mellon University):
First look: linear algebra-based triangle counting without matrix multiplication, HPEC 2017

𝐀 𝑖

𝐀00 𝐚01 𝐀20
⊤

𝑖 𝐚01
⊤ 0 𝐚21

⊤

𝐀20 𝐚21 𝐀22

https://users.ece.cmu.edu/~franzf/papers/hpec_2017_low.pdf
https://users.ece.cmu.edu/~franzf/papers/hpec_2017_low.pdf

CMU ALGORITHM: PSEUDOCODE

T.M. Low et al. (Carnegie Mellon University):
First look: linear algebra-based triangle counting without matrix multiplication, HPEC 2017

Input: adjacency matrix 𝐀

Output: triangle count 𝑡

Workspace: matrices 𝐀20, 𝐂, vectors 𝐚10, 𝐚12
⊤

1. for 𝑖 = 2 to 𝑛 − 1

2. 𝐀20 = 𝐀 𝑖 + 1: 𝑛, 0: 𝑖 − 1

3. 𝐚10 = 𝐀 0: 𝑖 − 1, 𝑖

4. 𝐚12 = 𝐀 𝑖, 𝑖 + 1: 𝑛

5. 𝑡 = 𝑡 + 𝑎10
⊤ ⊕.⊗ 𝐴20 ⊕.⊗ 𝑎12

𝐀 𝑖

𝐀00 𝐚01 𝐀20
⊤

𝑖 𝐚01
⊤ 0 𝐚21

⊤

𝐀20 𝐚21 𝐀22

https://users.ece.cmu.edu/~franzf/papers/hpec_2017_low.pdf
https://users.ece.cmu.edu/~franzf/papers/hpec_2017_low.pdf

PROVABLY CORRECT ALGORITHMS

M. Lee, T.M. Low (Carnegie Mellon University):
A family of provably correct algorithms for exact triangle counting,
CORRECTNESS @ SC 2017

The “CMU algorithm”
belongs to a family of
algorithms which can
be derived using the
“FLAME approach”.

There are 8 similar
algorithms in total,
the one presented
here is Algorithm 2.

Source
of the
figure

https://correctness-workshop.github.io/2017/papers/low.pdf
https://correctness-workshop.github.io/2017/papers/low.pdf

Graph algorithms in GraphBLAS

Vertex-wise triangle count

VERTEX-WISE TRIANGLE COUNT

Triangle: a set of three mutually adjacent vertices.

Usages:

 Global clustering coefficient

 Local clustering coefficient

 Finding communities

𝑣







 



1

4

2

3

3

1

1

GraphChallenge.org: Raising the Bar on Graph Analytic Performance, HPEC 2018

TC: ELEMENT-WISE MULTIPLICATION

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

2 1 1 1 1 1 2

1 4 2 2 1 2 2

1 2 3 2 2 1 1

1 2 2 5 3 1 2

1 1 2 3 3 1

1 2 1 1 3 3

2 2 1 2 1 3 4

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

𝐓𝐑𝐈 = 𝐀⊕.⊗ 𝐀⊗𝐀

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗 /𝟐

𝐀⊕.⊗ 𝐀 is still very dense.

1

3

2

4

1

1

3







 



1

4

2

3

3

1

1

𝐭𝐫𝐢

⊕𝑗 ⋯

𝐓𝐑𝐈

⊗ 𝐀

/2

TC: ELEMENT-WISE MULTIPLICATION

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀

𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗 /2

1

3

2

4

1

1

3







 



1

4

2

3

3

1

1

𝐭𝐫𝐢

⊕𝑗 ⋯

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

Masking limits where the
operation is computed.
Here, we use 𝐀 as a mask
for 𝐀⊕.⊗ 𝐀.

/2

TC: ALGORITHM

Input: adjacency matrix 𝐀

Output: vector 𝐭𝐫𝐢

Workspace: matrix 𝐓𝐑𝐈

1. 𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀 compute the triangle count matrix

2. 𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗 /2 compute the triangle count vector

Optimization: use 𝐋, the lower triangular part of 𝐀 to avoid duplicates.
𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐋

Worst-case optimal joins: There are deep theoretical connections between masked matrix multiplication and
relational joins. It has been proven in 2013 that for the triangle query, binary joins always provide suboptimal
runtime, which gave rise to new research on the family of worst-case optimal multi-way joins algorithms.

Graph algorithms in GraphBLAS

Local clustering coefficient

LCC: LOCAL CLUSTERING COEFFICIENT

LCC 𝑣 =
#edges between neighbours of 𝑣

#possible edges between neighbours of 𝑣
=

If 𝑁 𝑣 ≤ 1, LCC 𝑣 = 0

Important metric in social network analysis.

The numerator is the number of triangles in 𝑣, tri(𝑣).

The denominator is the number of wedges in 𝑣, wed(𝑣).

LCC 𝑣 =
tri(𝑣)

wed 𝑣

The difficult part is tri(𝑣).

𝑣

𝑣

LCC: NUMBER OF WEDGES IN EACH VERTEX

LCC 𝑣 =
tri(𝑣)

wed 𝑣

 For wed 𝑣 , we determine the #wedges for each vertex as
the 2-combination of its degree:

comb2 𝑥 =
𝑥 ⋅ 𝑥 − 1

2

 Given the degrees 𝐝𝐞𝐠 = ⊕𝑗 𝐀 : , 𝑗 , we compute 𝐰𝐞𝐝

by applying a unary function on the elements of the vector:

𝐰𝐞𝐝 = comb2 𝐝𝐞𝐠

LCC EXAMPLE: NUMBER OF WEDGES

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

2

4

3

5

3

3

4

𝐝𝐞𝐠

⊕𝑗 𝐀 : , 𝑗

1

6

3

10

3

3

6

𝐰𝐞𝐝







 



2

5

3

4

4

3

3 





 



1

10

3

6

6

3

3

comb2 ⋯

LCC EXAMPLE: COMPLETE ALGORITHM

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

1 1

1 2 1 2

2 1 1

1 2 2 1 2

1 1

1 1

2 1 2 1

1

3

2

4

1

1

3







 



1.00

0.40

0.67

0.50

0.50

0.33

0.33

𝐭𝐫𝐢

⊕𝑗 ⋯
⊘

1

6

3

10

3

3

6

1.00

0.50

0.67

0.40

0.33

0.33

0.50

𝐰𝐞𝐝

=

𝐥𝐜𝐜

2

4

3

5

3

3

4

𝐝𝐞𝐠

⊕𝑗 ⋯ comb2 ⋯

𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀

/2

LCC: ALGORITHM

Input: adjacency matrix 𝐀

Output: vector 𝐥𝐜𝐜

Workspace: matrix 𝐓𝐑𝐈, vectors 𝐭𝐫𝐢, 𝐝𝐞𝐠, 𝐰𝐞𝐝, and 𝐥𝐜𝐜

1. 𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐀 compute triangle count matrix

2. 𝐭𝐫𝐢 = ⊕𝑗 𝐓𝐑𝐈 : , 𝑗 /2 reduce to triangle count vector

3. 𝐝𝐞𝐠 = ⊕𝑗 𝐀 : , 𝑗 reduce to vertex degree vector

4. 𝐰𝐞𝐝 = comb2 𝐝𝐞𝐠 apply comb2 to get wedge count vector

5. 𝐥𝐜𝐜 = 𝐭𝐫𝐢 ⊘𝐰𝐞𝐝 LCC vector

M. Aznaveh, J. Chen, T.A. Davis, B. Hegyi, S.P. Kolodziej, T.G. Mattson, G. Szárnyas:
Parallel GraphBLAS with OpenMP, Workshop on Combinatorial Scientific Computing 2020

http://faculty.cse.tamu.edu/davis/publications_files/CSC20_OpenMP_GraphBLAS.pdf
http://faculty.cse.tamu.edu/davis/publications_files/CSC20_OpenMP_GraphBLAS.pdf

LCC: FURTHER OPTIMIZATIONS

Further optimization: use 𝐋, the lower triangular part of 𝐀.

𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐋

The number of wedges is now the 2-combination of 𝐝𝐞𝐠.

comb2 𝑥 =
𝑥 ⋅ 𝑥 − 1

2
Permuting the adjacency matrix allows further optimizations.

LCC EXAMPLE: LOWER TRIANGULAR PART OF MX.

𝐀      
 1 1

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1

 1 1 1

 1 1 1 1

𝐋      


 1



 1 1 1

 1

 1 1 1

 1 1 1 1

1

1 1 1

2

1 1 2

1

1

2 1

1

3

2

4

1

1

3







 



1.00

0.40

0.67

0.50

0.50

0.33

0.33

𝐭𝐫𝐢

⊕𝑗 ⋯
⊘

1

6

3

10

3

3

6

1.00

0.50

0.67

0.40

0.33

0.33

0.50

𝐰𝐞𝐝

=

𝐥𝐜𝐜

𝐝𝐞𝐠

comb2 ⋯

𝐓𝐑𝐈 𝐀 = 𝐀⊕.⊗ 𝐋

2

4

3

5

3

3

4

⊕𝑗 ⋯

Graph algorithms in GraphBLAS

PageRank

PAGERANK – DEFINITION (LDBC GRAPHALYTICS)

For 𝑘 = 1 to 𝑡 iterations:

PR0 𝑣 =
1

𝑛

PR𝑘 𝑣 =
1 − 𝛼

𝑛
+ 𝛼 ⋅ ෍

𝑢∈𝑁in 𝑣

PR𝑘−1 𝑢

𝑁out 𝑢
+

𝛼

𝑛
⋅ ෍

𝑤∈𝑑𝑛𝑔

PR𝑘−1 𝑤

𝛼: damping factor

𝑑𝑛𝑔: dangling vertices, 𝑑𝑛𝑔 = 𝑤 ∈ 𝑉 ∶ 𝑁out 𝑤 = 0

There are dozens of PR definitions, some treat dangling vertices differently.

teleport influence dangling

PAGERANK – IN LINEAR ALGEBRA

Initially:

𝐩𝐫0 = 1 1…1 ⊘ 𝑛, 𝐨𝐮𝐭𝐝 = ⊕𝑗 𝐀 : , 𝑗

In each iteration:

PR𝑘 𝑣 =
1 − 𝛼

𝑛
+ 𝛼 ⋅ ෍

𝑢∈𝑁in 𝑣

PR𝑘−1 𝑢

𝑁out 𝑢
+

𝛼

𝑛
⋅ ෍

𝑤∈𝑑𝑛𝑔

PR𝑘−1 𝑤

𝐩𝐫𝑘 =
1 − 𝛼

𝑛
⊕ 𝛼⊗

𝐩𝐫𝑘−1
𝐨𝐮𝐭𝐝

⊕.⊗ 𝐀 ⊕
𝛼

𝑛
⊗ ⊕𝑖 𝐩𝐫𝑘 ⊗𝐨𝐮𝐭𝐝 𝑖

constant SpMV element-wise sparse vector-
dense vector multiplication

PAGERANK – ALGORITHM

Input: adjacency matrix 𝐀, damping factor 𝛼, #iterations 𝑡,
#vertices 𝑛

Output: PageRank vector 𝐩𝐫 (real); Workspace: vectors (real)

1. 𝐩𝐫 = 1 1…1 ⊘ 𝑛

2. 𝐨𝐮𝐭𝐝𝐞𝐠𝐫𝐞𝐞𝐬 = ⊕𝑗 𝐀 : , 𝑗

3. for 𝑘 = 1 to 𝑡

4. 𝐢𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐜𝐞 = 𝛼 ⊗ 𝐩𝐫⊘ 𝐨𝐮𝐭𝐝𝐞𝐠𝐫𝐞𝐞𝐬 ⊕.⊗ 𝐀

5. 𝐝𝐚𝐧𝐠𝐥𝐢𝐧𝐠𝐕𝐞𝐫𝐭𝐞𝐱𝐑𝐚𝐧𝐤𝐬 ¬𝐨𝐮𝐭𝐝𝐞𝐠𝐫𝐞𝐞𝐬 = 𝐩𝐫 ∶

6. 𝑡𝑜𝑡𝑎𝑙𝐷𝑎𝑛𝑔𝑙𝑖𝑛𝑔𝑅𝑎𝑛𝑘 =
𝛼

𝑛
⊗ ⊕𝑖 𝐝𝐚𝐧𝐠𝐥𝐢𝐧𝐠𝐕𝐞𝐫𝐭𝐞𝐱𝐑𝐚𝐧𝐤𝐬 𝑖

7. 𝐩𝐫 =
1−𝛼

𝑛
⊕ 𝑡𝑜𝑡𝑎𝑙𝐷𝑎𝑛𝑔𝑙𝑖𝑛𝑔𝑅𝑎𝑛𝑘 ⊕ 𝐢𝐦𝐩𝐨𝐫𝐭𝐚𝐧𝐜𝐞

Graph algorithms in GraphBLAS

k-truss

K-TRUSS

 Definition: the k-truss is a subset of the graph with the
same number of vertices, where each edge appears in at
least 𝑘 − 2 triangles in the original graph.

K-TRUSS ALGORITHM

 Input: adjacency matrix 𝐀, scalar 𝑘

 Output: 𝑘-truss adjacency matrix 𝐂

 Helper: 𝑓 𝑥, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 𝑥 ≥ 𝑠𝑢𝑝𝑝𝑜𝑟𝑡

1. 𝐂 = 𝐀

2. for 𝑖 = 1 to 𝑛 − 1

3. 𝐂 𝐂 = 𝐂⊕.∧ 𝐂 use the “plus-and” semiring

4. 𝐂 = 𝑓 𝐂, 𝑘 − 2 drop entries in 𝐂 less than 𝑘 − 2

5. terminate if the number of non-zero values in 𝐂 did not change

T.A. Davis: Graph algorithms via SuiteSparse:GraphBLAS: triangle counting and k-truss, HPEC 2018

http://faculty.cse.tamu.edu/davis/GraphBLAS_files/Davis_HPEC18.pdf
http://faculty.cse.tamu.edu/davis/GraphBLAS_files/Davis_HPEC18.pdf

Graph algorithms in GraphBLAS

Community detection using label propagation

CDLP: COMMUNITY DETECTION USING LABEL PROPAGATION

Goal: assign a label to each vertex representing the community it
belongs to. The algorithm (originally published in network science)
is slightly altered to ensure deterministic execution. Initially:

𝐿0 𝑣 = 𝑣

In the 𝑘th iteration:
𝐿𝑘 𝑣 = min argmax𝑙 𝑢 ∈ 𝑁 𝑣 ∶ 𝐿𝑘−1 𝑢 = 𝑙 ,

where 𝑁 𝑣 is the set of neighbours of 𝑣.

Run for 𝑡 iterations or until reaching a fixed point.

U.N. Raghavan, R. Albert, S. Kumara: Near linear time algorithm to
detect community structures in large-scale networks, Phys. Rev. E, 2007

https://journals.aps.org/pre/pdf/10.1103/PhysRevE.76.036106
https://journals.aps.org/pre/pdf/10.1103/PhysRevE.76.036106

IDEA: CAPTURE CDLP IN PURE GRAPHBLAS

 Define a semiring that operates over occurrence vectors

 ⊕ operator: combines two occurrence vectors

o 6 → 1, 9 → 1 ⊕ 6 → 1, 7 → 2 = 6 → 2, 7 → 2, 9 → 1

 Convert each element in a row to an occurrence vector

o 6 → 1 , 6 → 1 , 7 → 1 , 7 → 1 , 9 → 1

 Reduce each row into a single occurrence vector:

o 6 → 2, 7 → 2, 9 → 1

 Select the min. mode element from the occurrence vector: 6

 Works on paper, but occurrence vectors need dynamic
memory allocation, which leads to poor performance with
the current GraphBLAS API

CDLP IN LINEAR ALGEBRA: FASTER ALGORITHM

 Extract each row from 𝐅

o Easy if the matrix is stored in CSR format

 Select the minimum mode value in each row

o Sort elements using parallel merge sort

o Pick the min value that has the longest run (done in a single pass)

 Sort each row r

 Use the sorted list to compute mode(r)

 The matrix multiplications are always performed with a
diagonal matrix as the second operand so we never need
the addition operator. Therefore, we set it to ⊕≡ any.

CDLP EXAMPLE







 



1

4

3

2

7

6

5

𝐀       

  

   

   

   

   

  

    

diag 𝐥𝐚𝐛       

 1

 2

 3

 4

 5

 6

 7

2 4

1 5 7

4 6 7

1 3 7

2 6 7

3 5

2 3 4 5

 Initially, 𝐥𝐚𝐛 = 1 2…𝑛

 Propagate labels to create
a “frequency matrix”:
𝐅 = 𝐀 any . sel2nd diag(𝐥𝐚𝐛)

CDLP EXAMPLE







 



1

4

3

2

7

6

5

𝐀       

  

   

   

   

   

  

    

diag 𝐥𝐚𝐛       

 1

 2

 3

 4

 5

 6

 7

2 4

1 5 7

4 6 7

1 3 7

2 6 7

3 5

2 3 4 5

2

1

4

1

2

3

2

min.
mode

𝐥𝐚𝐛′

step: 1

CDLP EXAMPLE







 



2

1

4

1

2

3

2

𝐀       

  

   

   

   

   

  

    

diag 𝐥𝐚𝐛       

 2

 1

 4

 1

 2

 3

 2

1 1

2 2 2

1 3 2

2 4 2

1 3 2

4 2

1 4 1 2

1

2

1

2

1

2

1

min.
mode

𝐥𝐚𝐛′

step: 2

CDLP EXAMPLE







 



1

2

1

2

1

2

1

𝐀       

  

   

   

   

   

  

    

diag 𝐥𝐚𝐛       

 1

 2

 1

 2

 1

 2

 1

2 2

1 1 1

2 2 1

1 1 1

2 2 1

1 1

2 1 2 1

2

1

2

1

2

1

1

min.
mode

𝐥𝐚𝐛′

step: 3

CDLP EXAMPLE







 



2

1

2

1

1

1

2

𝐀       

  

   

   

   

   

  

    

diag 𝐥𝐚𝐛       

 2

 1

 2

 1

 2

 1

 1

1 1

2 2 1

1 1 1

2 2 1

1 1 1

2 2

1 2 1 2

1

2

1

2

1

2

1

min.
mode

𝐥𝐚𝐛′

step: 4 – same result as in step 2
The original non-deterministic
variant of the algorithm is better
at avoiding such oscillations.

CDLP: ALGORITHM

Input: adjacency matrix 𝐀, #vertices 𝑛, #iterations 𝑡

Output: vector 𝐥𝐚𝐛

Workspace: matrix F, vector 𝐫

1. 𝐥𝐚𝐛 = 1 2…𝑛

2. for 𝑘 = 1 to 𝑡

3. 𝐅 = 𝐀 any.sel2nd diag 𝐥𝐚𝐛

4. for 𝑖 = 1 to 𝑛

5. 𝐫 = 𝐅 𝑖, :

6. sort 𝐫

7. 𝐥𝐚𝐛 𝑖 = select_min_mode 𝐫

Can be batched and parallelized

CDLP: ALGORITHM

Input: adjacency matrix 𝐀, #vertices 𝑛, #iterations 𝑡

Output: vector 𝐥𝐚𝐛

Workspace: matrix F, vector 𝐫, array of row indices 𝐈, array of values 𝐗

1. 𝐥𝐚𝐛 = 1 2…𝑛

2. for 𝑘 = 1 to 𝑡

3. 𝐅 = 𝐀 any.sel2nd diag 𝐥𝐚𝐛

4. 𝐈, _, 𝐗 = extract_tuples(𝐅)

5. merge_sort_pairs 𝐈, 𝐗

6. 𝐥𝐚𝐛 = for each row in 𝐈, select min mode value from 𝐗

CDLP ON DIRECTED GRAPHS

For directed graphs, we compute the labels 𝐿𝑘 𝑣 as:

min argmax𝑙 𝑢 ∈ 𝑁in 𝑣 ∶ 𝐿𝑘−1 𝑢 = 𝑙 + 𝑢 ∈ 𝑁out 𝑣 ∶ 𝐿𝑘−1 𝑢 = 𝑙

 In linear algebra, this can be expressed with two matrices:

o 𝐅in = 𝐀 any. sel2nd diag 𝐥𝐚𝐛

o 𝐅out = 𝐀⊤ any. sel2nd diag 𝐥𝐚𝐛

 Simultaneously iterate over rows 𝐫in of 𝐅in and 𝐫out of 𝐅out
 For each row pair, sort 𝐫in ∪ 𝐫out and select the minimum mode value

 Batching also works:

o 𝐈in, _, 𝐗in = extract_tuples 𝐅in
o 𝐈out, _, 𝐗out = extract_tuples 𝐅out

merge_sort_pairs 𝐈in ∪ 𝐈out, 𝐗in ∪ 𝐗out

Graph algorithms in GraphBLAS

Graph algorithms & GraphBLAS primitives

GRAPH ALGORITHMS & GRAPHBLAS PRIMITIVES

Misc.
Connectivity, subgraph

matching, traversal (BFS),
max. independent set

Centrality
PageRank,

betweenness
centrality

Graph clustering
Markov cluster,
peer pressure,
spectral, local

Shortest paths
All-pairs shortest,

single-source,
temporal

GraphBLAS primitives in increasing cost

Based on the figure in A. Buluç:
Graph algorithms, computational motifs, and GraphBLAS, ECP Meeting 2018

SpMSpV
Sparse Matrix
Sparse Vector

SpMM
Sparse Matrix

Multiple Dense Vectors

SpMV
Sparse Matrix
Dense Vector

SpGEMM
Sparse Matrix
Sparse Matrix

SpDM3

Sparse-Dense
Matrix-Matrix M.

https://people.eecs.berkeley.edu/~aydin/ECP_GraphBLAS_Buluc.pdf
https://people.eecs.berkeley.edu/~aydin/ECP_GraphBLAS_Buluc.pdf

GraphBLAS and SuiteSparse internals

GRAPHBLAS C API

 “A crucial piece of the GraphBLAS effort is to translate the
mathematical specification to an API that

o is faithful to the mathematics as much as possible, and

o enables efficient implementations on modern hardware.”

mxm(Matrix *C, Matrix M, BinaryOp accum, Semiring op, Matrix A, Matrix B, Descriptor desc)

𝐂 ¬𝐌 ⊙= ⊕.⊗ 𝐀⊤, 𝐁⊤

A. Buluç et al.: Design of the GraphBLAS C API, GABB@IPDPS 2017

GRAPHBLAS OBJECTS

 GraphBLAS objects are opaque: the matrix representation
can be adjusted to suit the data distribution, hardware, etc.

 The typical representations compressed formats are:

o CSR: Compressed Sparse Row (also known as CRS)

o CSC: Compressed Sparse Column (also known as CCS)

𝐀       

 .3 .8

 .1 .7

 .5

 .2 .4

 .1

 .5

 .1 .5 .9

col index 2 4 5 7 6 1 3 6 3 3 4 5

value .3 .8 .1 .7 .5 .2 .4 .1 .5 .1 .5 .9

row ptr 1 3 5 6 8 9 10 13

CSR representation of 𝐀:

SUITESPARSE:GRAPHBLAS INTERNALS

 Authored by Prof. Tim Davis at Texas A&M University,
based on his SuiteSparse library (used in MATLAB).

 Design decisions, algorithms and data structures are
discussed in the TOMS paper and in the User Guide.

 Extensions: methods and types prefixed with GxB.

 Sophisticated load balancer for multi-threaded execution.

 A GPU implementation is work-in-progress.

T.A. Davis: Algorithm 1000: SuiteSparse:GraphBLAS:
graph algorithms in the language of sparse linear
algebra, ACM TOMS, 2019

T.A. Davis: SuiteSparse:GraphBLAS: graph
algorithms via sparse matrix operations
on semirings, Sparse Days 2017

http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf
http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf
https://cerfacs.fr/wp-content/uploads/2017/09/S02E04-Davis.pdf
https://cerfacs.fr/wp-content/uploads/2017/09/S02E04-Davis.pdf

Further reading and libraries

RESOURCES

Presentations and tutorials for learning GraphBLAS:

S. McMillan and T.G. Mattson:
A Hands-On Introduction to the GraphBLAS, Tutorial at HPEC since 2018

J.R. Gilbert:
GraphBLAS: Graph Algorithms in the Language of Linear Algebra, Seminar talk since 2014

A. Buluç:
GraphBLAS: Concepts, algorithms, and applications, Scheduling Workshop, 2019

List of GraphBLAS-related books, papers, presentations, posters, software, etc.
szarnyasg/graphblas-pointers

M. Kumar, J.E. Moreira, P. Pattnaik:
GraphBLAS: Handling performance concerns in large graph analytics,
Computing Frontiers 2018

https://github.com/tgmattso/GraphBLAS
https://github.com/tgmattso/GraphBLAS
https://sites.cs.ucsb.edu/~gilbert/talks/Gilbert-27Jun2019.pdf
https://sites.cs.ucsb.edu/~gilbert/talks/Gilbert-27Jun2019.pdf
https://scheduling2019.sciencesconf.org/file/566318
https://scheduling2019.sciencesconf.org/file/566318
https://github.com/szarnyasg/graphblas-pointers
https://github.com/szarnyasg/graphblas-pointers
https://github.com/szarnyasg/graphblas-pointers
https://www.ibm.com/university/power/images/CF2018.pdf
https://www.ibm.com/university/power/images/CF2018.pdf

THE LAGRAPH LIBRARY

 Similar to the LAPACK library for BLAS

 Uses SuiteSparse:GraphBLAS

 Implementations of common algorithms

o BFS, SSSP, LCC, PageRank, Boruvka

o Triangle count, 𝑘-truss

o CDLP (community detection using label propagation)

oWeakly connected components, Strongly Connected Components

o Betweenness centrality

oDeep neural network

T.G. Mattson et al.: LAGraph: A Community Effort to Collect Graph
Algorithms Built on Top of the GraphBLAS, GrAPL@IPDPS 2019

GraphBLAS/LAGraph

http://faculty.cse.tamu.edu/davis/GraphBLAS_files/lagraph-grapl19.pdf
http://faculty.cse.tamu.edu/davis/GraphBLAS_files/lagraph-grapl19.pdf
https://github.com/GraphBLAS/LAGraph
https://github.com/GraphBLAS/LAGraph/
https://github.com/GraphBLAS/LAGraph/

REQUIREMENTS BY GRAPH COMPUTATIONS

Libraries for linear-algebra based graph processing support the
following features (prioritized):

1. Sparse matrices For reasonable performance

2. Arbitrary semirings For expressive power

3. Masking A big reduction in complexity for some algos

4. Parallel execution Constant speedup, ideally by #threads

Most libraries only satisfy requirement #1: Intel MKL, Eigen, Boost
uBLAS, MTL4, Armadillo, NIST Sparse BLAS, GMM++, CUSP, Numpy

Exceptions are the Efficient Java Matrix Library (EJML) and Julia’s
SparseArrays library, where arbitrary semirings can be used.

GRAPHBLAS PAPERS AND BOOKS

 Standards for Graph Algorithm Primitives
o Position paper by 19 authors @ IEEE HPEC 2013

 Novel Algebras for Advanced Analytics in Julia
o Technical paper on semirings in Julia @ IEEE HPEC 2013

 Mathematical Foundations of the GraphBLAS
o Theory paper by 16 authors @ IEEE HPEC 2016

 Design of the GraphBLAS C API
o Design decisions and overview of the C API @ GABB@IPDPS 2017

 Algorithm 1000: SuiteSparse:GraphBLAS: graph algorithms
in the language of sparse linear algebra
o Algorithms in the SuiteSparse implementation @ ACM TOMS 2019

https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964
https://arxiv.org/pdf/1606.05790.pdf
https://arxiv.org/pdf/1606.05790.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf
https://arxiv.org/ftp/arxiv/papers/1408/1408.0393.pdf
http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf
http://faculty.cse.tamu.edu/davis/publications_files/toms_graphblas.pdf

BOOKS

 Mathematics of Big Data

o Authored by Jananthan & Kepner, published by MIT Press in 2018

o Generalizes the semiring-based approach for associative arrays

o Contains important papers, including the HPEC’16 paper above

o Discusses D4M (Dynamic Distributed Dimensional Data Model)

 Graph Algorithms in the Language of Linear Algebra

o Edited by J. Kepner and J.R. Gilbert, published by SIAM in 2011

o Algorithms for connected components, shortest paths, max-flow,
betwenness centrality, spanning tree, graph generation, etc.

o Algorithms and data structure for fast matrix multiplication

o Predates GraphBLAS: preliminary notation, no API usage

https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964
https://dspace.mit.edu/handle/1721.1/115964

GRAPHBLAS COMMUNITY

Wiki: graphblas.org | Communication: primarily mailing list

Annual events:

 May: IEEE IPDPS conference
o GrAPL workshop (Graphs, Architectures, Programming and Learning), a merger of

• GABB (Graph Algorithms Building Blocks)

• GraML (Graph Algorithms and Machine Learning)

o See graphanalysis.org for previous editions

 Sep: IEEE HPEC conference

o GraphBLAS BoF meeting

 Nov: IEEE/ACM Supercomputing conference

o GraphBLAS Working Group

o IA3 workshop (Workshop on Irregular Applications: Architectures and Algorithms)

Blog: AldenMath by Timothy Alden Davis

http://graphblas.org/
http://graphanalysis.org/
http://aldenmath.com/blog/

REDISGRAPH

 Graph database built on top of Redis with partial (but
extending) support for the Cypher language

 Uses SuiteSparse:GraphBLAS for graph operations

 Preliminary benchmark results show good performance on
traversal-heavy workloads

R. Lipman, T.A. Davis:
Graph Algebra – Graph operations in the language of linear algebra
RedisConf 2018

R. Lipman:
RedisGraph internals
RedisConf 2019

https://www.slideshare.net/RedisLabs/redisgraph-internals-roi-lipman
https://www.slideshare.net/RedisLabs/redisgraph-internals-roi-lipman
https://www.slideshare.net/RedisLabs/redisconf18-lower-latency-graph-queries-in-cypher-with-redis-graph
https://www.slideshare.net/RedisLabs/redisconf18-lower-latency-graph-queries-in-cypher-with-redis-graph

GRAPHBLAS IMPLEMENTATIONS

 SuiteSparse:GraphBLAS

o v1.0.0: Nov 2017 – sequential

o v3.0.1: July 2019 – parallel

o v4.0.1draft: Dec 2020 – many optimizations, incl. bitmap format

 IBM GraphBLAS

o Complete implementation in C++, released in May 2018

o Concise but sequential

 GBTL (GraphBLAS Template Library): C++

o v1.0: parallel but no longer maintained

o v2.0, v3.0: sequential

 GraphBLAST: GPU implementation, based on GBTL

GRAPHULO

 Build on top of the Accumulo distributed key-value store

 Written in Java

 Focus on scalability

V. Gadepally et al.:
Graphulo: Linear Algebra Graph Kernels
for NoSQL Databases, GABB@IPDPS 2015

https://arxiv.org/pdf/1508.07372.pdf
https://arxiv.org/pdf/1508.07372.pdf

COMBBLAS: COMBINATORIAL BLAS

 “an extensible distributed memory parallel graph library
offering a small but powerful set of linear algebra primitives”

 Not a GraphBLAS implementation but serves as an incubator
for new ideas that may later find their way into GraphBLAS

 Scales to 250k+ CPU cores

 Used on supercomputers such as Cray

A. Buluç, J.R. Gilbert: The Combinatorial BLAS: design, implementation, and application,
International Journal of High Performance Computing Applications, 2011

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.916.6801&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.916.6801&rep=rep1&type=pdf

PYGRAPHBLAS: PYTHON WRAPPER

 Goal: Pythonic
GraphBLAS wrapper,
close to pseudo-code

 See example code for
SSSP and triangle count

 Comes with Jupyter
notebooks

michelp/pygraphblas

https://github.com/GraphBLAS/LAGraph/
https://github.com/GraphBLAS/LAGraph/
https://github.com/michelp/pygraphblas

GRBLAS: PYTHON WRAPPER

 Goal: wrapper with an almost 1-to-1 mapping to the GrB API

o Comes with a Conda package

o Compiles user-defined functions to C

o Supports visualization

metagraph-dev/grblas

https://github.com/metagraph-dev/grblas
https://github.com/metagraph-dev/grblas
https://github.com/metagraph-dev/grblas

Parallelism in GraphBLAS

PARALLELISM IN GRAPHBLAS







 



𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫 any . pair 𝐀

𝐀       















𝐅       

t1

t2

t3
traversals

edges

THE CASE FOR LINEAR ALGEBRA-BASED GRAPH ALGORITHMS

Many irregular applications contain coarse-grained parallelism that
can be exploited by abstractions at the proper level.

Traditional graph computation
Graphs in the language

of linear algebra

Data-driven, unpredictable
communication

Fixed communication patterns

Irregular and unstructured, poor
locality of reference

Operations on matrix blocks
exploit memory hierarchy

Fine-grained data accesses,
dominated by latency

Coarse-grained parallelism,
bandwidth-limited

D. Bader et al., The GraphBLAS effort and its implications for Exascale,
SIAM Workshop on Exascale Applied Mathematics Challenges and Opportunities, 2014

https://archive.siam.org/meetings/ex14/15-buluc-slides.pdf
https://archive.siam.org/meetings/ex14/15-buluc-slides.pdf

Summary

SUMMARY

 Linear algebra is a powerful abstraction

oGood expressive power

o Concise formulation of most graph algorithms

oGood performance

o Still lots of ongoing research

 Trade-offs:

o Learning curve (maths, C programming, GraphBLAS API)

o Some algorithms are difficult to formulate in linear algebra

oOnly a few GraphBLAS implementations (yet)

 Overall: GraphBLAS is a good abstraction layer for graph
algorithms in the age of heterogeneous hardware

“Nuances” – Some important
adjustments to the definitions

GRAPHBLAS SEMIRINGS*
The GraphBLAS specification defines semirings as follows:

𝐷out, 𝐷in1 , 𝐷in2 ,⊕,⊗, 0 structure is a GraphBLAS semiring defined by

 𝐷out, 𝐷in1, and 𝐷in2 three domains

 ⊕:𝐷out × 𝐷out → 𝐷out an associative and commutative addition operation

 ⊗:𝐷in1 × 𝐷in2 → 𝐷out a multiplicative operation

 0 ∈ 𝐷out an identity element for ⊕

𝐴 = 𝐷out,⊕, 0 is a commutative monoid.

𝐹 = 𝐷out, 𝐷in1 , 𝐷in2 ,⊗ is a closed binary operator.

“It is expected that implementations will utilize IEEE-754 floating point
arithmetic, which is not strictly associative.” (C API specification)

NOTATION*

 Symbols:

o 𝐀,𝐁, 𝐂,𝐌 – matrices

o 𝐮, 𝐯,𝐰,𝐦 – vectors

o 𝑠, 𝑘 – scalar

o 𝑖, 𝑗 – indices

o 𝐦 , 𝐌 – masks

 Operators:

o ⊕– addition

o ⊗– multiplication, ⊘ – division

o ⊤ – transpose

o ⊙– accumulator

This table contains all GrB and GxB
(SuiteSparse-specific) operations.

symbol operation notation

⊕.⊗

matrix-matrix multiplication 𝐂 𝐌 ⊙= 𝐀⊕.⊗ 𝐁

vector-matrix multiplication 𝐰 𝐦 ⊙= 𝐯⊕.⊗𝐀

matrix-vector multiplication 𝐰 𝐦 ⊙= 𝐀⊕.⊗ 𝐯

⊗
element-wise multiplication
(set intersection of patterns)

𝐂 𝐌 ⊙= 𝐀⊗𝐁

𝐰 𝐦 ⊙= 𝐮⊗ 𝐯

⊕
element-wise addition
(set union of patterns)

𝐂 𝐌 ⊙= 𝐀⊕𝐁

𝐰 𝐦 ⊙= 𝐮⊕ 𝐯

𝑓 apply unary operator
𝐂 𝐌 ⊙= 𝑓 𝐀

𝐰 𝐦 ⊙= 𝑓 𝐯

⊕⋯
reduce to vector 𝐰 𝐦 ⊙= ⊕𝑗 𝐀 : , 𝑗

reduce to scalar 𝑠 ⊙= ⊕𝑖𝑗 𝐀 𝑖, 𝑗

𝐀⊤ transpose matrix 𝐂 𝐌 ⊙= 𝐀⊤

– extract submatrix
𝐂 𝐌 ⊙= 𝐀 𝐢, 𝐣

𝐰 𝐦 ⊙= 𝐯 𝐢

–
assign submatrix
with submask for 𝐂 𝐈, 𝐉

𝐂 𝐌 𝐢, 𝐣 ⊙= 𝐀

𝐰 𝐦 𝐢 ⊙= 𝐯

–
assign submatrix
with mask for 𝐂

𝐂 𝐢, 𝐣 𝐌 ⊙= 𝐀

𝐰 𝐢 𝐦 ⊙= 𝐯

– apply select operator (GxB)
𝐂 𝐌 ⊙= 𝑓 𝐀, 𝑘

𝐰 𝐦 ⊙= 𝑓 𝐯, 𝑘

– Kronecker product 𝐂 𝐌 ⊙= kron 𝐀, 𝐁

Not included in the
simplified table

LINEAR ALGEBRAIC PRIMITIVES FOR GRAPHS #3*

Sparse matrix extraction:
induced subgraph

2 1 9
5 4

Sparse submatrix assignment:
replace subgraph

Sparse matrix selection:
filtering edges

Kronecker product:
graph generation

⊗ =
𝑃

MATRIX-VECTOR MULTIPLICATION*

The operation 𝐯⊕.⊗ 𝐀 gives the vertices reachable from the ones in 𝐯.
However, GraphBLAS publications and implementations often use
𝐀⊤ ⊕.⊗ 𝐯 instead. The difference between these is that the former
produces a row vector, while the latter produces a column vector:

𝐯⊕.⊗ 𝐀 ≡ 𝐀⊤ ⊕.⊗ 𝐯⊤ ⊤

The GraphBLAS does not distinguish row/column vectors, therefore
the notations are (formally) equivalent:

𝐯⊕.⊗ 𝐀 ≡ 𝐀⊤ ⊕.⊗ 𝐯

ELEMENT-WISE SUBTRACTION
Element-wise subtraction can be defined as an element-wise addition on the
INT64_MINUS monoid. It has the following semantics 𝐂 = 𝐀⊖𝐁 is computed on
the union of the patterns of the input matrices 𝐀 and 𝐁.

For cells where only one input matrix has a non-zero value but the other does not
(e.g. 𝐁 0,0 = 1 but 𝐀[0,0] is empty), the result is the non-zero value: 𝐂 0,0 = 1.

𝐀

1

𝐁

1 1

1 1

𝐂

1 0

1 1
⊖ =

This might come across as counter-intuitive first but it confirms the specification:

More semirings

      

𝐟 T T

𝐀       

 T T
 T T
 T
 T T
 T
 T
 T T T

T T

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring set ⨁ ⨂ 0

lor-land T, F ∨ ∧ F







 



Semantics: reachability

T∧T=T

T∧T=T

T∨T=T 𝐟 ∨.∧ 𝐀

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring set ⨁ ⨂ 0

real arithmetic ℝ + × 0

.2

.4

.5

.6

Semantics: strength of all paths







 

 .5

      

𝐟 .5 .6

𝐀       

 1 1
 1 1
 1
 .2 .4
 1
 .5
 1 1 1

.1 .5

0.5×0.4=0.2

0.6×0.5=0.3

0.2+0.3=0.5 𝐟 ⊕.⊗ 𝐀

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring set ⨁ ⨂ 0

min-times ℝ ∪ +∞ min × +∞

Semantics: shortest product of connections

.2

.4

.5

.6







 

 .5


      

𝐟 .5 .6

𝐀       







 .2 .4


 .5


.1 .2

0.5×0.4=0.2

0.6×0.5=0.3

min(0.2,0.3)=0.2 𝐟 min.× 𝐀

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring set ⨁ ⨂ 0

max-min 0,+∞ max min 0

Semantics: longest of all shortest connections

.2

.4

.5

.6







 

 .5


      

𝐟 .5 .6

𝐀       







 .2 .4


 .5


.2 .5

min(0.5, 0.4)=0.4

min(0.6,
0.5)=0.5

max(0.4,0.5)=0.5 𝐟 max.min 𝐀

MATRIX-VECTOR MULTIPLICATION SEMANTICS

semiring set ⨁ ⨂ 0

max-plus ℝ ∪ −∞ max + −∞

Semantics: matching (independent edge set)

.2

.4

.5

.6







 

 .5

      

𝐟 .5 .6

𝐀       

 1 1
 1 1
 1
 .2 .4
 1
 .5
 1 1 1

.7 1.1

0.5+0.4=0.9

0.6+0.5=1.1

max(0.9,1.1)=1.1 𝐟 max .+ 𝐀

Case study: SIGMOD 2014 Contest

Overview

SIGMOD 2014 PROGRAMMING CONTEST

Annual contest

 Teams compete on database-related programming tasks

 Highly-optimized C++ implementations

2014 event

 Tasks on the LDBC social network graph

o Benchmark data set for property graphs

o People, forums, comments, hashtags, etc.

 4 queries

oMix of filtering operations and graph algorithms

https://ldbcouncil.org/
https://ldbcouncil.org/

QUERY TEMPLATE

I. Compute an induced subgraph over Person-knows-Person

II. Run the graph algorithm on the subgraph

I.

II.
0.80

0.80

0.67

0.67

0.67

exact closeness centrality
key kernel: all-source BFS

OVERVIEW OF QUERIES 1, 2, 3

I. Filter the induced subgraph(s)

II. Run the graph algorithm
pairwise reachability

unweighted shortest path connected components

GRAPHBLAS SOLUTION OF THE QUERIES

 Loading includes relabelling UINT64 vertex IDs to a
contiguous sequence 0…𝑁 − 1.

 Filtering the induced subgraph from the property graph is
mostly straightforward and composable with the algorithms.

 The algorithms can be concisely expressed in GraphBLAS:

o Connected components  → FastSV [Zhang et al., PPSC’20]

o BFS 

o Bidirectional BFS

o All-source BFS + bitwise optimization

oMulti-source bidirectional BFS

https://arxiv.org/pdf/1910.05971.pdf

Case study: SIGMOD 2014 Contest

BFS

BFS: BREADTH-FIRST SEARCH

𝐀     











𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫
.
.
.
.
.

1 2

4 3

5

𝐧𝐞𝐱𝐭 ¬𝐬𝐞𝐞𝐧 =
𝐀 any . pair 𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫

Boolean
matrices

and vectors

𝐬𝐞𝐞𝐧
.
.
.
.
.

¬𝐬𝐞𝐞𝐧 mask

⊕: any
⊗: pair

BFS: BREADTH-FIRST SEARCH

𝐀     











𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫
.
.
.
.
.

1 2

4 3

5

𝐬𝐞𝐞𝐧′
.
.
.
.
.

𝐬𝐞𝐞𝐧′ =
𝐬𝐞𝐞𝐧 any 𝐧𝐞𝐱𝐭

𝐧𝐞𝐱𝐭 ¬𝐬𝐞𝐞𝐧 =
𝐀 any . pair 𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫

𝐬𝐞𝐞𝐧
.
.
.
.
.

BFS: BREADTH-FIRST SEARCH

𝐀     











𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫
.
.
.
.
.

1 2

4 3

5

𝐬𝐞𝐞𝐧′
.
.
.
.
.

𝐬𝐞𝐞𝐧
.
.
.
.
.

mask prevents
redundant

computations

𝐬𝐞𝐞𝐧′ =
𝐬𝐞𝐞𝐧 any 𝐧𝐞𝐱𝐭

𝐧𝐞𝐱𝐭 ¬𝐬𝐞𝐞𝐧 =
𝐀 any . pair 𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫

Case study: SIGMOD 2014 Contest

All-source BFS

Q4: CLOSENESS CENTRALITY VALUES

Q4 computes the top-k Person vertices based on their exact
closeness centrality values:

𝐶𝐶𝑉 𝑝 =
𝐶 𝑝 − 1 2

𝑛 − 1 ⋅ 𝑠 𝑝

where

 𝐶 𝑝 is the size of the connected component of vertex 𝑝,

 𝑛 is the number of vertices in the induced graph,

 𝑠 𝑝 is the sum of geodesic distances to all other reachable
persons from 𝑝.

𝑠 𝑝 is challenging: needs unweighted all-pairs shortest paths.

BOOLEAN ALL-SOURCE BFS ALGORITHM

𝐀     











𝐒𝐞𝐞𝐧′ t1 t2 t3 t4 t5

.
.
.
.
.

𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫 t1 t2 t3 t4 t5

.
.
.
.
.

𝐒𝐞𝐞𝐧′ =
𝐒𝐞𝐞𝐧 any 𝐍𝐞𝐱𝐭

𝐒𝐞𝐞𝐧 t1 t2 t3 t4 t5

.
.
.
.
.

traversals

1 2

4 3

5

𝐍𝐞𝐱𝐭 ¬𝐒𝐞𝐞𝐧 =
𝐀 any . pair 𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫

BOOLEAN ALL-SOURCE BFS ALGORITHM

𝐀     











𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫 t1 t2 t3 t4 t5

.
.
.
.
.

𝐒𝐞𝐞𝐧′ t1 t2 t3 t4 t5

.
.
.
.
.

𝐒𝐞𝐞𝐧 t1 t2 t3 t4 t5

.
.
.
.
.

1 2

4 3

5

𝐍𝐞𝐱𝐭 ¬𝐒𝐞𝐞𝐧 =
𝐀 any . pair 𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫

𝐒𝐞𝐞𝐧′ =
𝐒𝐞𝐞𝐧 any 𝐍𝐞𝐱𝐭

Case study: SIGMOD 2014 Contest

Bitwise all-source BFS

BITWISE ALL-SOURCE BFS ALGORITHM

 For large graphs, the all-source BFS algorithm might need
to run 500k+ traversals

 Two top-ranking teams used bitwise operations to process
traversals in batches of 64 [Then et al., VLDB’15]

 This idea can be adopted in the GraphBLAS algorithm by

o using UINT64 values

o performing the multiplication on the bor . second semiring, where
bor is “bitwise or” and second 𝑥, 𝑦 = 𝑦

 5-10x speedup compared to the Boolean all-source BFS

http://www.vldb.org/pvldb/vol8/p449-then.pdf

BITWISE ALL-SOURCE BFS ALGORITHM

𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫 t1-t4 t5

.1000 0000

.0100 0000

.0010 0000

.0001 0000

.0000 1000

0101 0000
1010 1000
0101 1000
1010 0000
0110 0000

1 2

4 3

5

𝐒𝐞𝐞𝐧′ t1-t4 t5

.0101 0000

.1010 1000

.0101 1000

.1010 0000

.0110 0000

𝐀     











𝐒𝐞𝐞𝐧′ =
𝐒𝐞𝐞𝐧 bor 𝐍𝐞𝐱𝐭

𝐍𝐞𝐱𝐭 =
𝐀 bor . second 𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫

𝐒𝐞𝐞𝐧 t1-t4 t5

.1000 0000

.0100 0000

.0010 0000

.0001 0000

.0000 1000

Using UINT4s here

BITWISE ALL-SOURCE BFS ALGORITHM

𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫 t1-t4 t5

.0101 0000

.1010 1000

.0101 1000

.1010 0000

.0110 0000

0010 1000
0001 0000
1000 0000
0100 1000
1001 0000

1 2

4 3

5

𝐒𝐞𝐞𝐧′ t1-t4 t5

.1111 1000

.1111 1000

.1111 1000

.1111 1000

.1111 1000

𝐀     











𝐒𝐞𝐞𝐧 t1-t4 t5

.0101 0000

.1010 1000

.0101 1000

.1010 0000

.0110 0000

𝐒𝐞𝐞𝐧′ =
𝐒𝐞𝐞𝐧 bor 𝐍𝐞𝐱𝐭

𝐍𝐞𝐱𝐭 =
𝐀 bor . second 𝐅𝐫𝐨𝐧𝐭𝐢𝐞𝐫

Full VLDB paper
on this algorithm

vs.

9 GrB operations

Case study: SIGMOD 2014 Contest

Bidirectional BFS

BIDIRECTIONAL BFS Advance frontiers alternately
and intersect them

𝐀     











𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫𝟏
.
.
.
.
.

1 2

4 3

5

𝐧𝐞𝐱𝐭𝟏

𝐀     











𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫2
.
.
.
.
.

1 2

4 3

5

𝐧𝐞𝐱𝐭𝟐

∧ =

Length = 1 

𝐧𝐞𝐱𝐭𝟏 land 𝐟𝐫𝐨𝐧𝐭𝐢𝐞𝐫𝟐

∧

=

Length = 2 

𝐧𝐞𝐱𝐭𝟏 land 𝐧𝐞𝐱𝐭𝟐

Case study: SIGMOD 2014 Contest

Bidirectional MSBFS

BIDIRECTIONAL MSBFS ALGORITHM

 Pairwise reachability problem:
From a given set of 𝑘 vertices, which pairs of vertices are
reachable from each other with at most ℎ hops?

 Naïve solution:
Run a 𝑘-source MSBFS for ℎ steps and check reachability.
The frontiers get large as they grow exponentially.

 Better solution:
Advance all frontiers simultaneously for ℎ/2 iterations.

2
3

4

5

61

BIDIRECTIONAL MSBFS 𝐀      













𝐅      

























𝐍𝐞𝐱𝐭[1] 𝐒𝐞𝐞𝐧[1]

𝐒[0]     













2 3

4

5
61

𝐒𝐞𝐞𝐧 1 : reachability with ≤ 1 hops

BIDIRECTIONAL MSBFS 𝐀      













𝐅      













𝐍𝐞𝐱𝐭[2] 𝐒𝐞𝐞𝐧 1













𝐒𝐞𝐞𝐧[2]

𝐒[1]     













2 3

4

5
61

𝐒𝐞𝐞𝐧 2 : reachability with ≤ 2 hops

BIDIRECTIONAL MSBFS:
PATHS OF LENGTH ≤ 4

     













     













To get paths of at most
4 hops, we compute

𝐒𝐞𝐞𝐧[2] any.pair 𝐒𝐞𝐞𝐧 2 ⊤

Here, we found paths
between all pairs:
• from  to ,
• from  to ,
• from  to .

𝐒𝐞𝐞𝐧 2 ⊤

𝐒𝐞𝐞𝐧[2]

2 3

4

5
61

From vertex 5, we
could get to these

vertices with ≤ 2 hops

BIDIRECTIONAL MSBFS:
PATHS OF LENGTH = 3      













     













2 3

4

5
61

To get exactly 3-length
paths we compute

𝐍𝐞𝐱𝐭[1] any.pair 𝐍𝐞𝐱𝐭 2 ⊤

We found two 3-length
paths:
• from  to 
• from  to .

𝐍𝐞𝐱𝐭[1]

𝐍𝐞𝐱𝐭 2 ⊤

From vertex 5, we
could get to these
vertices with 1 hop

From vertex 1, we could get
to this vertex with 2 hops

Case study: SIGMOD 2014 Contest

Results

BENCHMARK RESULTS

 The top solution of AWFY vs. SuiteSparse:GraphBLAS v3.3.3

 AWFY’s solution uses SIMD instructions → difficult to port

 GraphBLAS load times are slow (see details in paper)

Outliers

80 executions with
different parameters

SUMMARY

 An interesting case study, see technical report

 GraphBLAS can capture mixed workloads

o Induced subgraph computations are simple to express

o Algorithms are concise, bitwise optimizations can be adopted

o Performance is sometimes on par with specialized solutions

 Future optimizations

oQ1: filter the induced subgraph on-the-fly

oQ4: use more sophisticated unweighted shortest path algorithms

sigmod2014-contest-graphblas
M. Elekes et al., A GraphBLAS solution to the SIGMOD 2014
Programming Contest using multi-source BFS, HPEC 2020

https://arxiv.org/abs/2010.12243
https://github.com/ldbc/sigmod2014-contest-graphblas
https://arxiv.org/abs/2010.12243
https://arxiv.org/abs/2010.12243
https://inf.mit.bme.hu/sites/default/files/publications/hpec2020-sigmod14-msbfs.pdf
https://inf.mit.bme.hu/sites/default/files/publications/hpec2020-sigmod14-msbfs.pdf

ACKNOWLEDGEMENTS

 Thanks for feedback on these slides to Tim Mattson, Tim
Davis, Jeremy Kepner, John Gilbert, Aydin Buluc, Tamás
Nyíri, Gyula Katona, Dávid Sándor, Attila Nagy, János
Benjamin Antal, Márton Elekes, Florentin Dörre.

 Thanks to the LDBC Graphalytics task force for creating the
benchmark and assisting in the measurements.

 Thanks to the Master’s students at BME for exploring the
area of GraphBLAS: Bálint Hegyi, Petra Várhegyi, Lehel Boér

Notes

ABOUT THIS PRESENTATION

 This presentation is intended to serve as an introduction to
semiring-based graph processing and the GraphBLAS.

 Common graph algorithms (BFS, shortest path, PageRank, etc.)
are used to demonstrate the features of GraphBLAS. Many of
the algorithms presented are part of the LAGraph library.

 The presentation complements existing technical talks on
GraphBLAS and can form a basis of anything from a short
20min overview to 2×90min lectures on the GraphBLAS.

 The slides contain numerous references to papers and talks.

 There are detailed textual explanations on some slides to make
them usable as a learning material.

TECHNICAL DETAILS

 The slides were created with PowerPoint 2016 using the
Open Sans and DejaVu Sans Mono font families (embedded
in the presentation).

 The mathematical expressions are typeset with
PowerPoint’s built-in Equation Editor.

 The circled numbers (denoting graph vertices) are rendered
using the standard Wingdings font.

 The text is written in Oxford English.

 The icons for referenced papers and talks are clickable and
will lead to an open-access / preprint / author’s copy version
of the referred work (if such copy exists). The icons depict
the first page of the cited document.

