

Markergestützte Selektion auf Steinbrand-Resistenz in Weizen

Validierung vorselektierter Resistenz-QTL

Bachelorarbeit 2 - Projektarbeit

Eingereicht von:	Nadine Worel
Personenkennzeichen:	51818029
am	Fachhochschul-Bachelorstudiengang Biotechnische Verfahren
durchgeführt bei:	Univ. f. Bodenkultur Wien Department IFA Tulln Institut f. Biotechnologie in der Pflanzenproduktion
Betreuung durch:	Prof. Dr. Hermann Bürstmayr Magdalena Ehn
Begutachter:	Dr. Agnes Grünfelder

Tulln, Abgabedatum

EIDESSTATTLICHE ERKLÄRUNG

Ich erkläre an Eides statt, dass diese Arbeit ausschließlich von mir selbst verfasst wurde und ich diese Arbeit nicht zuvor an einer anderen Bildungseinrichtung zum Zwecke der Erlangung eines akademischen Grades vorgelegt habe.

Insbesondere wurden Beiträge anderer Personen entsprechend kenntlich gemacht sowie die in dieser Arbeit verwendeten Daten entsprechend der dargestellten Verfahren gewonnen und richtig wiedergegeben.

Tulln, _____

Datum

Unterschrift

Kurzzusammenfassung

Steinbrand bei Weizen ist eine Getreidekrankheit, die durch Pilzsporen ausgelöst wird und vor allem biologisch angebaute Sorten betrifft, da in der konventionellen Landwirtschaft der Befall durch chemische Saatgutbehandlung verhindert werden kann. Mit der Resistenzzüchtung ist es möglich, Sorten zu entwickeln, die gegen Steinbrand resistent und für den Bio-Anbau geeignet sind. Für eine effizientere Züchtung ist die markergestützte Selektion ein wichtiges Werkzeug, um Zeit und Ressourcen zu sparen.

Ziel der markergestützten Selektion (MAS) auf Steinbrand-Resistenz in Weizen ist es, die Anzahl der Pflanzen der Generation BC₂F₂ zu reduzieren, indem nur jene Pflanzen ausgewählt werden, die eine homozygote Resistenz in Form von Resistenz-QTL aufweisen.

Um die markergestützte Selektion durchführen zu können, wurde DNA vom Blattmaterial der zu testenden Weizenpflanzen extrahiert. Nach Normalisierung der DNA-Konzentration wurde eine Genotypisierung mittels kompetitiver allel-spezifischer PCR (KASP) durchgeführt, wobei mit Hilfe von molekularen Markern die resistenten Allele detektiert werden konnten.

Nach Auswertung der Ergebnisse wurden 163 von insgesamt 2165 Pflanzen der BC_2F_2 -Generation positiv selektiert.

Da bei der Vorselektierung nur grob selektiert wurde, ist die Validierung ein wichtiger Schritt, um nur Pflanzen in die nächste Generation weiterzuführen, die tatsächlich die Allele der Resistenzdonoren tragen. Die Ergebnisse zeigen, dass die Anzahl der Pflanzen nach der Validierung deutlich reduziert wurde, wodurch auch die Wahrscheinlichkeit einer tatsächlichen Resistenz erhöht wird. In weiterer Folge kann die Steinbrand-Resistenz in den positiv selektierten Weizenpflanzen durch Infektionsversuche am Feld bestätigt werden.

Die Forschungsarbeiten wurden im Rahmen des Projektes ECOBREED durchgeführt. Das Projekt ECOBREED (www.ecobreed.eu) wurde aus Mitteln des Forschungs- und Innovationsprogramms "Horizont 2020" der Europäischen Union im Rahmen der Finanzhilfevereinbarung Nr. 771367 finanziert.

Schlagworte

Weizen, *Triticum aestivum*, Steinbrand, *Tilletia caries*, Markergestützte Selektion, Quantitativer Trait Locus, Kompetitive Allel-spezifische PCR

Abstract

Bunt in wheat is a crop disease that is caused by fungal spores, and mainly affects organically grown cultivars, since the infestation can be prevented by chemical seed treatment in conventional farming systems. With resistance breeding, it is possible to develop cultivars that are resistant to bunt and are suitable for organic cultivation. For more efficient breeding, marker-assisted selection is an important tool to save time and resources.

The aim of marker-assisted selection (MAS) for bunt resistance in wheat is to reduce the number of plants of the BC_2F_2 generation by selecting only those plants which have homozygous resistance in the form of resistance QTL.

In order to be able to carry out the marker-assisted selection, DNA was extracted from the leaf material of the wheat plants to be tested. After normalizing the DNAconcentration, genotyping was carried out using competitive allele-specific PCR (KASP), and the resistant alleles could be detected with the aid of molecular markers.

After evaluating the results, 163 plants from a total of 2165 plants of the BC_2F_2 generation were positively selected.

Since only a rough selection was conducted during pre-selection, the validation is an important step to make sure that only those plants are included in the next generation which actually inherited the allele from the resistance donors. The results show that the number of plants has been significantly reduced after validation, which also increases the chance of actual resistance. Subsequently, the bunt resistance in the positively selected wheat plants can be confirmed by infection tests in the field.

The research carried out within ECOBREED is receiving funding from the European Union Horizon 2020 under the Grant Agreement number 771367, within the Research and Innovation action (RIA).

Keywords

wheat, *Triticum aestivum*, bunt, *Tilletia caries*, marker-assisted-selection, quantitative trait locus, competitive allele-specific PCR

Inhaltsverzeichnis

Abkü	rzungsverzeichnis	1
1.	Einleitung	2
1.1	Entwicklung von Weizen	2
1.2	Steinbrand bei Winterweizen	4
1.3	Steinbrand-Resistenzgene	5
1.4	Steinbrand-Resistenz-Donoren	6
1.5	Quantitative Trait Locus/Loci (QTL)	7
1.6	Kompetitive Allel-Spezifische PCR (KASP)	8
1.7	Markergestützte Selektion (MAS)	12
1.8	Zielsetzung	13
2.	Material und Methoden	14
2.1	Entwicklung der Backcross-Generationen 1 und 2	14
2.1.1	Entstehung der BC2F2-Generation	16
2.2	Validierung der Selektion auf homozygot-resistente Pflanzen der BC2F2-	
	Generation	19
2.2.1	DNA-Extraction	19 25
2.2.2	KASP-Genotypisierung	25 27
2	Errobaice and Diskussion	-/
з.	Ergebnisse und Diskussion	52
3.1	Ergebnisse der Normalisierung der DNA-Konzentration	32
3.2	Ergebnisse der KASP-Genotypisierung	34
3.3	Zusammenfassung und Ausblick	38
4.	Literaturverzeichnis	39
5.	Anhang	43

Abkürzungsverzeichnis

Abkürzungen	Bedeutung / Erläuterungen	
FRET	Fluoreszenz-Resonanz-Energie-Transfer	
KASP	Kompetitive Allel-Spezifische PCR	
MAS	Marker-Assisted-Selection / Markergestützte Selektion	
QTL	Quantitative Trait Locus/Loci – genomische Region eines quantitativen Merkmals	
RFU	relative Fluoreszenzeinheit	
RAPD	Random amplification polymorphic DNA	
SNP	Single Nucleotide Polymorphism - Variation eines einzelnen Nukleotids in der DNA-Sequenz innerhalb einer biologischen Spezies oder gepaarten Chromosomen in einem Individuum.	
SSR	Simple sequence repeats oder Mikrosatelliten	

1. Einleitung

In den folgenden Unterkapiteln werden die Grundlagen zum Thema Weizen, dessen Chromosomen und der Krankheit Steinbrand erklärt. Dabei liegt der Fokus auf dem anfälligen Winterweizen und den QTL-Regionen, die die Resistenzgene für gewöhnlichen Steinbrand beinhalten, welche für die Selektierung in der praktischen Durchführung von Bedeutung sind.

1.1 Entwicklung von Weizen

Das heutzutage bedeutendste Getreide für die Welternährung ist der Brotweizen (*Triticum aestivum*), auch Weichweizen genannt, eine hexaploide (AABBDD) Getreideart, die zu den ältesten Kulturpflanzen zählt. Mit einer weltweiten Produktion von 731 Millionen Tonnen im Erntejahr 2018/19 (Statista, 2020) macht Brotweizen ca. 20% der vom Menschen verbrauchten Kalorien aus und ist eine wichtige Quelle für Eiweiß, Vitamine und Mineralien (Brenchley *et al.*, 2012).

Bei der Entwicklung von hexaploidem Weizen sind drei verschiedene ursprüngliche Weizenreihen beteiligt: Die Einkornreihe (*Trit. monococcum* mit dem Genom A), die Emmerreihe (*Trit. dicoccum* mit den Genomen A und B, wobei B wahrscheinlich aus *Aegilops* bzw. *Trit. speltoides* stammt) und die Speltareihe (mit den Genomen A, B und D, wobei D aus *Aegilops squarrosa* stammt) (Aufhammer and Fischbeck, 1973). *Trit. aestivum* entstand vor ungefähr 8.000 Jahren aus der Hybridisierung zwischen kultiviertem tetraploiden Emmerweizen (AABB, *Triticum dicoccoides*) und diploidem Ziegengras (DD, *Aegilops tauschii*) (Brenchley *et al.*, 2012). Das C-Genom ist in *Aegilops candata* vorhanden, jedoch aber nicht im kultivierten Weizen enthalten. (Aufhammer and Fischbeck, 1973) Die hexaploide Weizenreihe besitzt somit 21 Chromosomenpaare (2n = 42 Chromosomen), wie in Abbildung 1 ersichtlich, und das gesamte Genom umfasst mit höchster Wahrscheinlichkeit 107.981 Gene (IWGSC *et al.*, 2018).

Abbildung 1: Links: Bestandteile einer Weizenpflanze, Rechts: Kreisdiagramm des Weizengenoms mit insgesamt 21 Chromosomenpaare (7 x A+B+D). (IWGSC *et al.*, 2018)

Beim Weichweizen wird nochmals zwischen Winterweizen und Sommerweizen unterschieden, wobei Winterweizen im Vergleich zum Sommerweizen aufgrund des höheren Ertrags häufiger angebaut wird. Winterweizen wird in Europa Ende September bis Anfang Dezember ausgesät (Aufhammer and Fischbeck, 1973) und benötigt zur Vernalisation eine längere Kälteperiode um das Schossen und Blühen der Pflanze anzuregen (Gassner, 1918). Nach dem Blühen des Weizens und der Befruchtung (üblicherweise durch Selbstbestäubung) der Narbe, meist im Juni, erfolgt die Ernte in der Regel zwischen Ende Juli und Mitte August (Aufhammer and Fischbeck, 1973).

Es gibt allerdings häufig auftretende Krankheiten beim Anbau von Weizen, wie zum Beispiel Mehltau, Braunrost oder Steinbrand, welche negative Auswirkung auf Ertrag und Qualität haben können. Besonders Steinbrand hat in den vergangenen Jahren durch die biologische Landwirtschaft zunehmend an Aufmerksamkeit gewonnen und wird im nächsten Kapitel genauer beschrieben.

1.2 Steinbrand bei Winterweizen

Die Krankheit Steinbrand betrifft vor allem biologische Weizensorten und jene mit niedrigem Input (betreffend den Einsatz von Fungiziden und Herbiziden), da solch ein Befall nur durch chemische Saatgutbehandlung in der konventionellen Landwirtschaft verhindert werden kann. Sie tritt hauptsächlich in Regionen wie Nord- und West-Europa auf, wo der Trend in Richtung biologischem und nachhaltigem Anbau mit Verzicht von Chemikalien bei der Getreide-Produktion geht. Samenbürtige Krankheiten, wie Steinbrand, treten dadurch wieder vermehrt auf und verursachen hohe Verluste in Ertrag und Saatgut-Qualität (Matanguihan, Murphy and Jones, 2011).

Bei Steinbrand gibt es zwei Typen, die in der Landwirtschaft eine Rolle spielen: Zwergsteinbrand und gewöhnlichen Steinbrand. Besonders der gewöhnliche Steinbrand ist bei im Herbst gepflanztem Weizen (Winterweizen) aufgrund kühlerer Bodentemperaturen, die für die Krankheitsentwicklung förderlicher sind, eher ein Problem (Goates and Bockelman, 2012) und wird durch zwei nahe miteinander verwandte Pilzarten, *Tilletia caries* und *T. laevis* ausgelöst. Der Erreger gelangt durch Sporen auf Saatgut oder auf Keimlinge und infiziert den Weizen in der Keimlingsphase. Nachdem sich der Pilz systematisch in der Weizenpflanze entwickelt hat werden anstelle des Korns dunkle Kugeln (bunt balls) produziert (siehe Abbildung 2). Diese bestehen aus Sporenmasse und enthalten Trimethylamin, wodurch ein übelriechender Geruch, der an verrottenden Fisch erinnert, entsteht. Die Kugeln brechen meist bei der Ernte auf und die darin enthaltenen Teliosporen kontaminieren wiederum Samen und Keimlinge, was zu einem weiteren Infektionskreislauf führt (Gaudet and Puchalski, 1989; Matanguihan, Murphy and Jones, 2011).

Abbildung 2: Steinbrand befallene Weizenähren. Das Weizenkorn wird durch dunkle Teliosporen (bunt balls) der Pilze *T. caries* bzw. *T. laevis* ersetzt.

- 4 -

Obwohl die Bekämpfung von Steinbrand aufgrund der raschen Verbreitung von großer Bedeutung ist, haben Agronomen und Pflanzenzüchter dieser Krankheit in den letzten 50 Jahren wenig Aufmerksamkeit gewidmet - hauptsächlich aufgrund der Verfügbarkeit systemischer Fungizide für die Saatgutbehandlung. Das wachsende Interesse an einer umweltfreundlicheren landwirtschaftlichen Produktion und die Steigerung der ökologischen Weizenproduktion erfordern jedoch die Suche nach alternativen Kontrollmethoden. Darüber hinaus haben Landwirte in vielen Teilen der Welt keinen Zugang zu Fungiziden. Die Verwendung von Wirtsresistenzgenen in der Weizenzüchtung bietet daher eine effiziente und umweltfreundliche Möglichkeit zur Kontrolle der häufigen Steinbrand-Infektion (Steffan *et al.*, 2017).

1.3 Steinbrand-Resistenzgene

Die Resistenz gegen gewöhnlichen Steinbrand in Weizen basiert auf Gen-für-Gen-Wechselwirkungen zwischen dem Pathogen und seinem Wirt. Bisher konnten 16 Rassenspezifische Gene festgestellt werden, die als Bt1-Bt15 und Btp bezeichnet werden (Goates and Bockelman, 2012). Die Resistenz des Wirts wird in der Literatur entweder mithilfe einer bi-parentalen Mapping-Methode oder einer genomweiten Assoziations-Mapping-Methode identifiziert und in einigen Fällen kartiert (Wang et al., 2019). Um die Lokalisierung der Resistenzgene am Chromosom zu entschlüsseln, wurden molekulare Marker, die mit wichtigen Steinbrand-Resistenzgenen assoziiert sind, für Resistenzscreenings verwendet (Matanguihan, Murphy and Jones, 2011). Bei molekularen Markern handelt es sich um spezifische DNA-Fragmente mit einer bekannten Position auf dem Chromosom, die im gesamten Genom identifiziert werden können und neutrale Variationsstellen aufweisen (Miedaner and Korzun, 2012). Die ersten molekularen Marker, die mit Steinbrand-Resistenz assoziiert wurden, waren RAPD-Marker für das Bt10-Gen, ein Hauptgen aus der resistenten Weizensorte "PI 178383", das Resistenz gegen 35 der 40 bekannten Steinbrand-Rassen bietet. Unter Verwendung von Weizen-SSR-Markern konnten bisher die Positionen am Weizenchromosom von 6 der 15 bekannten Bt-Genen festgestellt werden. Bt1 befindet sich auf 2B, *Bt7* auf 2D, *Bt4*, *Bt5* und *Bt6* auf 1B, und *Bt10* auf 6D. Die Position von *Bt8* ist unbekannt, aber durch genetische Analyse ist bekannt, dass es sich nicht auf 5A, 1B oder 2D befindet (Matanguihan, Murphy and Jones, 2011). Drei Gene konnten jedoch mit Hilfe von SNP-Markern bestimmten Chromosomenregionen zugewiesen werden: Bt10 wurde auf dem kurzen Arm von Chromosom 6D (6DS) lokalisiert, während Bt9 auf dem langen Arm von Chromosom 6D (6DL) kartiert werden konnte (Steffan *et al.*, 2017; Wang et al., 2019). Am Institut für Biotechnologie in der Pflanzenproduktion wurde das

Bt12-Gen auf dem Chromosom 7DS (kurzer Arm des 7D-Chromosoms) kartiert (Müllner, 2020, Doktorarbeit in Vorbereitung).

SNP-Marker haben aufgrund ihrer geringen Laborkosten, hohen Genomhäufigkeit, Ortsspezifität, co-dominanten Vererbung, einfachen Dokumentation, ihres Potenzials für Hochdurchsatzanalysen und relativ niedrigen Genotypisierungsfehlerraten die Verwendung anderer Arten von Markern weitgehend ersetzt und gelten als leistungsstarkes Werkzeug bei der Kartierung von Genen bzw. der markergestützten Selektion (Semagn *et al.*, 2014).

Um Steinbrand-Resistenzgene in neuen Sorten einzusetzen wurde die genetische Kontrolle der Steinbrand-Resistenz untersucht. Die Kenntnis der Art der Vererbung kann sowohl bei der Einkreuzung von Resistenzgenen als auch bei der Identifizierung von Resistenzgenen und Markern hilfreich sein, die bei der markergestützten Selektion verwendet werden können. Frühere genetische Studien haben gezeigt, dass die Vererbung der gemeinsamen Steinbrand-Resistenz in verschiedenen Kreuzungen durch einzelne Gene gesteuert werden kann. Von den 15 bekannten Steinbrand-Resistenzgene vollständig dominant ist, gibt es Berichte über eine unvollständige Dominanz. Durch eine genetische Analyse bei Kreuzungen von resistenten und anfälligen Weizensorten in Rumänien zeigte sich, dass die Resistenz gegen *T. caries* und *T. laevis* als ein einziges dominantes Gen vererbt wird. (Matanguihan, Murphy and Jones, 2011)

1.4 Steinbrand-Resistenz-Donoren

Um bei der Züchtung von resistenten Weizenlinien das Resistenzgen für Steinbrand in heimische Sorten miteinzubringen werden Resistenz-Donoren, sogenannte Spenderlinien, verwendet. Die Spenderlinien für die Resistenz gegen Steinbrand (Blizzard, Bonneville, PI119333), die für diese Bachelorarbeit relevant sind und SNP-Marker, die mit Steinbrand-Resistenzgenen verknüpft sind, stammen aus einem kürzlich im Rahmen einer ERA-NET-Initiative durchgeführten Projekt am Institut für Biotechnologie in der Pflanzenproduktion, das hauptsächlich von der Doktorandin Frau Almuth Elise Müllner durchgeführt wurde.

"Blizzard" (= PI 512302) ist eine Winterweizensorte, die gegen bekannte Rassen von Steinbrand im Westen Kanadas resistent ist. Ein Resistenzgen befindet sich auf dem Chromosomenarm 1BS. (Matanguihan, Murphy and Jones, 2011) Eigene Ergebnisse eines PhD-Projekts von Almuth Müllner am IFA-Tulln ergaben eine wirksame Resistenz gegen Steinbrand und eng damit verknüpfte SNP-Marker auf den Chromosomen 1A, 1B, 7A und 7D (Müllner, 2020, Doktorarbeit in Vorbereitung).

"Bonneville" (=PI 557015) ist ebenfalls eine Winterweizensorte und wurde 1994 in den USA auf den Markt gebracht. Sie wird als Halbzwergpflanze mit schwachem Halm beschrieben (Souza *et al.*, 1995). Bonneville besitzt auf den Chromosomen 1A und 1B starke Steinbrand-Resistenz QTL (Müllner, 2020, Doktorarbeit in Vorbereitung).

"PI 119333" ist eine bekannte Träger-Linie des Resistenzgens *Bt12* (Goates and Bockelman, 2012). Dabei handelt es sich um eine Landrasse aus der Türkei mit sehr schlechten agronomischen Merkmalen, die 1979 im Zuge einer Zusammenstellung von Keimplasmasammlungen entdeckt wurde. Bisher ist keine natürlich vorkommende Rasse von Steinbrand bekannt, die gegen das Gen *Bt12* virulent ist (Hoffmann, 1982). Jüngste eigene Ergebnisse des Instituts für Biotechnologie in der Pflanzenproduktion in Tulln zeigten, dass PI 119333 zwei Resistenzorte auf den Chromosomen 4B und 7D besitzt, zu denen eng verknüpfte SNP-Marker existieren (Müllner, 2020, Doktorarbeit in Vorbereitung).

1.5 Quantitative Trait Locus/Loci (QTL)

Die Resistenz gegen Steinbrand zählt zwar zur Klasse der qualitativen Merkmale, und wird durch einzelne Gene, sogenannte "Single Genes" gesteuert (Bernardo, 2010). Die genauen Positionen aller Steinbrand-Resistenz-Gene am Weizenchromosom sind zum aktuellen wissenschaftlichen Stand jedoch noch nicht bekannt. Aus diesem Grund kommen QTL bei der Selektion zum Einsatz, da es auch eine quantitativ vererbte Resistenz gegen Steinbrand gibt (Bokore *et al.*, 2019).

Ein quantitativer Trait Locus (QTL) ist eine statistisch identifizierte Genomregion, die hypothetisch für die genetische Variation eines Merkmals verantwortlich ist. Es wird angenommen, dass diese spezifische Region in einem Genom genetische Varianten enthält, die einen signifikanten Beitrag zur Expression eines komplexen Merkmals leisten. Viele Merkmale, die für die Pflanzenzüchtung wichtig sind, sind quantitativer Natur und werden von mehreren Genen beeinflusst. Eine effiziente und robuste Identifizierung und Lokalisierung der genomischen Positionen dieser Gene ist mit molekularen Markern (v.a. SNP-Markern) möglich, wodurch sich eine sogenannte QTL-Region bestimmen lässt. (Rifkin, 2012)

Die ersten QTL für Steinbrand-Resistenz in Weizen wurden auf drei genomischen Regionen auf zwei Chromosomen (1B und 7A) kartiert (Fofana *et al.*, 2008), wobei am Chromosom 1B mehrere wichtige QTL in mehreren unabhängigen Publikationen kartiert wurden (Fofana *et al.*, 2008; Wang *et al.*, 2009; Dumalasová *et al.*, 2012; Singh *et al.*, 2016; Zou *et al.*, 2017). Zusätzliche, geringfügige Steinbrand-Resistenz-QTL, die durch QTL-Mapping identifiziert wurden, befinden sich auf den Chromosomen 1D, 2A, 3D (Bokore *et al.*, 2019), 3A (Zou *et al.*, 2017), 4B, 4D (Singh *et al.*, 2016), 5A (Bokore *et al.*, 2019), 5B (Dumalasová *et al.*, 2012; Singh *et al.*, 2016), 7A (Fofana *et al.*, 2008; Dumalasová *et al.*, 2012; Bokore *et al.*, 2019), 7B (Dumalasová *et al.*, 2012) und 7DL (Singh *et al.*, 2016).

Um diejenigen Weizen-Linien mit relevanten Steinbrand-Resistenz-QTL selektieren zu können, müssen die damit verbunden SNP-Marker detektiert werden. Ein Ansatz zum Nachweis von SNPs ist die kompetitive Allel-spezifische PCR (KASP), welche auch bei die vorliegende Bachelorarbeit angewandt wurde.

1.6 Kompetitive Allel-Spezifische PCR (KASP)

SNP-Daten können unter Verwendung einer der zahlreichen Uniplex- oder Multiplex-SNP-Genotypisierungsplattformen erhalten werden, die eine Vielzahl von Chemikalien, Nachweismethoden und Reaktionsformaten kombinieren. Die kompetitive Allelspezifische PCR (KASP) ist eine der Uniplex-SNP-Genotypisierungsplattformen und hat sich zu einer globalen Benchmark-Technologie entwickelt. Mit KASP ist es möglich innerhalb kurzer Zeit mehrere tausende Datenpunkte zu generieren. Zudem bietet das System kostengünstige und skalierbare Flexibilität in Anwendungen, die eine geringe bis mittlere Anzahl von molekularen Markern erfordern, wie z. Β. Qualitätskontrollanalyse, QTL-Mapping in bi-parentalen Populationen, markergestützte wiederkehrende Selektion, markergestützes Rückkreuzen und QTL Fine Mapping (Semagn et al., 2014).

KASP ist eine homogene, fluoreszenzbasierte Genotypisierungstechnologie, die ursprünglich von KBioscience für die interne Genotypisierung entwickelt wurde und die bi-allelische Bewertung von SNPs sowie Insertionen und Deletionen (Indels) an bestimmten Orten ermöglicht. Die Technologie basiert auf Allel-spezifischer Oligoverlängerung und Fluoreszenz-Resonanz-Energie-Transfer (FRET) zur Signalerzeugung. Die KASP-Genotypisierung kann in Plattenformaten mit 96-, 384- und 1.536-well durchgeführt werden und ist sowohl als Produkt (nicht validierte und validierte Reagenzienkits) als auch als Genotypisierungsdienst über LGC Genomics-Servicelabors in Nordamerika und Europa (http://www.lgcgenomics.com) erhältlich. (Semagn *et al.*, 2014; LGC, 2020)

Bei der KASP-Genotypisierungstechnologie werden folgende drei Komponenten verwendet, wie in Abbildung 3 gezeigt wird: (A) der KASP-Assay-Mix, der drei Assayspezifische, nicht markierte Oligonukleotide enthält: zwei Allel-spezifische Forward-Primer und einen gemeinsamen Reverse-Primer. Die Allel-spezifischen Primer enthalten jeweils eine einzigartige Endsequenz, die einer universellen FRET-Kassette entspricht, einer mit FAMTM-Farbstoff und der andere mit HEXTM-Farbstoff markiert; (B) der KASP Master-Mix, der die universellen FRET-Kassetten, den passiven ROXTM-Referenzfarbstoff, die Taq-Polymerase, freie Nukleotide und MgCl₂ in einer optimierten Pufferlösung enthält; (C) die Test-DNA mit dem jeweiligen SNP von Interesse (LGC, 2020).

Abbildung 3: Komponenten bei der KASP-Genotypisierungstechnologie: KASP-Assay-Mix (A), KASP-Master-Mix (B) und Test-DNA mit Ziel-SNP (C). (LGC, 2020)

Der SNP-spezifische KASP-Assay-Mix und der universelle KASP-Master-Mix werden zu den DNA-Proben gegeben, dann wird mittels PCR eine Temperaturwechselreaktion durchgeführt, gefolgt von einer Endpunkt-Fluoreszenzablesung. Während des thermischen Zyklus bindet der relevante Allel-spezifische Primer an den Strang der Test-DNA und verlängert sich. Dadurch wird die Endsequenz an den neu synthetisierten Strang gebunden. Während dieser Zeit amplifiziert auch der gemeinsame Reverse Primer den anderen Teil des DNA-Strangs (siehe Abbildung 4-A). Eine komplementäre Kopie der Allel-spezifischen Endsequenz wird dann während nachfolgender PCR-Runden erzeugt, wodurch die FRET-Kassette an die DNA binden kann (siehe Abbildung 4-B). Je nach SNP bindet entweder das FAM- oder das HEX-fluoreszenzmarkierte Oligo und daher wird die FRET-Kassette nicht mehr gequencht und kann ein Fluoreszenzsignal aussenden. (siehe Abbildung 4-C). Dieser Prozess wird während der gesamten PCR mehrmals ausgeführt und die kompetitive Bindung und die spezifische Alleldiskriminierung stellen sicher, dass die fluoreszierende Signalübertragung im Amplifikationsprozess stärker wird. Wenn der Genotyp bei einem bestimmten SNP homozygot ist, wird nur eines der beiden möglichen Fluoreszenzsignale erzeugt. Wenn der Genotyp heterozygot ist, wird ein gemischtes Fluoreszenzsignal erzeugt. (LGC, 2020)

Abbildung 4: Reaktion von Test-DNA, KASP-Master-Mix und KASP-Assay-Mix während der PCR: In der ersten PCR-Runde bindet der allel-spezifische Primer an der Test-DNA mit dem Ziel-SNP und der Strang wird verlängert (A); In der zweiten PCR-Runde bindet der Reverse-Primer und eine komplementäre Kopie der Allel-spezifischen Endsequenz wird erzeugt (B); In den nächsten PCR-Runden steigt der Grad an Allel-spezifischen Endsequenzen und der mit Farbstoff markierte Abschnitt der FRET Kassette ist komplementär zur neuen Endsequenz und bindet, wobei der Farbstoff aus dem Quencher freigesetzt wird, um ein Fluoreszenzsignal zu erzeugen (C). (LGC, 2020) Zur negativen Kontrolle des Systems sollten auf jeder Genotypisierungsplatte zwei NTCs (No-Template-Controls) vorhanden sein. Ein Unterschied in der Intensität des Fluoreszenzsignals zwischen der Anwesenheit und Abwesenheit von Matrizen-DNA ermöglicht ein verbessertes Vertrauen in die Gültigkeit der Genotypisierungsergebnisse. Zur positiven Kontrolle bei der Validierung des KASP-Assay-Mix und insbesondere bei der Arbeit mit einem SNP mit niedriger Allelfrequenz sollten DNA-Proben mit bekanntem Genotyp (Checks) verwendet werden. (LGC, 2020)

Mit einem FRET-fähigen Plattenleser können die Fluorophore FAM und HEX erfasst und die RFU gemessen werden. Das quantitative PCR-Instrument kann die Fluoreszenzwerte unmittelbar nach Beendigung der Reaktion aufzeichnen. Aufgrund von Unterschieden im Flüssigkeitsvolumen von Well zu Well wird der passive Referenzfarbstoff ROX verwendet, um Variationen der erfassten Signale für jeden Farbstoff für die Ergebnisinterpretation zu normalisieren. Relevante Anregungs- und Emissionswellenlängen sind in Tabelle 1 angegeben. (LGC, 2020)

Tabelle	1:	Anregungs-	und	Emissionswellenlängen	der	Fluorophore	für	das	KASP-
Genotyp	isierı	ungsverfahren	. (LGC	, 2020)					

Fluorophor	Anregung (nm)	Emission (nm)
FAM	485	520
HEX	535	556
ROX	575	610

Der Erfolg des KASP-Assays hängt von der Qualität und Quantität der Test-DNA ab, die aus Blattproben (frisch, gefroren, lyophilisiert, konserviert oder getrocknet) oder Samen extrahiert werden kann. Die meisten KASP-Assays benötigen 5-50 ng hochwertige DNA pro Reaktion, dabei spielt die Genomgröße eine wichtige Rolle, da eine größere DNA-Masse pro Reaktion erforderlich ist, wenn ein größeres Genom genotypisiert wird. Die am häufigsten verwendete Technik zur Messung der DNA-Konzentration ist die Bestimmung der Absorbance bei 260 nm mit einem Spektrophotometer. Das Absorptionsverhältnis bei 260 und 230 nm wird häufig als Maß für die DNA-Reinheit verwendet und kann auf das Vorhandensein von Kontaminationen oder Verunreinigungen hinweisen, die die PCR oder den Restriktionsverdau stören können. (Semagn *et al.*, 2014; LGC, 2020)

1.7 Markergestützte Selektion (MAS)

Bei der markergestützte Selektion (MAS) werden genetische Variationen auf DNA-Ebene verwendet, um bestimmte Regionen des Genoms während der Selektion und Kreuzung zu verfolgen und zu überwachen. Dabei kommen spezifische Genotypen (normalerweise eine bestimmte DNA) zum Einsatz, die mit den gewünschten Merkmalen assoziieren. Ein molekularer Marker, der eng mit einem Krankheitsresistenzort verbunden ist, kann z.B. verwendet werden, um vorherzusagen, ob ein Genotyp wahrscheinlich resistent oder anfällig für diese Krankheit ist. (Farokhzadeh and Fakheri, 2014).

MAS bietet folgende Vorteile:

- Zeitersparnis durch die Substitution komplexer Feldversuche (die zu bestimmten Jahreszeiten oder an bestimmten Orten durchgeführt werden müssen oder technisch kompliziert sind) durch molekulare Tests;
- Beseitigung der unzuverlässigen phänotypischen Bewertung im Zusammenhang mit Feldversuchen aufgrund von Umwelteinflüssen;
- Auswahl der Genotypen im Keimlingsstadium;
- Gen "Pyramiding" oder Kombination mehrerer Gene gleichzeitig;
- Vermeidung von Übertragung unerwünschter oder schädlicher Gene;
- Auswahl von Merkmalen mit geringer Erblichkeit;
- Testen auf bestimmte Merkmale, bei denen eine phänotypische Bewertung nicht möglich ist (z. B. Quarantänebeschränkungen können verhindern, dass exotische Krankheitserreger für das Screening verwendet werden) (Collard *et al.*, 2005).

Ein Nachteil von MAS ist, dass die Verwendung perfekter Marker durch die eingeschränkte Verfügbarkeit von Genen, die agronomische Merkmale steuern, begrenzt ist. Aufgrund der Tatsache, dass verschiedene Untergruppen von QTL in jeder Population polymorph sind, kann die QTL-Zuordnung nur für jede einzelne Zuordnungspopulation durchgeführt werden. Selbst bei eng verwandten Genotypen können die Verknüpfungsphasen zwischen dem Marker und den QTL-Allelen unterschiedlich sein (Bagge, Xia and Lübberstedt, 2007). Aus diesem Grund werden QTL-Nachweis und MAS häufig unabhängig voneinander durchgeführt (Lv *et al.*, 2014). MAS ist unwirksam, wenn sich viele Gene mit kleinen Effekten isolieren, daher wird die Technik hauptsächlich bei Hauptgenen angewendet. Der genomweite Vorhersageansatz, der als genomische Selektion bezeichnet wird, könnte MAS für polygene Merkmale ergänzen und die Züchtungseffizienz stark verbessern, indem die Genauigkeit des Zuchtwertes erhöht wird (Muranty *et al.*, 2015).

1.8 Zielsetzung

Ziel der markergestützten Selektion auf Steinbrand-Resistenz in Weizen ist es, möglichst viele homozygot-resistente Linien der Generation BC₂F₂ mittels der KASP-Methode zu selektieren, um effektiv nur mit denjenigen Linien weiterzüchten zu können, die eine Steinbrand-Resistenz in Form von Resistenz-QTL mit sich bringen. Dafür ist es erforderlich die passenden Marker bzw. Primer für die entsprechenden Resistenz-QTL zu verwenden, um eine optimale Detektion zu gewährleisten. Getestet wird die QTL-Region auf Chromosom 7D für das *Bt12*-Gen, sowie zusätzlich die QTL-Regionen auf Chromosom 1A, 1B, 7A und 4B, wobei 4B aufgrund seiner großen Region vernachlässigbar ist.

2. Material und Methoden

2.1 Entwicklung der Backcross-Generationen 1 und 2

In Abbildung 5 wird die Entwicklung der Backcross-Generationen 1 und 2 grafisch dargestellt, um einen Überblick zu bekommen, wie die Linien BC₂F₂-Generation entstanden sind, mit welcher die Validierung der markergestützten Selektion auf Steinbrand-Resistenz durchgeführt wurde. Im nachfolgenden Abschnitt wird diese Entwicklung detaillierter beschrieben.

Abbildung 5: Überblick der Entwicklung von Backcross-Generation 1 und 2. (Allele: r=resistent, a=anfällig); "X" steht für eine Kreuzung, N bezeichnet die Anzahl an verwendeten Pflanzen, der rot markierte Schritt stellt die praktische Durchführung der Bachelorarbeit dar.

Die Versuchsreihe zur Steinbrand-Resistenz am Institut für Biotechnologie in der Pflanzenzüchtung startete im Jahr 2007 mit 5 verschiedenen ursprünglichen Linien, welche durch Kreuzung der anfälligen heimischen Weizensorte "Rainer" mit je einer der Resistenzquellen "Blizzard", "Bonneville" bzw. "PI119333" entstanden sind. Dadurch ist

deren Resistenz-Herkunft bezüglich der Krankheit Steinbrand bekannt und sie tragen je zwei bis vier resistente QTL, welche auf fünf verschiedenen Weizenchromosomen angeordnet sind (siehe Tabelle 11, im Anhang). Mit diesen Linien wurden in weiterer Folge Kreuzungen mit standortsangepassten Sorten durchgeführt, da sie außer der Steinbrand-Resistenz keine passenden Eigenschaften für den Anbau in Österreich vorweisen können und somit nur als Resistenz-Donor dienen.

Die 5 Resistenz-Donoren wurden für Kreuzungen mit 11 regional angepassten Elitesorten verwendet, die zudem einen hohen Ertrag und qualitativ gute Eigenschaften miteinbringen, jedoch anfällig für Steinbrand sind. (siehe Tabelle 12, im Anhang).

Aus dieser Ausgangskreuzung wurden 21 Nachkommen (F1) erneut mit anderen anfälligen Elitesorten gekreuzt (siehe Tabelle 13, im Anhang), sodass jede neue Kreuzung folglich drei unterschiedliche Genotypen im Stammbaum beinhaltete. Die daraus resultierende Generation nennt sich BC_1F_1 (= Backcross-Generation 1, erste Filialgeneration).

Einige Pflanzen der BC₁F₁-Generation wurden anschließend für eine BC₂-Generation (=Backcross-Generation 2) ausgewählt und wieder mit anfälligen Elitesorten rückgekreuzt, um die positiven Eigenschaften der Elitesorten zu verstärken. Mit jeder Rückkreuzung mit standortsangepassten Sorten wird der Anteil der Resistenzdonoren am Gesamtgenom und der Elitehintergrund weiter wiederhergestellt. Auf diese Weise entstanden insgesamt 45 Kreuzungen, die im Dezember 2018 und Jänner 2019 durchgeführt wurden, woraus die Generation BC₂F₁ resultierte (siehe Tabelle 14, im Anhang). Um sicherzustellen, dass Nachkommen die Resistenz-Gene der Donorlinien erben, wurde bei der Auswahl der Pflanzen der BC₁F₁-Generation mit Hilfe der KASP-Methode auf heterozygote Linien selektiert. Nach dem Mendel`schen Kreuzungsschema ergibt sich somit eine 1:1 Verteilung von heterozygoten und homozygoten Nachkommen innerhalb der BC₁F₁-Generation (siehe Abbildung 6). Das Entwicklungsstadium als auch der Reifegrad der Ähren und ausreichend entwickelte Samen spielten bei der Auswahl ebenfalls eine große Rolle.

Abbildung 6: Kreuzungsschema nach Mendel der BC_1F_1 -Generation (Nachkommen der Ausgangskreuzung (ra) gekreuzt mit Elitesorten (aa)) r = resistentes Allel, a = anfälliges Allel; die Nachkommen (F1) sind zu 50% homozygot und zu 50% heterozygot, wobei die heterozygoten Linien für eine Selektion auf Resistenz relevant sind.

Mit der BC₂F₁-Generation wurde für die Auswahl der geeigneten Pflanzen für weitere Rückkreuzungen genauso verfahren wie bei der BC₁F₁-Generation. Zudem war es wegen der zwei-monatigen Vernalisationsperiode, die für die regional angepassten Winterweizen-Sorten notwendig ist, wichtig, BC₂-Samen so früh als möglich zu ernten. Die Vernalisation muss für die Pflanzen zu einem Zeitpunkt beendet sein, nach dem sie die weitere Entwicklung parallel zur natürlichen Vegetationsperiode mit Blüte im Juni und Reife im August durchlaufen können.

Die Ernte und der Anbau der Samen der BC₂F₁-Linien aus Tabelle 14 (im Anhang) fanden im Februar 2019 statt. Von jeder Linie bzw. Kreuzung wurden je ca. 14 Samen ausgelegt und nach vollendeter Vernalisation im April 2019 konnten insgesamt 609 Pflanzen mit der KASP-Methode auf heterozygote Allelkombinationen selektiert werden. Auf diese Weise wurden 108 heterozygote Linien ausgewählt, um sie einerseits für eine BC₃F₁-Generation wieder mit anfälligen Elitesorten rückzukreuzen und andererseits mit sich selbst zu kreuzen, wodurch die Generation BC₂F₂ entstand, mit welcher sich diese Bachelorarbeit befasst.

2.1.1 Entstehung der BC2F2-Generation

Für die Selbstkreuzung wurden von den 108 BC₂F₁-Linien 54 (siehe Tabelle 15, im Anhang) mittels Genomic estimated breeding value (GBS-Daten von DarT-Seq-Analyse vorbearbeitet von Sebastian Michel) nach den besten Eigenschaften für einen regionalen Anbau in Österreich ausgewählt. Je Linie wurden ca. 48 Samen angebaut, die im August 2019 geerntet worden waren. Im Dezember 2019 wurden infolgedessen insgesamt 2165 Samen in 10 x 15 - Multischalen ausgelegt.

Nach Anzucht und Vernalisation der 2165 BC₂F₂-Samen wurde im Jänner und Februar 2020 eine DNA-Extraktion mit anschließender Vorselektierung dieser Linien mittels der KASP-Methode auf homozygot-resistente Pflanzen durchgeführt. Nach dem Mendel 'schen Kreuzungsschema ergibt sich eine 1:2:1 Verteilung an homozygot-resistenten, heterozygoten und homozygot-anfälligen Nachkommen innerhalb der BC₂F₂-Generation (siehe Abbildung 7). Dabei wurde jedoch nur das *Bt12*-Gen auf Chromosom 7D getestet, von jenen Genen die bereits bekannt sind, sowie zusätzlich die QTL-Regionen auf Chromosom 1A, 1B, 7A und 4B, wobei 4B aufgrund seiner großen Region vernachlässigbar ist.

Abbildung 7: Kreuzungsschema nach Mendel der BC₂F₂-Generation(Nachkommen der Selbstbefruchtung der BC₂F₁-Linie (ra x ra)); r = resistentes Allel, a = anfälliges Allel; die Nachkommen (F₂) sind zu 25% homozygot-resistent, zu 50% heterozygot und zu 25% homozygot-anfällig, wobei die homozygot-resistenten Linien für eine Selektion auf Resistenz relevant sind.

Folgende Kriterien waren für die Vorselektierung entscheidend:

- Pro QTL wurden mindestens 2 Marker ausgewählt, die einen möglichst großen Bereich der QTL-Region flankieren (Flanking-Markers).
- Verwendung von Checks bei der KASP-PCR: Kontrolle mit bekannter Resistenzquelle je nach Linie, ob einerseits die ausgewählten Marker nach der PCR erfolgreich detektierbar sind und andererseits, um zu überprüfen, ob die QTL von dem Resistenzelter vererbt worden sind, indem die Allele von den Checks mit jenen der DNA-Proben verglichen werden.
- Der Genotyp hat einen Allelaufruf für den jeweiligen Marker, der vom Bildverarbeitungssystem als homozygot-resistent eingestuft wird.
- Die Klassifizierung scheint gemäß der grafischen Anzeige der Datenpunkte gültig zu sein.
- Die Klassifizierung erscheint bei der Analyse von RFU-Werten weiterhin gerechtfertigt.
- Der Genotyp ist an allen für die jeweilige QTL getesteten Markerpositionen homozygot-resistent.
- Wenn mehr QTL in einem einzelnen Genotyp vorhanden sind, sind alle Marker-Allele für alle QTL homozygot-resistent.
- Wenn mehr als zwei QTL in einem einzigen Genotyp vorhanden waren, aber kein Individuum an allen QTL-Positionen homozygot-resistent war, wurden verschiedene Kombinationen von QTL ausgewählt, so dass alle Pflanzen, die aus einer Kreuzung zusammen ausgewählt wurden, alle QTL enthielten, die von den Elternlinien vererbt wurden.

Nach erfolgreicher Vorselektierung wurden insgesamt 232 BC₂F₂-Linien ausgewählt und Anfang März 2020 von 10 x 15 - Multischalen in größere Töpfe für ein weiteres Wachstum im Glashaus umgetopft. Von den 232 Pflanzen starben jedoch 3 Pflanzen während der Vernalisation ab, wodurch insgesamt nur 229 Pflanzen umgetopft wurden. Pro Pflanze wurde ein Topf verwendet, um die einzelnen Linien bestmöglich auseinanderhalten zu können, optimale Wachstumsbedingungen zu ermöglichen und dadurch maximale Ährenproduktion der einzelnen Pflanzen zu erreichen. Dies ist relevant, um genug Saatgut für Resistenzversuche einerseits und für weitere Saatgutproduktion im Herbst 2020 andererseits zur Verfügung zu haben. Zudem wurden noch insgesamt 40 BC₂F₂-Linien umgetopft, die bei der ersten DNA-Extraktion und Vorselektierung noch nicht genug Pflanzenmaterial für eine Probennahme aufwiesen und bei der folgenden Validierung mitselektiert werden. Jedoch wurden dafür keine großen Töpfe, sondern nur 24-well-Multischalen verwendet, da damit gerechnet wird, dass von den 40 Pflanzen nur wenige die gewünschte Resistenz aufweisen.

Für weitere Züchtungsversuche ist es notwendig, eine Validierung der vorselektierten BC₂F₂-Linien durchzuführen, um die Anzahl an potentiell resistenten Pflanzen zu reduzieren und nur mit jenen Pflanzen weiter zu züchten, die mit höchster Wahrscheinlichkeit homozygot-resistent sind. Der Grund dafür ist, dass die Ergebnisse der KASP-Analyse nicht immer zu 100% eindeutig sind und nicht alle verwendeten KASP-Marker bei der Vorselektierung zufriedenstellende Ergebnisse erbracht haben, wofür nun andere Marker an deren Stelle getestet werden müssen. Diese Validierung wird im Abschnitt 2.2 genauer beschrieben.

2.2 Validierung der Selektion auf homozygot-resistente Pflanzen der BC2F2-Generation

Ab diesem Kapitel wurden sämtliche Methoden eigenständig umgesetzt und zählen zu der praktischen Durchführung der Bachelorarbeit.

2.2.1 DNA-Extraktion

In Tabelle 2 sind alle Geräte und Materialien, die für die DNA-Extraktion verwendet wurden, aufgelistet.

Bezeichnung	Hersteller	Spezifikationen
Extraktionsplatten	Keine Angaben	96-well-Platten (12x8)
Tubes	STARLAB International GmbH	1,2 mL 8-Stripe Reaction Tubes Order No.: E1720-8000 Lot No.: 18061
Glaskugeln	Sigmund Lindner SiLibeads	Typ M; 3,0 mm Art. No.: 5005-99-5 Lot No.: 1752057
Trockenschrank	Heraeus Instruments	kelvitron®t Typ UT6120
Schottflasche	Schott AG	250 mL
Schwingmühle	Retsch GmbH	Type: MM400 Serial No.: 1215200715G
Magnetrührer mit Heizung	Janke & Kunkel GmbH IKA Labortechnik	Type: RET-G 727360;
Multipette inkl. Aufsatz	Eppendorf	E3; G42557F 1 μL – 50 mL
Mechanische 8-Kanal Pipette	Sartorius	Tacta® 30-300 μL LH-729140
Spitzen	Biozym	SurPhob [®] , 300 µL, farblos Low Binding, graduiert Art.Nr.: VT0155
Messpipette aus Glas	FORTUNA Germany	25 / 0,1 mL Ex 20°C; ± 0,20 mL
Analytische Waage	Sartorius	Basic; 0,0001 g
Wasserbad	GFL	Туре: 1092
Zentrifuge	Sigma	Type: 4K15 Serien-Nr.: 107721
Schüttler	Hoefer RED Rotor	umgebauter Motor zur Durchmischung von Extraktionsplatten

Tabelle 2: Liste der verwendeten Geräte und Materialien bei der DNA-Extraktion.

In Tabelle 3 sind alle Chemikalien, die für die DNA-Extraktion verwendet wurden, aufgelistet.

Tabelle 3: Liste	der verwendeten	Chemikalien	bei der	DNA-Extraktion.

Bezeichnung	Hersteller	Spezifikationen
CTAB (Cetyltrimethylammonium- bromid)	Carl ROTH GmbH	 ≥ 99%, für die Biochemie Art.Nr.: 9161.3 Charge: 248272317
EDTA (Ethylenediamine- tetraaceticacid) Dinatriumsalz Dihydrat	Carl ROTH GmbH	≥ 99%, p.a., ACS Art.Nr.: 8043.2 Charge: 06785240
TRIS Pufferan®	Carl ROTH GmbH	≥ 99,3%, Buffer Grade Art.Nr.: AE15.2 Charge: 487260641
Natriumchlorid (NaCl) Rotipuran®	Carl ROTH GmbH	\geq 99,5%, p.a., krist, ACS
2-Mercaptoethanol (BME)	MERCK Schuchardt OHG	 ≥ 99%; zur Synthese 8.05740.0250 Charge: S4805940 745
Chloroform	VWR Chemicals	22711.324 Lot: 18I134037
Isoamylalkohol	Carl ROTH GmbH	≥ 98,5%, zur Synthese Art.Nr.: 8930.1 Charge: 498101495
2-Propanol (Isopropanol)	VWR Chemicals	20842.367 Lot: 18I104007
Ethanol absolute (EtOH)	VWR Chemicals	20821.321 Lot: 18I134023
Ammoniumacetat (NH₄OAc)	Carl ROTH GmbH	≥ 99%, p.a., ACS Art.Nr.: 7869.2 Charge: 18359175
Natriumacetat (NaOAc)	Carl ROTH GmbH	≥ 99%, p.a., ACS, wasserfrei Art.Nr.: 6773.2 Charge: 26678615
dH2O	IFA Tulln	-

Für die DNA-Extraktion wurden am 12.03.2020 Blätter der BC₂F₂-Linien in die dafür vorgesehenen Tubes in 8er-Streifen geerntet. Dabei wurde von jeder Pflanze die 2-fache Tube-Länge an Blattmaterial abgeschnitten. Zwischen jeder Probennahme wurde die Schere mit einem feuchten Tuch gereinigt, um Kontaminationen zu vermeiden. Pro Pflanze wurde ein Tube verwendet, welches sich in einer Extraktionsplatte für insgesamt

96 Tubes befindet (siehe Abbildung 8). Pro Tube wurden vor der Blatternte 3 Glaskugeln hinzugefügt. Die Tubes mit den darin befindlichen Blättern wurden in einem bestimmten Schema, das die nachfolgenden Analysen erleichtern sollte, in der Extraktionsplatte angeordnet (siehe dazu Extraktionsschema im Anhang). Insgesamt vier Extraktionsplatten wurden für die Blatternte verwendet und mit dem geernteten Blattmaterial im Trockenschrank bei 38°C bis 16.03.2020 gelagert.

Abbildung 8: DNA-Extraktionsplatte mit 96 Tubes inklusive Pflanzenmaterial der Weizenpopulation BC₂F₂.

Am 16.03.2020 wurde die DNA-Extraktion des getrockneten Pflanzenmaterials der BC₂F₂-Generation nach den Vorgaben des Protokolls des Instituts für Biotechnologie in der Pflanzenproduktion durchgeführt (siehe Anhang).

Dabei wurde wie folgt vorgegangen:

1. Herstellung des CTAB-Buffers:

Es wurden 170 mL des CTAB-Buffers nach den Angaben in Tabelle 4 hergestellt.

Für das Gesamtvolumen wurde mit 400 μ L pro Tube gerechnet. Bei 4 Platten mit je 96 Tubes ergibt das insgesamt 160 mL, dazu wurden 10 mL Sicherheitszugabe addiert.

Tabelle 4: Liste der Bestandteile mit Mengenangabe zur Herstellung des CTAB-Buffers. Das Volumen bzw. die Menge wurde nach den Angaben im Protokoll des Instituts für Biotechnologie in der Pflanzenzüchtung (im Anhang) berechnet.

Chemikalien	Stoffmenge	Volumen bzw. Menge
dH2O	-	110,5 mL
1M TRIS - 7,5 (pH)	100 mM	17 mL
5M NaCl	700 mM	23,8 mL
0,5M EDTA - 8,0 (pH)	50 mM	17 mL
СТАВ	1%	1,7 g
14M BME	140 mM	1,7 mL
Gesamtvolumen		170 mL

Das destillierte Wasser (dH₂O) wurde in einer Schottflasche eingewogen (Einwaage: 110,47 g) und danach wurden TRIS, NaCl und EDTA mit den jeweiligen Volumina wie in Tabelle 4 angegeben mit einer 25 mL Messpipette zu dH₂O hinzugefügt. Nachdem das Gemisch kurz im Wasserbad bei 66°C erwärmt wurde, erfolgte die Zugabe von 1,7292 g des pulverförmigen CTAB, das in einer Wägeschale eingewogen wurde. Bevor BME (siehe Tabelle 4) dazu pipettiert worden ist, wurde der Inhalt der Schottflasche für 15 min auf einem Magnetrührer bei ca. 50°C mit einem Magnetrührstäbchen gerührt.

2. Vermahlen des Pflanzenmaterials in der Schwingmühle

Jede Extraktionsplatte wurde für 2 x 3 Minuten bei einer Frequenz von 30,0 Schwingungen/s in der Schwingmühle eingespannt. Nach den ersten drei Minuten wurde die Platte umgedreht, damit das Pflanzenmaterial in jedem Tube gleichmäßig vermahlen wurde. Danach wurden die Platten für 2 min bei 2000 RZB abzentrifugiert, um das Pulver vom Deckel der Tubes zu lösen.

3. Hinzufügen des CTAB-Buffers

Pro Tube wurden 400 μ L CTAB-Buffer mit der Multipette hinzugefügt. Alle Platten wurden dann verschlossen bei 66°C im Wasserbad für 70 min stehen gelassen.

4. Hinzufügen des Chloroformgemisches

Pro Tube wurden 200 µL des bereits vorbereiteten Chloroformgemisches (Chloroform:Isoamylalkohol im Verhältnis 24:1) mit der Multipette hinzugefügt. Alle Platten wurden dann zur Durchmischung für 10 min im Schüttler gedreht und anschließend für 8 min bei 4000 RZB abzentrifugiert. Nach dem Zentrifugieren bildeten sich 2 Phasen: In der unteren, organischen Phase befand sich die Buffer-

Lösung mit den Resten des Pflanzenmaterials (grün) und in der oberen, wässrigen Phase die DNA gelöst in Chloroform (farblos). Die beiden Phasen waren durch eine Proteinschicht (weiß) voneinander getrennt (siehe Abbildung 9).

Abbildung 9: Phasentrennung bei der DNA-Extraktion des Pflanzenmaterials der Generation BC₂F₂ nach Zugabe des Chloroforms und Zentrifugierung. Untere organische Phase (grün): Buffer-Lösung und Reste des Pflanzenmaterials; Obere wässrige Phase (farblos): DNA gelöst in Chloroform; getrennt durch weiße Proteinschicht.

5. Abtrennung der DNA

Mit einer mechanischen 8-Kanal-Pipette wurden 220 µL der oberen Phase aufgenommen und in neue, zuvor vorbereitete und beschriftete Tubes pipettiert. Dabei wurde darauf geachtet, dass weder die Proteinschicht noch die organische Phase mit der Spitze berührt wurde. Die Positionen der Tubes in den Extraktionsplatten mit der DNA der unterschiedlichen Pflanzen blieb gleich.

6. Hinzufügen des Isopropanols

Pro Tube wurden 160 µL Isopropanol (entspricht der 0,8-fache Menge des Chloroformgemisches) zur der abgetrennten, wässrigen Phase, welche die DNA beinhaltet, mit der Multipette hinzugefügt. Nachdem die Tubes wieder verschlossen worden waren, wurden sie einige Male händisch gewendet, um ein spontanes Ausfallen der DNA zu bewirken. Anschließend wurden alle Platten für 8 min bei 2000 RZB abzentrifugiert, wodurch sich ein DNA-Pellet am Boden jedes Tubes bildete.

7. DNA waschen

Nachdem die Deckel der Tubes entfernt wurden, wurde die überschüssige Flüssigkeit in den Tubes durch ein rasches Umdrehen der Platten abgeleert. Ein langer Spatel diente dazu, die Tubes festzuhalten, damit sie nicht aus der Extraktionsplatte rutschten. In den Tubes blieben die am Boden haftenden DNA-Pellets zurück.

a. Hinzufügen von Wash 1

Die Lösung Wash 1 war bereits verwendungsfertig gemischt und besteht aus folgenden Chemikalien: 76% von Ethanol, 8% von 2,5M Natriumacetat und 16% von dH₂O. Pro Tube wurden 100 µL der Lösung Wash 1 mit der Multipette hinzugefügt. Die DNA-Pellets wurden dann durch Schnippen mit den Fingern an den Tubes vom Boden gelöst, damit sie in der Waschlösung frei schwammen. Nach 30 Minuten Wartezeit wurden die Platten für 8 Minuten bei 2000 RZB abzentrifugiert. Die DNA-Pellets hafteten wieder am Boden der Tubes und die überschüssige Flüssigkeit wurde wie in Schritt 7 abgeleert.

b. Hinzufügen von Wash 2

Die Lösung Wash 2 war ebenfalls bereits verwendungsfertig gemischt und besteht aus folgenden Chemikalien: 76% von Ethanol, 1% von 1M Ammoniumacetat und 23% von dH₂O. Pro Tube wurden 100 μ L der Lösung Wash 2 mit der Multipette hinzugefügt. Die DNA-Pellets wurden wieder, wie in Schritt 7, vom Boden der Tubes gelöst.

Alle vier Extraktionsplatten wurden mit den verschlossenen Tubes und der darin befindlichen DNA in der Wash-2-Lösung bei -25°C eingefroren, um sie für die weiteren Schritte aufzubewahren.

Die verbliebenen Reste der organischen Phase und Proteinschicht in den anderen Tubes wurden entsprechend entsorgt.

Am 14.04.2020 wurden die Extraktionsplatten aufgetaut, danach für 8 min bei 2000 RZB abzentrifugiert und alle Tubes wie in Schritt 7 ausgeleert, so dass die DNA-Pellets wieder am Boden der Tubes hafteten. Die Platten wurden bis zum nächsten Tag offen stehen gelassen, um die DNA-Pellets zu trocknen.

8. Hinzufügen des TE-8-Buffers (Stabilisierung der DNA)

Der TE-8-Buffer war bereits verwendungsfertig gemischt und beinhaltet für 100 mL Gesamtvolumen folgende Chemikalien: 1 mL 1M Tris-8,0; 0,2 mL 0,5M EDTA-8,0; aufgefüllt mit dH₂O. Pro Tube wurden 100 μ L des TE-8-Buffers mit der Multipette hinzugefügt. Die Platten wurden verschlossen über Nacht im Kühlschrank bei 4 °C gelagert.

2.2.2 Normalisierung der DNA-Konzentration

In Tabelle 5 sind alle Geräte und Materialien, die für die Messung der DNA-Konzentration und deren Normalisierung verwendet wurden, aufgelistet.

Tabelle 5: Liste der verwendeten Geräte und Materialien bei der Messung der DNA-Konzentration und deren Nomalisierung.

Bezeichnung	Hersteller	Spezifikationen
BioSpec-nano Spektrophotometer	Shimadzu Corporation	Cat.No.: 206-26300-38 Serial No.: A11574600097 LP
Multi-Mode-Reader	BioTek Instruments	Synergy HT SN: 201484
Photometerplatten	Greiner Bio-One GmbH	CELLSTAR [®] 96-well max. Volume: 323 µL
Mechanische 8-Kanal-Pipette	Sartorius	Tacta® 30-300 μL 17025058
Spitzen	Biozym	SurPhob® 300 µL, farblos Low Binding, graduiert Art.Nr.: VT0150X Lot: B140311
Pipettierroboter	Eppendorf AG	epMotion 5075 Seriennr.: 5075BQ402054
Mischer	Eppendorf AG	MixMate®
Zentrifuge	Beckman	GS-15 Seriennr.: GXD94A12
Klebefolie für Photometerplatten	Greiner Bio-One GmbH	EASYsealm Abdeckfolie Artikelnr.: 10696771

Um die DNA-Konzentration in den Extraktionsplatten A bis D für eine Vorverdünnung feststellen zu können und anschließend die Konzentration für die KASP-Genotypisierung zu normalisieren, wurde am 16.04.2020 stichprobenmäßig mittels dem BioSepec-nano Spektrophotometer die DNA-Konzentration von insgesamt sieben Tubes gemessen (siehe Tabelle 9 im Kapitel 3.1). Dafür wurden je Messung 2,3 µL der extrahierten DNA verwendet und pro Tube wurden 2 Messungen durchgeführt, um Unterschiede zwischen einer Entnahme von der oberen Hälfte (1. Messung) und der unteren Hälfte (2. Messung) des Inhalts je Tube und somit den Grad der Vermischung zwischen TE-8 und gelöster DNA feststellen zu können. Die Messergebnisse, die die resultierende DNA-Konzentration angeben, sind in Tabelle 9 im Kapitel 3.1 zu finden. Die Software, mit der die Messung durchgeführt wurde und mit der die Ergebnisse erhalten wurden, stammt von dem Unternehmen Shimadzu. Die Absorbtionsverhältnisse wurden zwischen 260 und 280 nm sowie zwischen 260 und 230 nm bestimmt.

$c_1 * V_1 = c_2 * V_2$

Formel 1

Für die Vorverdünnung der extrahierten DNA wurden 96-Well-Photometerplatten verwendet. Um eine Konzentration im Bereich von ca. 100 ng/µL zu erhalten wurde mit Formel 1 berechnet wie viel µL an extrahierter DNA bei einem Gesamtvolumen von 100 µL pro Well verdünnt werden mussten. Aufgrund der höheren DNA-Konzentrationen in den Platten A und C wurde ein Verhältnis von 30 µL DNA zu 70 µL dH₂O gewählt. Bei den Platten B und D wurden 40 µL DNA mit 60 µL dH₂O verdünnt. Dafür wurde mit einer mechanischen 8-Kanal-Pipette zuerst dH₂O in der jeweiligen Menge in der Photometerplatte vorgelegt. Anschließend wurde das entsprechende Volumen gelöster DNA aus den Tubes der DNA-Extraktionsplatten entnommen und in die entsprechende Reihe der Photometerplatten pipettiert, um das Pipettierschema nicht zu verändern. Die Platten wurden mit dem Mischer 30 Sekunden bei 1000 rpm durchmischt. Das Gesamtvolumen von insgesamt 100 µL pro Well in den Photometerplatten war für die nachfolgende Messung mit dem Multi-Mode-Reader notwendig.

Bei der Messung der verdünnten DNA in den Photometerplatten am Multi-Mode-Reader wurde die Absorption pro Platte bei den Wellenlängen 230 nm, 260 nm und 280 nm gemessen. Die daraus resultierten Messwerte wurden mit Hilfe von Excel-Vorlagen für die Programmierung des Pipettierroboters verwendet, um durch Hinzufügen unterschiedlicher Volumina an TE-8-Buffer die gewünschte DNA-Konzentration von 50 ng/µL in jedem Well zu erhalten.

Folgendes musste jedoch beachtet werden:

- Ein Maximalvolumen von 200 μL dH₂0, das durch den Pipettierroboter hinzugefügt wird, darf nicht überschritten werden, da sonst das verfügbare Gesamtvolumen von ca. 300 μL pro Well überschritten wird. Falls dies der Fall sein sollte, muss von den jeweiligen Wells die Hälfte des Volumens (entspricht 50 μL) mit einer Pipette entfernt und das berechnete Volumen, welches hinzugefügt werden soll, halbiert werden.
- Die Volumina, die hinzugefügt werden sollen, sind auf 10er-Stellen zu runden, um das Pipettieren mittels Pipettierroboter zu vereinfachen und zu beschleunigen. Für die KASP-Genotypisierung reicht die daraus resultierende Genauigkeit der DNA-Konzentration aus.

Eine Übersicht von denjenigen Wells, deren Volumen halbiert werden musste, ist in Abbildung 11 in Kapitel 3.1 ersichtlich.

Die Anleitung des Instituts für Biotechnologie in der Pflanzenproduktion, nach welcher der Pipettierroboter eingestellt wurde, befindet sich im Anhang.

Nachdem der Pipettierroboter die DNA-Konzentration von allen Photometerplatten normalisiert hatte, wurden die Platten 30 Sekunden mit dem Mischer bei 1000 rpm durchmischt und anschließend kurz mit der Zentrifuge bei 3000 rpm abzentrifugiert.

Die Platten wurden mit einer Klebefolie verschlossen und im Kühlschrank bei 4°C gelagert.

2.2.3 KASP-Genotypisierung

In Tabelle 6 sind alle Geräte und Materialien, die für die KASP-Genotypisierung verwendet wurden, aufgelistet.

Tabelle of Liste der verwendeten derate und Platenalien bei der KAST denotypisierung.

Bezeichnung	Hersteller	Spezifikationen
PCR-Platten	Bio-Rad	384-well Hard-Shell PCR Plates Catalog No.: HSP3805 Lot No.: 20150202
Microseal	Bio-Rad	Catalog No.: MSB1001 Control No.: 00418466
Elektronische 8- Kanal-Pipette	Sartorius	Picus® 0,2 – 10,0 μL Item No.: 735321 17016139
Spitzen	Biozym	SurPhob® 10 µL, kurz, farblos Low Binding, graduiert Art. Nr.: VT0110X Lot: 17444
Elektronische 16- Kanal-Pipette	Thermo Fisher Scientific	Finnpipette® 5 – 50 µL Type: 148 MH45943
Spitzen	Thermo Fisher Scientific	Finntip® 50 Cat. No.: 9400360 Lot: 18157A0
PCR-Cycler	Eppendorf AG	Mastercycler® pro 384 Seriennr.: 6324YG501536
PCR- Detektionssystem	Bio-Rad	CFX384™ Real-Time System Model No.: CFX384™ Optics Module Serial No.: 786BR02610
Tubes	Eppendorf	2,0 mL 0030 120.094

In Tabelle 7 sind alle weiteren Komponenten aufgelistet die bei der KASP-Genotypisierung verwendet wurden.

Bezeichnung	Hersteller	Spezifikationen	
KASP-Master-Mix	LGC Genomics	KBS-1016-002 KASP 2x Maser Mix KASP 5000 V4.0 Lot No.: 12721643	
DNA Blizzard	IFA Tulln	DNA extrahiert am 4.11.2019 c=50 ng/µL	
DNA Rainer	IFA Tulln	DNA extrahiert am 4.11.2019 c=50 ng/µL	
DNA PI119333	IFA Tulln	DNA extrahiert am 4.11.2019 c=50 ng/µL	
Common-Primer	LGC Genomics	Sequenz variiert je nach KASP-Marker siehe Anhang Tabelle 16	
Forward-Primer	LGC Genomics	Sequenz variiert je nach KASP-Marker siehe Anhang Tabelle 16	
Reverse-Primer	LGC Genomics	Sequenz variiert je nach KASP-Marker siehe Anhang Tabelle 16	

Tabelle 7: Liste der weiteren Komponenten für die KASP-Genotypisierung.

Anstelle eines KASP-Assay-Mix wurden am Institut für Biotechnologie in der Pflanzenproduktion, IFA-Tulln, KASP-Marker entwickelt und getestet, die einen effizienten und präzisen Nachweis von SNPs für individuelle Resistenz-QTL ermöglichen. Der KASP-Marker bzw. Primer-Mix setzt sich aus dem entsprechenden Common-Primer (nicht-Allel-spezifischer-Forward-Primer) sowie je einem Allel-spezifischen-Forward-Primer und Reverse-Primer zusammen. Für die Vorbereitung der KASP-PCR wurden KASP-Master-Mix (2,5 μ L/Well) und jeweiliger Primer-Mix (0,07 μ L/Well) in 2,0 mL-Tubes zusammenpipettiert und gemischt. In Tabelle 8 sind alle KASP-Marker sowie die benötigten Gesamtmengen an Master-Mix und Primer-Mix je KASP-Marker angegeben, die bei der KASP-Genotypisierung verwendet wurden. Die Gesamtmenge ergibt sich aus der Anzahl an zu befüllenden Wells inkl. ca. 20% Sicherheitszugabe (= RXN für "reactions") multipliziert mit dem benötigten Volumen pro Well.

Tabelle 8: Verwendete KASP-Marker bei der KASP-Genotypisierung und benötigte Menge an Master-Mix und Primer-Mix. Bei der KASP-Marker-Nr. handelt es sich um eine interne Instituts-Bezeichnung. RXN (für "reactions") gibt an wie viele Wells mit dem KASP-Marker befüllt werden müssen (= Reihe * Spalte inkl. ca. 20% Sicherheitszugabe). Die Volumina an Master-Mix (2,5 μ L/Well) bzw. Primer-Mix (0,07 μ L/Well) ergeben sich durch Multiplikation von RXN mit dem jeweils notwendigen Volumen pro Well.

KASP- Marker- Nr.	Position am Chromosom (Mbp)	Chromosom	Anzahl benötigter RXN	Master- Mix (µL)	Primer- Mix (µL)
K1	487,732253	1A	40	100	2,8
К2	498,811339	1A	170	425	11,9
К9	514,138041	1A	80	200	5,6
K10	515,546034	1A	60	150	4,2
K11	516,373186	1A	100	250	7,0
K13	5,17612	1B	150	375	10,5
K20	26,186103	1B	110	275	7,7
K21	26,185476	1B	80	200	5,6
K23	37,694474	4B	40	100	2,8
K26	103,527637	4B	40	100	2,8
K29	506,146408	4B	20	50	1,4
K37	731,270556	7A	70	175	4,9
K39	731,269548	7A	20	50	1,4
K42	15,322689	7D	80	200	5,6
K43	14,42685	7D	20	50	1,4
K44	13,295555	7D	60	150	4,2
K47	10,835055	7D	150	375	10,5
K51	8,185562	7D	150	375	10,5
K78	721,223716	7A	20	50	1,4
K79	719,568297	7A	40	100	2,8

Die KASP-Marker wurden nach denselben Kriterien wie bei der Vorselektierung (siehe Unterkapitel 2.1.1) ausgewählt. Zusätzlich wurden diejenigen Marker, welche bei der Vorselektierung keine zufriedenstellenden Ergebnisse erbrachten, durch andere mögliche Marker ersetzt. In Tabelle 16 im Anhang sind die jeweiligen Basen-Sequenzen der Primer je KASP-Marker bzw. Primer-Mix aufgelistet. Wenn ein Primer-Mix aufgebraucht war wurde dieser folgendermaßen neu gemischt:

- 30 µL Common-Primer
- 12 µL Forward-Primer
- 12 µL Reverse-Primer
- 45 μL dH2O

Alle Bestandteile wurden in ein 0,5 mL-Tube pipettiert und ausreichend durchmischt.

Für jene KASP-Marker, welche sich am Chromosom 4B oder 7D befinden, wurde als Resistenz-Check PI119333 verwendet (ausgenommen K42, K43, K44). Für jene die sich auf Chromosom 1A, 1B oder 7A befinden bzw. für K42-K44, welche auf dem 7D-Genom von Blizzard liegen wurden Blizzard bzw. Bonneville als Resistenz-Check verwendet. Bei den Heterozygoten-Checks wurde jeweils der resistente Check 1:1 mit dem anfälligen Check (Rainer) gemischt.

Am 17. und 21.04.2020 wurden für die Durchführung der KASP-Genotypisierung 384-Well PCR-Platten verwendet. Die Bezeichnung der PCR-Platten entspricht jener der Extraktionsplatte bzw. Photometerplatte.

Die Platten wurden nach den Pipettierschemata im Anhang (Abbildung 15-18) wie folgt befüllt:

- 1. Checks bzw. positive Kontrollen: 2,5 µL/Well mit der 8-Kanal-Pipette (1 Spitze)
- DNA: 2,5 µL/Well aus der Photometerplatte mit der 8-Kanal-Pipette; anschließend abzentrifugieren der Platten, um die DNA auf den Boden der Wells zu bringen, sodass eine Vermischung beim Hinzufügen der KASP-Marker vermieden wird
- KASP-Marker: 2,5 μL/Well der vorbereiteten KASP-Marker spaltenweise mit der 16-Kanal-Pipette (1 bzw. 2 Spitzen)

Jede Platte wurde mit dem Microseal verschlossen und abzentrifugiert. Die Platten haben anschließend das in Abbildung 10 gezeigte Temperaturprofil am PCR-Cycler durchlaufen.

Abbildung 10: Temperaturprofil des PCR-Cyclers für die KASP-Genotypisierung.

Nach abgeschlossener PCR wurden die Platten im PCR-Detektionssystem mit der Software Bio-Rad CFX Maestro 1.0 (Version 4.0) bei 30 °C analysiert. Die Ergebnisse wurden als Excel-File exportiert und mit Microsoft Excel ausgewertet. Die Auswertung der Validierung erfolgte nach denselben Kriterien wie bei der Vorselektierung (siehe Unterkapitel 2.1.1).
3. Ergebnisse und Diskussion

3.1 Ergebnisse der Normalisierung der DNA-Konzentration

In Tabelle 9 sind die Tubes angegeben, von denen eine stichprobenartige Messung der DNA-Konzentration durchgeführt worden ist, sowie die Messergebnisse der 1. Und 2. Messung mit dem Spektrophotometer.

Tabelle 9: Stichprobenartige Messung der extrahierten DNA aus den Tubes der Extraktionsplatten A bis D mittels dem BioSepec-nano Spektrophotometer und die daraus resultierende DNA-Konzentration.

Extraktions- platte	Tube	1.Messung (ng/µL)	2. Messung (ng/µL)	Mittelwert (ng/µL)
А	B3	140	530	330
A	B10	220	640	430
В	C2	314	315	314,5
В	B8	216	240	228
С	C5	224	820	522
С	9B	226	260	243
D	2C	166	315	240,5

Da die zweite Messung meistens sehr unterschiedliche Konzentrationen zur ersten Messung ergab, wurde jeder 8er-Streifen durch Schnippen mit den Fingern an den Tubes durchmischt, um so für eine bessere Vermischung in den Tubes zu sorgen. In Abbildung 11 zeigen die schwarzen Felder an, von welchen Wells das Volumen halbiert werden musste, um eine Überfüllung zu vermeiden.

Platte A	1											
Add µl TE (or water to	achieve de	sired conce	entration of		50	ng/µl					
\diamond	1	2	3	4	5	6	7	8	9	10	11	12
A	-105	-106	12	43	-63	-10	154	59	55	146	-18	27
В	-105	-105	-19	41	29	15	79	40	39	28	146	-2
С	49	146	-56	24	2	23	111	37	45	1	128	0
D	56	68	-77	135	52	69	84	33	69	81	176	28
E	6	2	14	17	-13	-9	7	56	74	115	-105	6
F	18	9	19	-103	28	86	65	87	111	13	-104	-104
G	29	-70	69	46	57	37	-104	136	172	13	-103	-105
н	-58	55	2	50	-11	92	14	82	1	24	-95	-105
Diatta D												
Add ut TE	or water to	achieve de	alzad aanaa	ntration of		50	malul					
	or water to	achieve de	sired conce	And all of	6	50	ng/µi	0	a	10	44	12
A	47	-106	-105	-86	53	164	26	32	484	90	186	196
B	15	-105	-106	100	147	90	63	31	202	98	245	43
c	94	111	120	-6	-106	184	76	98	185	239	256	11
D	20	119	-106	-35	-106	166	100	245	77	147	199	70
E	104	40	49	-50	104	42	163	138	247	424	210	-106
F	74	119	64	118	201	103	136	282	-107	72	133	-106
G	82	198	49	3	35	194	46	133	-105	177	75	-100
н	83	-106	59	-105	19	136	108	161	-104	-74	210	-100
Platte C												
Add µl TE (or water to	achieve de	sired conce	entration of		50	ng/µl					
\diamond	1	2	3	4	5	6	7	8	9	10	11	12
A	-101	-101	31	45	0	113	117	51	17	-8	36	25
В	-99	-100	103	-95	-4	34	27	-100	38	58	60	-2
C	26	-100	-3	129	18	100	67	63	10	60	57	-99
D	-42	125	-97	42	107	101	23	15	84	11	-50	-100
E	-56	12	-35	13	161	120	36	184	70	124	165	-99
F	-42	11 67	61	-100	61	83	-100	12	4	5/	223	-101
ы Ц	-21	424	90	-14	4	40	37	32	63	117	47	-100
n	10	131	/0	40	40		20	20	00		47	-100
Platte D												
Add ul TE	or water to	achieve de	sired conce	intration of		50	na/ul					
	1	2	3	4	5	6	7	8	9	10	11	12
A	-99	-99	325	-100	-100	-101	-101	-96	-101	-101	-101	-99
в	-100	-100	91	-100	-102	-101	-102	-101	-102	-102	-102	-100
С	-32	20	270	-101	-102	-100	-102	-102	-99	-102	-102	-101
D	51	118	242	-100	-101	-101	-100	-101	-100	-103	-102	-101
E	-33	179	86	-102	-101	-100	-102	-101	-102	-101	-102	-102
F	25	174	160	-102	-100	-102	-101	-100	-101	-102	-103	-101
G	-101	-98	131	-103	-102	-101	-100	-98	-101	-102	-103	-102

Abbildung 11: Übersicht über betroffene Wells (schwarz), welche mehr als 200 µL dH₂O benötigen würden, um eine DNA-Konzentration von 50 ng/µL zu erreichen. Von diesen Wells musste vor Zugabe von dH₂O durch den Pipettierroboter die Hälfte des Inhalts (50 µL) entfernt und das Volumen, welches hinzugefügt werden soll halbiert werden, um eine Überfüllung zu vermeiden. Die Farbcodierung gibt einen Überblick über die notwendigen Volumina zur Verdünnung: rot bedeutet mehr und grün weniger Zugabe.

3.2 Ergebnisse der KASP-Genotypisierung

Nach Bewertung der Messergebenisse wurden von den insgesamt 269 umgetopften Pflanzen der BC₂F₂-Generation 163 homozygot-resistente Pflanzen für eine weitere Züchtung ausgewählt und 99 nicht resistente Pflanzen wurden verworfen. Sieben Pflanzen starben nach dem Umtopfen und von zwei Pflanzen ging das DNA-Pellet verloren. Von den 40 Pflanzen, die bei der Vorselektierung zu klein für eine Probennahme waren und bei der Validierung mitgetestet wurden, wurden nur fünf Pflanzen positiv selektiert und die übrigen 35 verworfen. Abbildung 12 gibt einen Überblick über die Reduktion der Anzahl an BC₂F₂-Pflanzen nach Durchführung der markergestützten Selektierung und anschließende Validierung die Anzahl der Pflanzen deutlich gesunken ist und somit in weiterer Folge eine effektivere Züchtung stattfinden kann.

Anzahl der selektierten Pflanzen mit Steinbrand-Resistenz

Abbildung 12: Übersicht über die Reduktion der Anzahl an Pflanzen der BC₂F₂-Generation nach der markergestützten Selektion mittels KASP-Genotypisierung.

Bei der Vorselektierung war es wichtig, möglichst viele potenziell homozygot-resistente Pflanzen zu selektieren, um zu vermeiden, dass möglicherweise brauchbares Material verworfen wird. Mit der anschließenden Validierung konnte genauer und gezielter selektiert werden, was sich darin widerspiegelt, dass die Anzahl an positiv selektierten Pflanzen nochmals deutlich reduziert wurde. Bei der ersten Analyse der Messerergebnisse durch die Software Bio-Rad CFX Maestro mussten vereinzelt durch die Software zugeordnete Datenpunkte (Allel 1, Allel 2, Heterozygote bzw. No Call) manuell geändert werden, da die Zuordnung durch dieses System nicht immer 100% zuverlässig ist. Nach Durchsicht aller Platten wurde festgestellt, dass alle KASP-Marker bis auf K1, K23 und K26 zufriedenstellende Ergebnisse erbrachten. In Abbildung 13 ist ein Beispiel einer Auftrennung durch die Software bei den KASP-Markern K47 und K51 auf der PCR-Platte C zu sehen, welche gut funktioniert hat.

Abbildung 13: Ergebnis der Auswertung der KASP-Marker K47 und K51 von Platte C durch die Software Bio-Rad CFX Maestro 1.0. Im Diagramm steht ein Datenpunkt für ein Well in der PCR-Platte: blau bedeutet eine Zuordnung zu Allel 2 (in diesem Fall positiv selektiert); orange bedeutet eine Zuordnung zu Allel 1 (in diesem Fall negativ selektiert); grün bedeutet, dass beide Fluoreszenzfarbstoffe in annähernd gleicher Intensität detektiert wurden, die Probe also heterozygot ist und schwarz steht für leere Wells bzw. sehr geringe RFU-Werte. Die Tabelle unter der Grafik spiegelt die PCR-Platte wider: Ein Feld entspricht einem Well in der Platte. Die farbig markierten Felder werden im Diagramm angezeigt.

Die resistenten Checks erbrachten nicht immer die erwarteten Ergebnisse. Ein Grund dafür könnte sein, dass die DNA der Checks nicht frisch extrahiert war und schon mehrmals aufgetaut und wieder eingefroren worden war, wodurch die Qualität der DNA sinkt. Jedoch war es mit Hilfe des anfälligen Checks möglich, das resistente Allel je Marker herauszufinden und die DNA-Proben nach ihren Allel-Kombinationen richtig zuzuordnen.

Die Chance, eine für einen Resistenzort homozygote Pflanze zu finden, betrug 25%. Wenn zwei QTL in einer einzigen Linie ausgewählt werden sollen, betrug die Chance, eine homozygote Resistenz für beide Loci zu finden, nur 12,5% und wird folglich für drei verschiedene Resistenz-QTL weiter auf 6,25% reduziert. Die erwartete Anzahl von Pflanzen, die für alle Resistenz-QTL homozygot resistente Allele tragen sollten und die tatsächliche Anzahl ausgewählter homozygot resistenter Linien sind in Tabelle 10 angegeben.

Tabelle 10: Anzahl der erwarteten und tatsächlich resultierten homozygot-resistenten BC₂F₂-Pflanzen aus 54 BC₂F₁-Linien mit Informationen über Resistenz-QTL und -Donor. Bei einem Resistenz-QTL werden 25% resistente Pflanzen erwarten, bei zwei Resistenz-QTL 12,5% und bei drei verschiedenen Resistenz-QTL folglich nur mehr 6,25%. Für die eingeklammerten QTL sind keine polymorphen Marker verfügbar, mit denen das Vorhandensein des QTL in diesem Pflanzenmaterial getestet werden könnte.

BC ₂ F ₁	QTL	Resistenz- Donor	Anzahl BC ₂ F ₂ Nachkommen	Erwartet resistent	Tatsächlich resistent
DD.1_12	1A, 1B	Blizzard	10	1,25	2
DD.1_13	1A, 7A	Blizzard	21	2,63	1
DD.10_12	1A, 1B	Blizzard	33	4,13	0
DD.11_6	1A, 1B	Blizzard	48	6,00	5
DD.16_3	1A, 1B, 7A	Blizzard	48	4,00	4
DD.17_8	1A, 1B	Blizzard	48	6,00	2
DD.19_3	1A, 1B	Blizzard	48	6,00	2
DD.2_12	1A, 1B, 7A	Blizzard	49	4,08	1
DD.2_3	1A, 1B	Blizzard	22	2,75	1
DD.20_8	1A, 1B	Blizzard	48	6,00	4
DD.23_11	1A, 1B	Blizzard	26	3,25	3
DD.23_3	1A, 1B	Blizzard	48	6,00	3
DD.23_4	1A, 1B, 7D	Blizzard	28	2,33	2
DD.24_7	1A, 7D	Blizzard	48	6,00	3
DD.25_8	1A, 1B	Blizzard	26	3,25	2
DD.25_9	1A, 7D	Blizzard	48	6,00	4
DD.27_4	1A, 7D	Blizzard	48	6,00	3
DD.3_12	1B, 7A	Blizzard	30	3,75	2
DD.32_5	1B, 7A, 7D	Blizzard	48	4,00	4
DD.32_9	1A, 7A, 7D	Blizzard	31	2,58	3
DD.33_6	1B, 7A, 7D	Blizzard	48	4,00	2

BC ₂ F ₁	QTL	Resistenz- Donor	Anzahl BC ₂ F ₂ Nachkommen	Erwartet resistent	Tatsächlich resistent
DD.34_3	1A, 7A	Blizzard	48	6,00	5
DD.35_1	1B, 7D	Blizzard	48	6,00	1
DD.4_3	1A, 7A	Blizzard	48	6,00	3
DD.40_4	1A, 1B	Blizzard	17	2,13	1
DD.41_9	1A, 7D	Blizzard	48	6,00	1
DD.49_15	1A, 1B	Bonneville	35	4,38	4
DD.49_21	1A, 1B	Bonneville	36	4,50	3
DD.50_15	1A, 1B	Bonneville	48	6,00	1
DD.51_8	1A, 1B	Bonneville	35	4,38	1
DD.52_10	1A, 1B	Bonneville	35	4,38	2
DD.52_5	1A, 1B	Bonneville	48	6,00	0
DD.54_13	1A, 1B	Bonneville	48	6,00	5
DD.54_14	1A, 1B	Bonneville	48	6,00	4
DD.6_14	1A, 1B, 7A	Blizzard	48	4,00	3
DD.62_10	7D	PI 119333	48	12,00	7
DD.62_7	7D	PI 119333	48	12,00	5
DD.62_8	7D	PI 119333	28	7,00	0
DD.63_2	7D	PI 119333	20	5,00	0
DD.63_9	7D	PI 119333	48	12,00	7
DD.64_4	7D	PI 119333	48	12,00	8
DD.64_9	7D	PI 119333	48	12,00	6
DD.65_6	7D	PI 119333	48	12,00	8
DD.65_7	7D	PI 119333	48	12,00	0
DD.68_6	4B, 7D	PI 119333	46	5,75	3
DD.69_4	4B, 7D	PI 119333	48	6,00	5
DD.70_1	(4B,) 7D	PI 119333	32	4,00	8
DD.70_11	(4B,) 7D	PI 119333	44	5,50	5
DD.70_2	(4B,) 7D	PI 119333	48	6,00	2
DD.70_9	(4B,) 7D	PI 119333	11	1,38	1
DD.71_1	4B, 7D	PI 119333	48	6,00	3
DD.73_6	4B, 7D	PI 119333	48	6,00	4
DD.9_12	1A, 1B, 7A	Blizzard	14	1,17	1
DD.9_7	1A, 1B	Blizzard	48	6,00	3
Summe an s	163				

Fortsetzung Tabelle 10

Bei der Anzahl an erwartet resistenten Pflanzen handelt es sich um theoretische Zahlenwerte, welche nur bei einer unendlich großen Anzahl an Pflanzen zutreffen würden. In diesem Versuch standen jedoch nur maximal 49 Pflanzen je Linie zur Verfügung, wodurch es sich bei diesen Zahlenwerten in Wirklichkeit um einen Schätzwert handelt. In Tabelle 10 zeigt sich, dass manche Linien komplett wegselektiert wurden und der geschätzte Wert fast nie erreicht wurde. Ein Grund für die Ausscheidung einer gesamten Linie ist, dass bei der Generation BC₂F₁ nach heterozygoten Pflanzen selektiert worden ist. Daher bestand das Risiko, dass die Resistenz bei der Generation BC₂F₂ nicht immer weitervererbt wurde. Dennoch konnte bei 90% der Linien zumindest eine Pflanze positiv selektiert werden.

Eine Übersicht aller positiv getesteten Pflanzen mit den jeweils verwendeten KASP-Markern befindet sich im Anhang in Tabelle 17 und alle negativ getesteten Pflanzen sind in Tabelle 18 im Anhang aufgelistet.

Von jenen zwei Pflanzen (EE.62_10-7 und EE.69_4-31), deren DNA-Pellet wahrscheinlich während einem Waschschritt bei der DNA-Extraktion verloren ging, wurde erneut eine DNA-Extraktion und eine KASP-Genotypisierung durchgeführt (Durchführung wie im Kapitel 2.2 beschrieben). Nach Auswertung der Ergebnisse konnten beide Pflanzen positiv selektiert werden (siehe Tabelle 17 im Anhang).

Obwohl für jeden Resistenz-QTL je Chromosom Flanking-Markers ausgewählt wurden, kann es dennoch vorkommen, dass innerhalb der QTL-Region zwischen den beiden SNP-Positionen Rekombinationen stattgefunden haben, die mit diesem System jedoch nicht erkannt werden können. Selbst jene Marker, die einen QTL direkt flankieren, sind möglicherweise nicht eng genug mit dem Gen von Interesse verbunden und können nicht als diagnostische Marker angesehen werden. Aus diesem Grund ist es wichtig, Infektionsversuche am Feld durchzuführen, um eine tatsächliche Resistenz gegen Steinbrand zu bestätigen.

3.3 Zusammenfassung und Ausblick

Durch die MAS mittels KASP-Genotypisierung konnten aus 2165 Pflanzen der BC₂F₂-Generation 163 Pflanzen positiv auf eine Steinbrand-Resistenz selektiert werden. Mit diesem System ist es möglich eine effektivere Züchtung durch eine deutliche Reduktion der Anzahl an wahrscheinlich resistenten Pflanzen zu ermöglichen, welche durch Feldversuche auf ihre tatsächliche Resistenz getestet werden müssen.

In weiterer Folge wird mit der BC₂F₂-Generation eine Selbstbefruchtung durchgeführt, um Samen einer BC₂F₃-Generation zu erhalten, in welcher die Resistenzloci im Genom fixiert sind. Ein Teil dieses Saatgutes wird für einen Vermehrungsversuch verwendet, um Saatgut für weitere Versuche in den folgenden Jahren zu generieren. Das übrige Saatgut wird mit Sporenmaterial inokuliert und in einem Infektionsversuch am Feld unter den regionalen klimatischen Bedingungen auf seine Krankheitsresistenz getestet.

4. Literaturverzeichnis

Aufhammer, G. and Fischbeck, G. (1973) 'Getreide: Produktionstechnik und Verwertung', in *Getreide: Produktionstechnik und Verwertung*. Frankfurt: DLG-Verlag, pp. 75–154. Available at: https://books.google.at/books?id=QYIQAQAAMAAJ.

Bagge, M., Xia, X. and Lübberstedt, T. (2007) 'Functional markers in wheat', *Current Opinion in Plant Biology*, 10(2), pp. 211–216. doi: 10.1016/j.pbi.2007.01.009.

Bernardo, R. (2010) *Breeding for quantitative traits in plants*. Second Edition. Minnesota: Stemma Press.

Bokore, F. E., Cuthbert, R. D., Knox, R. E., Singh, A., Campbell, H. L., Pozniak, C. J., N'Diaye, A., Sharpe, A. G. and Ruan, Y. (2019) 'Mapping quantitative trait loci associated with common bunt resistance in a spring wheat (Triticum aestivum L.) variety Lillian', *Theoretical and Applied Genetics*. Springer Berlin Heidelberg, 132(11), pp. 3023–3033. doi: 10.1007/s00122-019-03403-3.

Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G. L. A., D'Amore, R., Allen, A. M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., Kay, S., Waite, D., Trick, M., Bancroft, I., Gu, Y., Huo, N., Luo, M.-C., Sehgal, S., Gill, B., Kianian, S., Anderson, O., Kersey, P., Dvorak, J., McCombie, W. R., Hall, A., Mayer, K. F. X., Edwards, K. J., Bevan, M. W. and Hall, N. (2012) 'Analysis of the bread wheat genome using whole-genome shotgun sequencing', *Nature*, 491(7426), pp. 705–710. doi: 10.1038/nature11650.

Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B. and Pang, E. C. K. (2005) 'An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts', *Euphytica*, 142(1–2), pp. 169–196. doi: 10.1007/s10681-005-1681-5.

Dumalasová, V., Simmonds, J., Bartoš, P. and Snape, J. (2012) 'Location of genes for common bunt resistance in the European winter wheat cv. Trintella', *Euphytica*, 186(1), pp. 257–264. doi: 10.1007/s10681-012-0671-7.

Farokhzadeh, S. and Fakheri, B. (2014) 'Marker-assisted selection for disease resistance: applications in breeding'. International Journal of Agriculture and Crop Sciences, 7, pp. 1392–1405.

Fofana, B., Humphreys, D. G., Cloutier, S., McCartney, C. A. and Somers, D. J. (2008) 'Mapping quantitative trait loci controlling common bunt resistance in a doubled haploid population derived from the spring wheat cross RL4452 x AC Domain', *Molecular Breeding*, 21(3), pp. 317–325. doi: 10.1007/s11032-007-9131-9. Gassner, G. (1918) 'Beiträge zur physiologischen Charakteristik sommer und winteranueller Gewächse insbesondere der Getreidepflanzen', *Zeitschr. Botanik*, 10, pp. 417–480.

Available at: https://www.biodiversitylibrary.org/item/52688#page/427/mode/1up.

Gaudet, D. A. and Puchalski, B. L. (1989) 'Races of common bunt (Tilletia caries and T. foetida) of wheat in western Canada', *Canadian Journal of Plant Pathology*. Taylor & Francis Group, 11(4), pp. 415–418. doi: 10.1080/07060668909501089.

Goates, B. J. and Bockelman, H. E. (2012) 'Identification of new sources of high levels of resistance to dwarf bunt and common bunt among winter wheat landraces in the USDA-ARS national small grains collection', *Crop Science*, 52(6), pp. 2595–2605. doi: 10.2135/cropsci2012.01.0060.

Hoffmann, J. A. (1982) 'Bunt of Wheat', *Plant Disease*. Scientific Societies, 66(1), p. 979. doi: 10.1094/pd-66-979.

IWGSC, Appels, R., Eversole, K., Feuillet, C., Keller, B., Rogers, J., Stein, N., Pozniak, C. J., Choulet, F., Distelfeld, A., Poland, J., Ronen, G., Barad, O., Baruch, K., Keeble-Gagnère, G., Mascher, M., Ben-Zvi, G., Josselin, A. A., Himmelbach, A., Balfourier, F., Gutierrez-Gonzalez, J., Hayden, M., Koh, C. S., Muehlbauer, G., Pasam, R. K., Paux, E., Rigault, P., Tibbits, J., Tiwari, V., Spannagl, M., Lang, D., Gundlach, H., Haberer, G., Mayer, K. F. X., Ormanbekova, D., Prade, V., Wicker, T., Swarbreck, D., Rimbert, H., Felder, M., Guilhot, N., Kaithakottil, G., Keilwagen, J., Leroy, P., Lux, T., Twardziok, S., Venturini, L., Juhasz, A., Abrouk, M., Fischer, I., Uauy, C., Borrill, P., Ramirez-Gonzalez, R. H., Arnaud, D., Chalabi, S., Chalhoub, B., Cory, A., Datla, R., Davey, M. W., Jacobs, J., Robinson, S. J., Steuernagel, B., Van Ex, F., Wulff, B. B. H., Benhamed, M., Bendahmane, A., Concia, L., Latrasse, D., Alaux, M., Bartoš, J., Bellec, A., Berges, H., Doležel, J., Frenkel, Z., Gill, B., Korol, A., Letellier, T., Olsen, O. A., Šimková, H., Singh, K., Valárik, M., Van Der Vossen, E., Vautrin, S., Weining, S., Fahima, T., Glikson, V., Raats, D., Toegelová, H., Vrána, J., Sourdille, P., Darrier, B., Barabaschi, D., Cattivelli, L., Hernandez, P., Galvez, S., Budak, H., Jones, J. D. G., Witek, K., Yu, G., Small, I., Melonek, J., Zhou, R., Belova, T., Kanyuka, K., King, R., Nilsen, K., Walkowiak, S., Cuthbert, R., Knox, R., Wiebe, K., Xiang, D., Rohde, A., Golds, T., Čížkova, J., Akpinar, B. A., Biyiklioglu, S., Gao, L., N'Daiye, A., Číhalíková, J., Kubaláková, M., Šafář, J., Alfama, F., Adam-Blondon, A. F., Flores, R., Guerche, C., Loaec, M., Quesneville, H., Sharpe, A. G., Condie, J., Ens, J., Maclachlan, R., Tan, Y., Alberti, A., Aury, J. M., Barbe, V., Couloux, A., Cruaud, C., Labadie, K., Mangenot, S., Wincker, P., Kaur, G., Luo, M., Sehgal, S., Chhuneja, P., Gupta, O. P., Jindal, S., Kaur, P., Malik, P., Sharma, P., Yadav, B., Singh, N. K., Khurana, J. P., Chaudhary, C., Khurana, P., Kumar, V., Mahato, A.,

Mathur, S., Sevanthi, A., Sharma, N., Tomar, R. S., Holušová, K., Plíhal, O., Clark, M. D., Heavens, D., Kettleborough, G., Wright, J., Balcárková, B., Hu, Y., Ravin, N., Skryabin, K., Beletsky, A., Kadnikov, V., Mardanov, A., Nesterov, M., Rakitin, A., Sergeeva, E., Kanamori, H., Katagiri, S., Kobayashi, F., Nasuda, S., Tanaka, T., Wu, J., Cattonaro, F., Jiumeng, M., Kugler, K., Pfeifer, M., Sandve, S., Xun, X., Zhan, B., Batley, J., Bayer, P. E., Edwards, D., Hayashi, S., Tulpová, Z., Visendi, P., Cui, L., Du, X., Feng, K., Nie, X., Tong, W. and Wang, L. (2018) 'Shifting the limits in wheat research and breeding using a fully annotated reference genome', *Science*, 361(6403). doi: 10.1126/science.aar7191.

LGC (2020) KASP Genotyping.

Available at: http://info.biosearchtech.com/agrigenomics-pcr-based-kaspgenotyping?gclid=EAIaIQobChMIn-bPtsHy6QIVxIayCh3FpAQuEAAYASAAEgKm-PD_BwE

Lv, C., Song, Y., Gao, L., Yao, Q., Zhou, R., Xu, R. and Jia, J. (2014) 'Integration of QTL detection and marker assisted selection for improving resistance to Fusarium head blight and important agronomic traits in wheat', *Crop Journal*. Elsevier B.V., 2(1), pp. 70–78. doi: 10.1016/j.cj.2013.10.004.

Matanguihan, J. B., Murphy, K. and Jones, S. S. (2011) 'Control of common bunt in organic wheat', *Plant Disease*, pp. 92–103. doi: 10.1094/PDIS-09-10-0620.

Miedaner, T. and Korzun, V. (2012) 'Marker-Assisted Selection for Disease Resistance in Wheat and Barley Breeding', *Phytopathology*, 102, pp. 560–566. doi: 10.1094/PHYTO-05-11-0157.

Müllner, A. E. (2020) *Dissertation in preparation*.

Muranty, H., Troggio, M., Sadok, I. Ben, Rifai, M. Al, Auwerkerken, A., Banchi, E., Velasco, R., Stevanato, P., Eric Van De Weg, W., Guardo, M. Di, Kumar, S., Laurens, F. and Bink, M. C. A. M. (2015) 'Accuracy and responses of genomic selection on key traits in apple breeding', *Horticulture Research*, 2. doi: 10.1038/hortres.2015.60.

Rifkin, S. (2012) *Quantitative Trait Loci (QTL): Methods and Protocols*. New York: Springer Science+Business Media. doi: 10.1007/978-1-61779-785-9.

Semagn, K., Babu, R., Hearne, S. and Olsen, M. (2014) 'Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): Overview of the technology and its application in crop improvement', *Molecular Breeding*, 33(1), pp. 1–14. doi: 10.1007/s11032-013-9917-x.

Singh, A., Knox, R. E., DePauw, R. M., Singh, A. K., Cuthbert, R. D., Kumar, S. and Campbell, H. L. (2016) 'Genetic mapping of common bunt resistance and plant height QTL in wheat', *Theoretical and Applied Genetics*. Springer Berlin Heidelberg, 129(2), pp. 243–256. doi: 10.1007/s00122-015-2624-8.

Souza, E., Windes, J. M., Sunderman, D. W., Whitmore, J., Kruk, M. and Goates, B. J. (1995) 'Registration of "Bonneville" Hard Red Winter Wheat', *Crop Science*, 35(4), p. cropsci1995.0011183X003500040072x.

doi: 10.2135/cropsci1995.0011183X003500040072x.

Statista (2020) Erntemenge von Weizen weltweit in den Jahren 2000/2001 bis 2019/2020* (in Millionen Tonnen), USDA Foreign Agricultural Service. Available at: https://de-statista-

com.wn.idm.oclc.org/statistik/daten/studie/153032/umfrage/erzeugungsmenge-vonweizen-weltweit-seit-1990/ (Accessed: 24 March 2020).

Steffan, P. M., Torp, A. M., Borgen, A., Backes, G. and Rasmussen, S. K. (2017) 'Mapping of common bunt resistance gene Bt9 in wheat', *Theoretical and Applied Genetics*. Springer Berlin Heidelberg, 130(5), pp. 1031–1040. doi: 10.1007/s00122-017-2868-6.

Wang, R., Gordon, T., Hole, D., Zhao, W., Isham, K., Bonman, J. M., Goates, B. and Chen, J. (2019) 'Identification and assessment of two major QTLs for dwarf bunt resistance in winter wheat line "IDO835", *Theoretical and Applied Genetics*. Springer Berlin Heidelberg, 132(10), pp. 2755–2766. doi: 10.1007/s00122-019-03385-2.

Wang, S., Knox, R. E., Depauw, R. M., Clarke, F. R., Clarke, J. M. and Thomas, J. B. (2009) 'Markers to a common bunt resistance gene derived from "Blizzard" wheat (Triticum aestivum L.) and mapped to chromosome arm 1BS', *Theoretical and Applied Genetics*, 119(3), pp. 541–553. doi: 10.1007/s00122-009-1063-9.

Zou, J., Semagn, K., Chen, H., Iqbal, M., Asif, M., N'Diaye, A., Navabi, A., Perez-Lara, E., Pozniak, C., Yang, R. C., Graf, R. J., Randhawa, H. and Spaner, D. (2017) 'Mapping of QTLs associated with resistance to common bunt, tan spot, leaf rust, and stripe rust in a spring wheat population', *Molecular Breeding*. Molecular Breeding, 37(12). doi: 10.1007/s11032-017-0746-1.

5. Anhang

zu Kapitel 2.1: Entwicklung der Backcross-Generationen 1 und 2

Tabelle 11: Resistenzquellen für Ausgangskreuzungen mit Elitesorten mit Informationen über Anzahl der Resistenz-QTL, Position der QTL im Genom und Quelle der Resistenzen.

Resistenz-Donor	Anzahl an QTL	QTL auf Chromosom	Abstammung der Resistenz von
S5.58	4	1A, 1B, 7A, 7D	Blizzard
P101.81	2	1A, 1B	Bonneville
P101.30	3	1A, 1B, 7A	Blizzard
P106.30	2	4B, 7D	PI119333
P106.24	2	4B, 7D	PI119333

Tabelle 12: Ausgangskreuzungen zwischen Elitesorten und Resistenz-Donoren mit Informationen über vorhandene Resistenz-QTL bei den Nachkommen (F1) und von wem die Elitesorte entwickelt wurde.

Elitesorte	gekreuzt mit Resistenz-Donor	vorhandener Resistenz QTL in F1	Elitesorte entwickelt von
1351.5.10_P2	S5.58, P106.30	1A, 1B, 4B, 7A, 7D	nicht bekannt
1325.10.1_P1	S5.58	1A, 1B, 7A, 7D	nicht bekannt
Midas	S5.58	1A, 1B, 7A, 7D	Probstdorfer Saatzucht
Tommi	S5.58	1A, 1B, 7A, 7D	Nordsaat Saatzuchtgesellschaft
Spontan	S5.58	1A, 1B, 7A, 7D	Limagrain GmbH
Genius	S5.58	1A, 1B, 7A, 7D	Saatbau Linz eGen
Kolompos	S5.58	1A, 1B, 7A, 7D	Agricultural Research Institute Of The Hungarian Academy Of Sciences, Martonvásár
Arnold	P101.81	1A, 1B	Probstdorfer Saatzucht
Tillliko	P101.30	1A, 1B, 7A	Cultivari gGmbH, Darzau
Amicus	P106.30	4B, 7D	Saatbau Linz eGen
Саро	P106.24	4B, 7D	Probstdorfer Saatzucht

Kreuzungs- name (F1)	Stammbaum	gekreuzt mit Elitesorte	Resistenz- quelle	Resistenz-QTL
CC11	S5.58/1351.5.10_P2	SZD8263	Blizzard	1A 1B 7A
CC13	S5.58/1351.5.10_P2	Tillstop	Blizzard	1A 1B 7D
CC1	S5.58/1351.5.10_P2	Christoph	Blizzard	1A 1B 7A 7D
CC12	S5.58/1325.10.1_P1	SZD8263	Blizzard	1A 1B
CC10	S5.58/Midas	SZD8263	Blizzard	1A 1B 7A
CC19	S5.58/Midas	20812-2-2	Blizzard	1A 1B 7A
CC3	S5.58/Midas	Arminius	Blizzard	1A 1B 7D
CC21	S5.58/Tommi	Nemchinovskaja17	Blizzard	1A 1B 7D
HG1	S5.58/Spontan	Tillstop	Blizzard	1A 1B 7A 7D
HG4	S5.58/Spontan	Tobias	Blizzard	1A 1B 7D
HG6	S5.58/Genius	Ehogold	Blizzard	1A 1B 7D
HG3	S5.58/Midas	Kolompos	Blizzard	1A 1B 7A
CC17	P101.81/Arnold	1325.1.10_P1	Bonneville	1A 1B
CC18	P101.81/Arnold	1314.3.11.P1	Bonneville	1A 1B
CC20	P101.81/Arnold	Akteur-M56	Bonneville	1A 1B
CC5	P101.81/Arnold	Arminius	Bonneville	1A 1B
CC7	P101.81/Arnold	Aurelius	Bonneville	1A 1B
CC16	P106.30/Amicus	Tillexus	PI119333	4B 7D
CC6	P106.30/1351.5.10_P2	Arminius	PI119333	7D
CC9	P106.30/1351.5.10_P2	Aurelius	PI119333	7D
HG7	P106.24/Capo	Bernstein	PI119333	7D

Tabelle 13: Kreuzung (BC₁) zwischen Nachkommen der Ausgangskreuzung (F₁) und anfälligen Elitesorten mit Informationen über Stammbaum, Resistenz-Quelle und die zu erwartenden Resistenz-QTL. Tabelle 14: Rückkreuzung der BC₁F₁-Linie mit Elitesorten für die Generation BC₂F₁. In den Linien kommen 3 verschiedene Resistenzquellen vor: Blizz = Blizzard, Bonv = Bonneville und PI119333. Die Tabelle enthält den Stammbaum der BC₁F₁ Linien und voraussichtlich enthaltene Resistenz-QTL. Die Bezeichnung der BC₁F₁-Linien setzt sich aus dem Kreuzungsnamen (F₁) von Tabelle 7 und der selektierten Pflanze je Linie zusammen.

BC1F1 (Vater)	Stammbaum BC1F1	Resistenz- quelle	QTL	Elitesorte (Mutter)	BC ₂ F ₁
CC10-1	SZD8263//Midas/S5.58	Blizz	1A 1B 7A	Aurelius	DD-1
CC10-1	SZD8263//Midas/S5.58	Blizz	1A 1B 7A	SZD8263	DD-2
CC10-5	SZD8263//Midas/S5.58	Blizz	1A 1B 7A	Alessio	DD-3
CC10-5	SZD8263//Midas/S5.58	Blizz	1A 1B 7A	Christoph	DD-4
CC11-2	S5.58/1351.5.10_P2//SZD8263	Blizz	1A 1B 7A	Alessio	DD-6
CC11-5	S5.58/1351.5.10_P2//SZD8263	Blizz	1A 1B 7A	Adesso	DD-9
CC11-5	S5.58/1351.5.10_P2//SZD8263	Blizz	1A 1B 7A	Arminius	DD-10
CC11-5	S5.58/1351.5.10_P2//SZD8263	Blizz	1A 1B 7A	W12.207.2.3.9	DD-11
CC19-1	20812-2-2//Midas/S5.58	Blizz	1A 1B 7A 7D	Aurelius	DD-16
CC19-1	20812-2-2//Midas/S5.58	Blizz	1A 1B 7A 7D	Christoph	DD-17
CC19-1	20812-2-2//Midas/S5.58	Blizz	1A 1B 7A 7D	Ehogold	DD-18
CC19-1	20812-2-2//Midas/S5.58	Blizz	1A 1B 7A 7D	SZD8263	DD-19
CC19-1	20812-2-2//Midas/S5.58	Blizz	1A 1B 7A 7D	W10.115.4.2.9	DD-20
CC21-1	S5.58/Tommi//Nemchinovskaja17	Blizz	1A 1B 7A 7D	Alessio	DD-22
CC21-1	S5.58/Tommi//Nemchinovskaja17	Blizz	1A 1B 7A 7D	Arminius	DD-23
CC21-1	S5.58/Tommi//Nemchinovskaja17	Blizz	1A 1B 7A 7D	W10.115.4.2.9	DD-24
CC21-1	S5.58/Tommi//Nemchinovskaja17	Blizz	1A 1B 7A 7D	W6.175.2.5.9	DD-25
CC3-12	Arminius//Midas/S5.58	Blizz	1A 1B 7D	1314.3.11.P1	DD-27
HG1-6	Spontan/S5.58//SZD5944	Blizz	1A 1B 7A 7D	Alessio	DD-32
HG1-6	Spontan/S5.58//SZD5944	Blizz	1A 1B 7A 7D	Christoph	DD-33
HG1-6	Spontan/S5.58//SZD5944	Blizz	1A 1B 7A 7D	SZD8263	DD-34
HG1-6	Spontan/S5.58//SZD5944	Blizz	1A 1B 7A 7D	W10.115.4.2.9	DD-35
HG4-7	Spontan/S5.58//Tobias	Blizz	1A 1B 7D	Aurelius	DD-40
HG4-7	Spontan/S5.58//Tobias	Blizz	1A 1B 7D	W10.193.1.1.9	DD-41
CC17-12	P101.81/Arnold//1325.1.10.P1	Bonv	1A 1B	Arminius	DD-45
CC17-12	P101.81/Arnold//1325.1.10.P1	Bonv	1A 1B	Christoph	DD-46
CC20-5	P101.81/Arnold//Akteur-M56	Bonv	1A 1B	Adesso	DD-49
CC20-5	P101.81/Arnold//Akteur-M56	Bonv	1A 1B	Alessio	DD-50
CC20-5	P101.81/Arnold//Akteur-M56	Bonv	1A 1B	Christoph	DD-51
CC20-5	P101.81/Arnold//Akteur-M56	Bonv	1A 1B	SZD8263	DD-52
CC20-6	P101.81/Arnold//Akteur-M56	Bonv	1A 1B	Turanus	DD-54
CC6-5	Arminius//P106.30/1351.5.10_P2	PI119333	4B 7D	Adesso	DD-62
CC6-5	Arminius//P106.30/1351.5.10_P2	PI119333	4B 7D	Alessio	DD-63
CC6-5	Arminius//P106.30/1351.5.10_P2	PI119333	4B 7D	Christoph	DD-64
CC9-13	Aurelius//P106.30/1351.5.10_P2	PI119333	4B 7D	1314.3.11.P1	DD-65
CC9-13	Aurelius//P106.30/1351.5.10_P2	PI119333	4B 7D	Adesso	DD-66
CC9-13	Aurelius//P106.30/1351.5.10_P2	PI119333	4B 7D	Alessio	DD-67
CC9-13	Aurelius//P106.30/1351.5.10_P2	PI119333	4B 7D	Arminius	DD-68
CC9-13	Aurelius//P106.30/1351.5.10_P2	PI119333	4B 7D	W10.115.4.2.9	DD-69

BC1F1 (Vater)	Stammbaum BC1F1	Resistenz- quelle	QTL	Elitesorte (Mutter)	BC ₂ F ₁
CC9-13	Aurelius//P106.30/1351.5.10_P2	PI119333	4B 7D	W12.207.2.3.9	DD-70
CC9-5	Aurelius//P106.30/1351.5.10_P2	PI119333	4B 7D	Aurelius	DD-71
CC9-5	Aurelius//P106.30/1351.5.10_P2	PI119333	4B 7D	Christoph	DD-72
CC9-5	Aurelius//P106.30/1351.5.10_P2	PI119333	4B 7D	SZD8263	DD-73
CC9-5	Aurelius//P106.30/1351.5.10_P2	PI119333	4B 7D	W10.193.1.1.9	DD-74
CC9-5	Aurelius//P106.30/1351.5.10_P2	PI119333	4B 7D	W6.175.2.5.9	DD-75

Tabelle 15: Auswahl von 54 BC₂F₁-Linien für die Selbstbefruchtung und daraus resultiernde Produktion von BC₂F₂-Linien. Spalten zwei bis vier enthalten Informationen über Resistenz-QTL, Stammbaum und Anzahl an angebauten Samen von jeder BC₂F₁-Linie. Die BC₂F₁-Bezeichnung setzt sich aus der vergebenen Nummerierung in Tabelle 8 (Spalte 6) und der selektierten Pflanze je Linie zusammen.

BC ₂ F ₁	QTL	Stammbaum	Anzahl Samen angebaut
DD.1_12	1A, 1B	SZD8263//Midas/Blizzard/3/Aurelius	10
DD.10_12	1A, 1B	Blizzard/1351.5.10_P2//SZD8263/3/Arminius	33
DD.11_6	1A, 1B	Blizzard/1351.5.1_P2//SZD8263/3/W12.27.2.3.9	48
DD.17_8	1A, 1B	2812-2-2//Midas/Blizzard/3/Christoph	48
DD.2_3	1A, 1B	SZD8263//Midas/Blizzard/3/SZD8263	22
DD.20_8	1A, 1B	2812-2-2//Midas/Blizzard/3/W1.115.4.2.9	48
DD.23_3	1A, 1B	Blizzard/Tommi//Nemchinovskaja17/3/Arminius	48
DD.25_8	1A, 1B	Blizzard/Tommi//Nemchinovskaja17/3/W6.175.2.5.9	26
DD.49_15	1A, 1B	Bonneville/Arnold//Akteur-M56/3/Adesso	35
DD.49_21	1A, 1B	Bonneville/Arnold//Akteur-M56/3/Adesso	36
DD.50_15	1A, 1B	Bonneville/Arnold//Akteur-M56/3/Alessio	48
DD.51_8	1A, 1B	Bonneville/Arnold//Akteur-M56/3/Christoph	35
DD.52_10	1A, 1B	Bonneville/Arnold//Akteur-M56/3/SZD8263	35
DD.52_5	1A, 1B	Bonneville/Arnold//Akteur-M56/3/SZD8263	48
DD.54_13	1A, 1B	Bonneville/Arnold//Akteur-M56/3/Turanus	48
DD.54_14	1A, 1B	Bonneville/Arnold//Akteur-M56/3/Turanus	48
DD.9_7	1A, 1B	Blizzard/1351.5.1_P2//SZD8263/3/Adesso	48
DD.23_11	1A, 1B	Blizzard/Tommi//Nemchinovskaja17/3/Arminius	26
DD.19_3	1A, 1B	20812-2-2//Midas/Blizzard/3/SZD8263	48
DD.40_4	1A, 1B	Spontan/Blizzard//Tobias/3/Aurelius	17
DD.16_3	1A, 1B, 7A	2812-2-2//Midas/Blizzard/3/Aurelius	48
DD.2_12	1A, 1B, 7A	SZD8263//Midas/Blizzard/3/SZD8263	49
DD.9_12	1A, 1B, 7A	Blizzard/1351.5.10_P2//SZD8263/3/Adesso	14
DD.6_14	1A, 1B, 7A	Blizzard/1351.5.1_P2//SZD8263/3/Alessio	48
DD.23_4	1A, 1B, 7D	Blizzard/Tommi//Nemchinovskaja17/3/Arminius	28
DD.1_13	1A, 7A	SZD8263//Midas/Blizzard/3/Aurelius	21
DD.34_3	1A, 7A	Spontan/Blizzard//Tillstop/3/SZD8263	48
DD.4_3	1A, 7A	SZD8263//Midas/Blizzard/3/Christoph	48

BC ₂ F ₁	QTL	Stammbaum	Anzahl Samen angebaut					
DD.32_9	1A, 7A, 7D	Spontan/Blizzard//Tillstop/3/Alessio	31					
DD.24_7	1A, 7D	Blizzard/Tommi//Nemchinovskaja17/3/W10.115.4.2.9	48					
DD.27_4	1A, 7D	Arminius//Midas/Blizzard/3/1314.11.P1	48					
DD.41_9	1A, 7D	Spontan/Blizzard//Tobias/3/W10.193.1.1.9	48					
DD.25_9	1A, 7D	Blizzard/Tommi//Nemchinovskaja17/3/W6.175.2.5.9	48					
DD.3_12	1B, 7A	SZD8263//Midas/Blizzard/3/Alessio	30					
DD.32_5	1B, 7A, 7D	Spontan/Blizzard//Tillstop/3/Alessio	48					
DD.33_6	1B, 7A, 7D	Spontan/Blizzard//Tillstop/3/Christoph	48					
DD.35_1	1B, 7D	Spontan/Blizzard//Tillstop/3/W1.115.4.2.9	48					
DD.68_6	4B, 7D	Aurelius//PI119333/1351.5.10_P2/3/Arminius	46					
DD.69_4	4B, 7D	Aurelius//PI119333/1351.5.1_P2/3/W1.115.4.2.9	48					
DD.70_1	4B, 7D	Aurelius//PI119333/1351.5.1_P2/3/W12.27.2.3.9	32					
DD.70_11	4B, 7D	Aurelius//PI119333/1351.5.1_P2/3/W12.27.2.3.9	44					
DD.70_2	4B, 7D	Aurelius//PI119333/1351.5.1_P2/3/W12.27.2.3.9	48					
DD.70_9	4B, 7D	Aurelius//PI119333/1351.5.1_P2/3/W12.27.2.3.9	11					
DD.71_1	4B, 7D	Aurelius//PI119333/1351.5.1_P2/3/Aurelius	48					
DD.73_6	4B, 7D	Aurelius//PI119333/1351.5.1_P2/3/SZD8263	48					
DD.62_10	7D	Arminius//PI119333/1351.5.1_P2/3/Adesso	48					
DD.62_7	7D	Arminius//PI119333/1351.5.1_P2/3/Adesso	48					
DD.62_8	7D	Arminius//PI119333/1351.5.10_P2/3/Adesso	28					
DD.63_2	7D	Arminius//PI119333/1351.5.1_P2/3/Alessio	20					
DD.63_9	7D	Arminius//PI119333/1351.5.10_P2/3/Alessio	48					
DD.64_4	7D	Arminius//PI119333/1351.5.1_P2/3/Christoph	48					
DD.64_9	7D	Arminius//PI119333/1351.5.1_P2/3/Christoph	48					
DD.65_7	7D	Aurelius//PI119333/1351.5.10_P2/3/1314.3.11.P1	48					
DD.65_6	7D	Aurelius//PI119333/1351.5.1_P2/3/1314.3.11.P1	48					
Summe Sam	Summe Samen angebaut							

Zu Kapitel 2.2.1: Protokoll des Instituts für Biotechnologie in der Pflanzenproduktion für die DNA-Extraktion

DNA-Extraction with a 96-plate with 1.2mL-8-strips

Slightly adjusted to the procedure described by Eric and adapted by Magdalena Ehn following instructions from Maria Bürstmayr.

Harvest <u>young</u> leaves.

Dry leaves:

Dry them either at a temperature of ca 35°C (One to two days, according to leave amount) or lyophilize tissue. When you dry leaves at 35°C, don't freeze leaves before drying.

NOTE: Leaf samples may be frozen and stored at -80°C until ready to be lyophilized. If leaves are frozen before drying you can only lyophilize them (72 hours). Frozen plant material must not thaw before lyophilizing. Make sure the lyophilizer is down to temperature (the chamber is \leq -50°C) and pulling a good vacuum (\leq 10 microns Hg) before loading samples. Do not overload lyophilizer: make sure the vacuum is always \leq 100 microns and condenser temperature is \leq -50°C. Samples should be dry in 72 hours. Typically, fresh weight \approx 10X dry weight. Dried leaf samples may be stored in sealed plastic bags at room temperature for a few days or at -20°C for several years.

- 1) Prepare 2 set of 96-plates with 1.2mL-8-tube-strips. Label tubes properly with a waterproof pen on the side walls (the water bath may vanish your writing). Don't label with stickers, the will get loose in the water bath, and those which still stick to the tube seriously interfere with centrifuging.
- Fill each tube with 3 small glass beads using the device designed by Matthias.
- 3) Cut leaf-material into each tube, avoid contamination.

Bring dried leaves (at least two times the length of the tube) into tubes, cut leaves when you fill the tubes. A small glass funnel makes filling easier. When you put your samples into a drying chamber overnight or for two days (depending on the amount of leaf material) they are perfectly dry for grinding in the Retsch-mill. If leaves are not fully dried grinding will be poor. But as finer the powder the better the amount of extracted DNA!

	1	2	3	4	5	6	7	8	9	10	11	12
Α	•	•	•	•	•	•	•	•	•	٠	٠	•
В		•	•	•	•	•		•	•	•	•	•
С			•	٠	٠	•			•	•	•	•
D				•	•	•				•	•	•
Е					٠	•					•	•
F						•						•
G												
Η												

4) Prepare 3 sets of caps and label one of them:

Labelling of tubes (8-strips, side-view):

5) Preheat the water bath! Turn on and make sure there is enough water inside

6) Grind leafs in Retsch-mill for 6 minutes (change orientation of plates after 3 minutes)

Ensure that both arms of the mill are encumbered equally. Alternatively use the shaker in BP/E/17 for \sim 20 minutes.

Leaf powder can be stored tightly capped in a cool place for several weeks or at -20°C (Samples are stable for several years), or DNA extraction can begin immediately in the same tubes.

7) Prepare CTAB-Buffer1: per sample 450 μ l to 500 μ l if two times the tube-length equals the amount of leaves harvested.

Stock	final	10 ml	50 ml	100 ml
dH20		3.25 ml	16.25 ml	32.5 ml
1M Tris-7.5 (pH)	100 mM	0.5 ml	2.5 ml	5 ml
5M NaCl	700 mM	0.7 ml	3.5 ml	7 ml
0.5 M EDTA-8.0 (pH)	50mM	0.5 ml	2.5 ml	5 ml
CTAB ₂	1%	0.05 g	0.25 g	0.5 g
14 M BME3	140 mM	0.05 ml	0.25 ml	0.5 ml

1 Use freshly made; warm buffer to 60-65°C before adding the CTAB and BME

2 CTAB = Mixed alkyltrimethyl-ammonium bromide (Sigma M-7635).

Do not breathe in, add using gloves and clean the scale after use.

3 Add BME (β -mercaptoethanol) just prior to use, **under a fume hood**.

Mix dH₂0, Tris-7.5, NaCl and EDTA-8.0 in a flask with a wide enough opening to use the stepper-pipette afterwards, add a magnetic stir bar and put the mixture on a heated magnetic stirrer. Mix well. Add CTAB and let it fully dissolve, then add BME (it's in the fridge).

If more leaf material was harvested, use 900µL of the buffer for each sample and adjust the amount of each ingredient accordingly.

- **8) Centrifuge tubes with grinded leaf material** at 2000 rcf in the *Sigma 4K15* before opening them to remove leaf powder from the caps.
- 9) Keep tubes at an appropriate distance when opening them, open tubes carefully, so that leave powder does not scatter and contaminate nearby tubes. Use a paper tissue to cover already opened tubes to prevent scattering when open the neighbouring row.
- 10) Add 450µL 500µl of CTAB-Buffer to each tube under the fume hood

using an electronic stepper-pipette type *Eppendorf Multipette stream* with a tip marked with "CTAB" available in the lab.

Close tubes tightly! Use the roll from the sink for applying more pressure.

11) Shake by inversion and place the rack (with tubes) into a water bath (with gentle rocking) at 65°C for 60-90 minutes.

Use a rubber mat for fixing the racks in the metal trays and make sure that all caps and tube bottoms are covered by the mats. Close trays tightly.

12) Let tubes cool down to room temperature in the sink filled with cold water.

13) Add 200-250µL chloroform:isoamylalcohol (24:1) to each tube under the fume hood, using the electronic stepper-pipette type *Eppendorf Multipette stream* with the tip marked with "Chloroform".

Always use half as much chloroform: isoamylalcohol as CTAB-buffer.

14) Close tubes and put them into a rack, shake by gentle inversion for 10 minutes

using the motor-driven shaker designed by Matthias in the lab. Make sure that the trays are tightly fixed in the shaker by first adjusting the vertical screw directly at the machine and then fastening the screw on top of the trays.

All centrifugation-steps are at room temperature.

- 15) Centrifuge for 8 minutes at 4000 rcf using the *Sigma 4K15*.
- 16) Arrange the tubes according their alignment in the 96 plate, pipette off 200-250μL (when 450-500μL CTAB) or 450μL (when 900μl CTAB) of the top aqueous phase into the second 96-plate of 1.2 ml 8-stripe tubes (properly labelled, see step 4).

Close with the labelled set of caps. For pipetting, use the 8-channel *Sartorius Tacta* pipette for volumes between 30 and 300μ L with the 300μ L *Biozym* tips (transparent).

17) Add 160 µL of isopropyl alcohol (isopropanol or 2-propanol)

using the electronic stepper-pipette type *Eppendorf Multipette stream* with the tip marked as "Isoprop" from the lab. Mix well by a few times of gentle inversion carried out manually.

Calculate 0.8 times the volume of chloroform added before to determine the necessary amount of isopropanol.

- 18) Centrifuge 8 minutes at 2000 rcf in the Sigma 4K15.
- **19)** Pour off liquid (DNA-pellet must stick to the bottom of the tube).

If the pellet does not stick to bottom in some tubes, pipette off the liquid carefully. Do not shake the rack when pouring out the liquid but neither hesitate and pour too slowly. Then place the racks on tissues upside down and do not turn them in between to avoid contamination by liquid drops flowing back down to the pellet.

20) Add 100µL of Wash 1

using the electronic stepper-pipette type *Eppendorf Multipette stream* with a tip labelled as "Wash 1". Then mix gently by hand so that the pellets are loose within the wash. Incubate 20-30 minutes at room temperature.

21) Centrifuge 8 minutes at 2000 rcf in the Sigma 4K15.

22) Pour off liquid (DNA-pellet must stick to the bottom of the tube).

If the pellet does not stick to bottom in some tubes, pipette off the liquid carefully. Do not shake the rack when pouring out the liquid but neither hesitate and pour too slowly. Then place the racks on tissues <u>upside down and do not turn them in</u> <u>between</u> to avoid contamination by liquid drops flowing back down to the pellet.

23) Add 100µL Wash 2

using the electronic stepper-pipette type *Eppendorf Multipette stream* with a tip labelled as "Wash 2". Then mix gently by hand so that the pellets are loose within the wash. Incubate 5 minutes at room temperature.

24) Centrifuge 8 minutes at 2000 rcf in the Sigma 4K15.

25) Pour off liquid (DNA-pellet must stick to the bottom of the tube)

If the pellet does not stick to bottom in some tubes, pipette off the liquid carefully. Do not shake the rack when pouring out the liquid but neither hesitate and pour too slowly. Then place the racks on tissues upside down and do not turn them in between to avoid contamination by liquid drops flowing back down to the pellet.

26) Let dry overnight.

Place racks in the right direction and put a tissue atop your open tubes. Make sure that the pellet is located on the bottom of the tubes and not up on the wall so that you can be sure it will dissolve in the buffer added the next day. You cannot see the pellet any more after drying, it becomes transparent.

27) Dissolve DNA-pellet in 100 µL 0,1 or 0,1 x TE-buffer

using a *Brand Transferpette* 8-channel pipette for $30-300\mu$ L. If you had lots of dried leafs and used 900μ L of CTAB-buffer, you can add 200μ L of TE-buffer.

28) Mix for at least half an hour at 65°C on a heated rocking device.

Then store the plates at 4°C in the fridge or continue with further analyses like photometric measurement of DNA-concentration and appropriate dilution.

Use a concentration of $50ng/\mu L$ for PCR-analyses and a concentration of $200ng/\mu L$ for long-term storage in the freezer.

		10 11	7-4 EE.23_3-26 E	7-44 EE.23_3-28 E	11-22 EE.23_3-42 E	11-1 EE.23_3-5 E	11-12 LEER E	11-17 LEER	11-20 LEER	3-10 LEER		10 11	4 16 EE.9 12-1 E	4_17 EE.9_12-15 E	4 27 EE.9 12-2 E	4 29 EE.9 12-3 E	4 41 EE.6 14-10	4 47 EE.6 14-24 L	9-5 EE.6 14-26 L	4-7 EE.6 14-48		;	11-23 EE.70 1-6 E	11-41 EE.70 1-14	11-42 EE.70 1-15	11-44 EE.70 1-17	11-5 EE.70 1-20	11-7 EE.70 1-25	11-9 EE.70 1-29	1-2 EE.70 2-32		11 11							
		6	EE.54 13-35 EE.9	EE.54_13-47 EE.9_	EE.54_13-6 DD.23	EE.54_14-32_EE.23	EE.54_14-37 EE.23	EE.54 14-48 EE.23	EE.9 7-12 EE.23	EE.9_7-29 EE.23		6	EE.4_3_21 EE.27	EE.4_3_26 EE.27	EE.4_3_38 EE.27	EE.4 3 4 EE.27	EE.4_3_40 EE.27	LEER EE.27	LEER EE.41	LEER DD.27		4	EE.65 6-42 EE.70	EE.65 6-5 EE.70	EE.65 7-11 EE.70	EE.65_7-15 EE.70	EE.65_7-2 EE.70	EE.65_7-25 EE.70	EE.65_7-46 EE.70	EE.65_7-48 EE.70		6							
		8	16 EE.51 8-27	17 EE.52_10-12	26 EE.52 10-19	3 EE.52_10-23	23 EE.52 5-3	26 EE.52 5-4	EE.54 13-26	EE.54_13-28		8	DD.16_3-41	EE.34_3_14	D EE.34_3_30	EE.34 3 46	3 EE.34 3 47	7 EE.34 3 7	3 EE.34_3_9	2 EE.4 3 10		•	EE.64 9-4	tot (EE.64 9-44	5 EE.65 6-1	3 EE.65 6-11	3 EE.65 6-12	EE.65_6-24	5 EE.65 6-36	3 EE.65 6-4		8							
loren		7	-2 EE.49 21-1	-27 EE.49_21-1	-13 EE.49_21-2	-2 EE.49_21-3	-3 EE.50_15-2	-30 EE.50 15-2	HS LEER	-11 EE.51_8-2		7	28 EE.1 13-3	5 EE.1_13-8	4 EE.2_12-3(9 EE.2_12-7	13 EE.16 3-13	14 EE.16_3-27	24 EE.16_3-28	16 EE.16 3-42		'	36 EE.64 4-7	9 EE.64 4-8	1 EE.64 9-16	11 EE.64 9-18	16 EE.64 9-28	21 LEER (tot	22 EE.64_9-35	25 EE.64_9-38		2							
Pellet veri		9	2-8 EE.10 12	2-7 EE.10_12	5-23 EE.49_15	1-26 EE.49_15	1-47 EE.49_15	10 EE.49 15	EE.49_15	114 EE.49 21	 	9	15 EE.32 9-3	22 EE.32_9-	T DD.32_9-	30 DD.32_9-	1 DD.32_9-	11 DD.32_9-	19 DD.32_9-	23 EE.1 13-1		•	3 EE.63 9-3	5 EE.63 9-5	7 EE.64 4-1	10 EE.64 4-1	13 EE.64 4-1	15 EE.64 4-2	22 EE.64 4-2	27 EE.64 4-1		9							
anden		5	8 DD.10_12	5 DD.10_12	DD.49_1	DD.54 1/	DD.54 14	ot) DD.9_7-2	3 DD.9_7-5	7 EE.10_12		5	EE.35_1-:	39 EE.35_1-3	FEHL	12 DD.35_1-	LS EE.32_9-:	88 EE.32_9-:	12 EE.32_9-:	EE.32_9-;		•	3 EE.63 2-1	4 EE.63 2-!	8 EE.63_2-	1 EE.63_9-:	EE.63_9-:	8-11 EE.63 9-:	4 EE.63_9-3	EE.63_9-;		s							
nicht vorh		4	EE.19 3-1	EE.19_3-3	EE.19_3-4	EE.2_3-14	EE.2_3-19	LEER (b	EE.40_4-1	EE.40 4-1		4	Ig FEHL	EE.32_5_	DD.32_5-4	6_24 DD.32_5-1	DD.32_5-1	DD.32_5-0	DD.32_5-4	LEER		•	4 EE.62 7-3	7 EE.62 8-1	EE.62_8-1	EE.62_8-2	EE.62_8-9	tot (EE.62	EE.63_2-1	EE.62_8-1		4							
		3	g DD.19_3-13	DD.40_4-2	DD.40_4-4	DD.40_4-5	EE.1_12-2	EE.1 12-9	EE.17 8-22	EE.17_8-26		8	ont Check anfäll	NTC	EE.33_6_23	Tot (EE.33	EE.33 6 3	EE.33_6_9	EE.32_5_29	EE.32 5 31		•	E EE.62 10-4	EE.62 10-4	EE.62_10-5	EE.62_10-7	EE.62_7-11	EE.62 7-23	EE.62 7-26	EE.62_7-3		e	g EE.69 4-42	EE.71 1-19	EE.71_1-38	EE.71_1-42	EE.73 6-38	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EE. / 3 D-42
1x Tubelänge		2	Check anfälli	NTC	EE.25_8-2	EE.25_8-5	EE.25_8-18	EE.25_8-19	DD.25_8-21	DD.17_8-17		2	Check resiste	Check hetero	EE.3_12-2	EE.3 12-25	EE.3 12-26	EE.3_12-27	EE.3 12-29	NTC		,	Check anfällie	Check hetero	NTC	EE.62 10-13	EE.62_10-14	EE.62 10-17	EE.62 10-18	EE.62_10-27		2	Check anfällig	NTC	EE.68_6-39	EE.68_6-43	EE.69_4-25		EE.69_4-26
	Emte 12.3.2020	1	Check resistent	Check hetero	DD.20_8-2	EE.20_8-4	EE.20_8-24	EE.20 8-46	EE.20 8-48	NTC	Ernte 12.3.2020	1	EE.24 7 27	EE.24_7_36	EE.24 7 4	EE.24 7 48	EE.25 9-13	EE.25_9-21	EE.25_9-44	EE.25 9-5	0000 0 00 0 00 0 0	Emte 12.3.2020	Check resistent	DD.62 10-11	DD.62_10-33	DD.63_2-19	DD.63_2-4	DD.63_9-33	DD.64_9-25	DD.70_2-1	Emte 12.3.2020	1	Check resistent	Check hetero	DD.68_6-31	DD.71_1-34	DD.71_1-4		UU. / 3 b-3b
	Plate A		۷	8	υ	٥	ш	u	σ	т	Plate B		۷	8	c	۵	ш	u.	U	т		late C	4	8	υ	۵	-		U	т	late D		۲	æ	U	۵	س	•	-

Zu Kapitel 2.2.1: DNA-Extraktionsschema

Abbildung 14: DNA-Extraktionsschema der Platten A bis D. Die Nummern, die mit DD beginnen, waren bei der Vorselektierung zu klein für eine Probennahme und wurden bei der Validierung mitextrahiert. Alle anderen Nummern (beginnend mit EE) wurden zum zweiten Mal extrahiert und somit validiert.

Zu Kapitel 2.2.2: Anleitung des Instituts für Biotechnologie in der Pflanzenproduktion für den Pipettierroboter epMotion 5075

Anleitung Eppendorf-Roboter für DNA-Konzentration-Normalisierung

- 1. Icon in der Mitte des Desktops doppelklicken (epBlue40.5)
- 2. Anmelden mit Benutzer = IVF und PW = IVF!
- 3. Ordner IVF, Unterordner Normalisierung auswählen
- 4. Neue Applikation erstellen (links oben, Blatt mit gelbem Stern)
- 5. Workplace einrichten:
- 6. Platten auswählen: MTP 96, ganz rechts unten sind Greiner Photometerplatten 96-well
- 7. Platten im Workplace positionieren und eventuell entsprechend benennen
- 8. Tips auswählen und positionieren: 50er, 300er und 1000er ohne Filter
- ReservoirRacks with Modules: 7x100mL auswählen und auf B1 positionieren, entsprechendes Reservoir aus dem Kühlschrank einhängen (PCR-H20 oder TEbuffer)
- 10. Platten OHNE Folie im Roboter positionieren
- 11. Deckel von den Spitzen-Boxen entfernen
- 12. Deckel vom Reservoir entfernen
- 13. Wenn der Workspace fertig eingerichtet ist: switch to procedure
- 14. Zweites Icon in der Liste links anklicken (Well mit Pfeil darüber = sample transfer)
- 15. Source bestimmen (+, dann "add", dann wieder schließen mit x): Reservoir
- 16. Destination bestimmen: (+, dann "add" in der Reihenfolge wie die Platten drinnen stehen, dann schließen mit x)
- 17. Multidispense auswählen
- 18. Pattern anklicken, nichts ändern, "ok" klicken
- 19. Tip handling: nichts ändern
- 20. Aspiration/Dispensing: "dispense from top" auswählen
- 21. Liquid Type: change parameter: dispensing speed auf 30 bis 40 ändern (default = 66)
- 22. Load csv:
 - a. KEINE Volumina über 200µL zugeben!! Falls das vorkommt aus dem enstprechenden Well 50µL (die Hälfte vom Gesamtvolumen) rauspipettieren und das zuzugebende Volumen in der Liste manuell halbieren
 - b. TS_50 bis zu einem Volumen von 21µL
 - c. TS_300 bis zum einem Volumen von 39µL
 - d. Ab 40µL TS_1000
 - e. Auf ganze 10er-Stellen auf- bzw. abrunden um den Prozess zu beschleunigen
 - f. Als semicolon-separated csv-File abspeichern und mittels USB zum PC transferieren
 - g. Achtung: "Labware" muss sich mit der Anzahl der angegebenen Platten im Workspace decken – wenn Labware 1 bis 4 umfasst, müssen 4 Platten vorhanden sein
- 23. Haken in der Leiste oben: check for errors
- 24. SPEICHERN
- 25. "Play-button": quick simulator auswählen

- 26. Next
- 27. Nr. Of samples=1 mit "ok" bestätigen
- 28. "detect volumes" auswählen
- 29. "check for labware placement" abwählen
- 30. RUN
- 31. Log-file kontrolliern: passen die Volumina, wurde "dispense from top" als Option gewählt etc.
- 32. Exit
- 33. Wenn alles passt: erneut "play-button" auswählen
- 34. Ziffern-Buchstaben-Kombination anklicken
- 35. Next
- 36. Nr. Of samples = 1 mit "ok" bestätigen
- 37. "detect volumes" auswählen
- 38. "check for labware placement" abwählen
- 39. RUN
- 40. Rechts oben auf der Schaltfläche wird angezeigt, ob das Serviceintervall überschritten wurde oder es Probleme mit dem Deckel gibt – der Deckel muss vollständig geschlossen sein, sonst startet der Prozess nicht!!
- 41. Serviceintervall kann man mit "ok" bestätigt werden um den Prozess zu starten

PCR A	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
A	R	R	R	A3	R	A3	A3	A3	A5	A7	A9	A5	A7	A9	A5	A7	A9	A5	A7	A9	A11	A11	A11	
В	A	Α	Α	A4	A	A4	A4	A4	A6	A8	A10	A6	A8	A10	A6	A8	A10	A6	A8	A10		A12	A12	A12
с	H	H	H	B3	H	B3	B3	B3	B5	B7	B9	B5	B7	B9	B5	B7	B9	B5	B7	B9	B11	B11	B11	
D	B2	B2	B2	B4	B2	B4	B4	B4	B6	B8	B10	B6	B8	B10	B6	B8	B10	B6	B8	B10		B12	B12	B12
E	C1	C1	C1	C3	C1	C3	C3	C3	C5	C7	C9	C5	C7	C9	C5	C7	C9	C5	C7	C9	C11	C11	C11	
F	C2	C2	C2	C4	C2	C4	C4	C4	C6	C8	C10	C6	C8	C10	C6	C8		C6	C8	C10		C12	C12	C12
G	D1	D1	D1	D3	D1	D3	D3	D3	D5	D7	D9	D5	D7	D9	D5	D7	D9	D5	D7	D9	D11	D11	D11	
н	D2	D2	D2	D4	D2	D4	D4	D4	D6	D8	D10	D6	D8	D10	D6	D8		D6	D8	D10		D12	D12	D12
I	E1	E1	E1	E3	E1	E3	E3	E3	E5	E7	E9	E5	E7	E9	E5	E7	E9	E5	E7	E9				
1	E2	E2	E2	E4	E2	E4	E4	E4	E6	E8	E10	E6	E8	E10	E6	E8		E6	E8	E10		E12	E12	E12
к	F1	F1	F1	F3	F1	F3	F3	F3	F5	F7	F9	F5	F7	F9	F5	F7	F9	F5	F7	F9				
L	F2	F2	F2	F4	F2	F4	F4	A	F6	F8	F10	F6	F8	F10	F6	F8		F6	F8	F10				
м	G1	G1	G1	G3	G1	G3	G3	G3	G5	G7	G9	G5	G7	G9	G5	G7	G9	G5	G7	G9				
N	G2	G2	G2	G4	G2	G4	G4	G4	G6	G8	G10	G6	G8	G10	G6	G8		G6	G8	G10		н	н	Н
0	H1	R	H1	H3	H1	H3	H3	HЗ	H5	H7	H9	H5	H7	H9	H5	H7	H9	H5	H7	H9		A	A	A
Р	H2	H2	H2	H4	H2	H4	H4	H4	H6	H8	H10	H6	H8	H10	H6	H8		H6	H8	H10		R	R	R
Marker	К1	К10	K13	К13	к20	K20	К2	К9	К2	К2	К2	К11	К11	К11	К13	К13	К13	K20	к20	K20	K20	К2	К11	K21
	К2	К9									К2			K11						K20				
Checks	R	Resi	stent																					
enecks	н	Hete	no																					
	A	Anfä	lliø																					

Zu Kapitel 2.2.2: Pipettierschema für 365-well PCR-Platten:

Abbildung 15: Pipettierschema der PCR-Platte A. Die Codierung in den Zellen stammt aus der Extraktions- bzw. Photometerplatte A. Die Farben dienen der besseren Orientierung. Die Marker-Beschriftung bezieht sich immer auf eine Spalte.

PCR B	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
A	A1	A1	A1		R	R	R	R	R	A5	A5	A5	A5	A5	A5	A5	A7	A7	A7	A7	A7	A9	A9	A9
В	R	R	A10		A	A	A	A	A		A6	A6	A6	A6	A6	A6	A8	A8	A8	A8	A8	A10	A10	A10
С	B1	B1	B1		H	H	н	н	н	B5	B5	B5	B5	B5	B5	B5	B7	B7	B7	B7	B7	B9	B9	B9
D	Α	Α	B10		B3	B3	B3	B3	B3		B6	B6	B6	B6	B6	B6	B4	B4	B8	B8	B8	B10	B10	B10
E	C1	C1	C1		C2	C2	C2	B4	B4	C5	C5	C5	C5	C5	C5	C5	C7	C7	C7	C7	C7	C9	C9	C9
F	н	н	C10	н	C3	C3	C3	C3	C3		C6	C6	C6	C6	C6	C6	C4	C4	C8	C8	C8	C10	C10	C10
G	D1	D1	D1	Α	D2	D2	D2	C4	C4	D5	D5	D5	D5	D5	D5	D5	D7	D7	D7	D7	D7	D9	D9	D9
н			D10	R	D3	D3	D3	D3	D3		D6	D6	D6	D6	D6	D6	D4	D4	D8	D8	D8	D10	D10	D10
1	E1	E1	E1	E1	E2	E2	E2	D4	D4		E5	E5	E5	E5	E5	E5	E7	E7	E7	E7	E7	E9	E9	E9
1			E10	B12	E3	E3	E3	E3	E3		E6	E6	E6	E6	E6	E6	E4	E4	E8	E8	E8	E10	E10	E10
к	F1	F1	F1	F1	F2	F2	F2	E4	E4		F5	F5	F5	F5	F5	F5	F7	F7	F7	F7	F7	H	н	
L			F10	C12	F3	F3	F3	F3	F3		F6	F6	F6	F6	F6	F6	F4	F4	F8	F8	F8	F10	F10	F10
М	G1	G1	G1	G1	G2	G2	G2	F4	F4		G5	G5	G5	G5	G5	G5	G7	G7	G7	G7	G7	Α	Α	
N			G10	D12	G3	G3		G3	G3	н	G6	G6	G6	G6	G6	G6	G4	G4	G8	G8	G8	G10	G10	G10
0	H1	H1	H1	H1	H2	H2	H2	G4	G4	Α	H5	H5	H5	H5	H5	H5	H7	H7	H7	H7	H7	R	R	
Р			H10	E12	H3	H3	H6	H3	H3	R	R			H6	H6	R	H6	H6	H8	H8	H8	H10	H10	H10
Marker	K1	K10	K42		K13	K21	K37			K78	K79	K42	K44									K2	К10	K44
	K1	K10	K42	K43	K13	K21	K37	K42	K44		K79	K42	K44	K2	К9	K29	K13	K21	K37	K2	К9	K2	К9	K37
			K42	K43	K13	K21	K37	K42	K44					K2	К9		K13	K21	K37	K2	К9			
Checks:	R	Resi	stent																					
	н	hete	ro																					
	А	Anfă	illig																					

Abbildung 16: Pipettierschema der PCR-Platte B. Die Codierung in den Zellen stammt aus der Extraktions- bzw. Photometerplatte B. Die Farben dienen der besseren Orientierung. Die Marker-Beschriftung bezieht sich immer auf eine Spalte.

PCR C	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	
A	R	A3	A5	A7	A9	A11		R	A3	A5	A7	A9	A11		A11	A11	A11	A11	A11			B4	B4		
В	A	A4	A6	A8	A10	A12		A	A4	A6	A8	A10	A12		A12	A12	A12	A12	A12						
С	B1	B3	B5	B7	B9	B11		B1	B3	B5	B7	B9	B11		B11	B11	B11	B11	B11			C4	C4		
D	н	B4	B6	B8	B10	B12		H	B4	B6	B8	B10	B12		B12	B12		B12		B12					
E	C1	C3	C5	C7	C9	C11		C1	C3	C5	C7	C9	C11		C11	C11	C11	C11	C11			D4	D4		
F	C2	C4	C6	C8	C10	C12		C2	C4	C6	C8	C10	C12		C12	C12		C12		C12					
G	D1	D3	D5	D7	D9	D11		D1	D3	D5	D7	D9	D11		D11	D11	D11	D11	D11			E4	E4		
н	D2	D4	D6	D8	D10			D2	D4	D6	D8	D10			D12	D12		D12		D12					
1	E1	E3	E5	E7	E9	E11		E1	E3	E5	E7	E9	E11		E11	E11	E11	E11	E11			F4	F4		
J	E2	E4	E6	E8	E10			E2	E4	E6	E8	E10			E12	E12		E12		E12					
к	F1	F3	F5	F7	F9	F11		F1	F3	F5	F7	F9	F11		F11	F11	F11	F11	F11			G4	G4		
L	F2	F4	F6	F8	F10			F2	F4	F6	F8	F10			н	н	н	н	H	н		н	н		
M	G1	G3	G5	G7	G9	G11		G1	G3	G5	G7	G9	G11		G11	G11	G11	G11	G11			G3	G3		
N	G2	G4	G6	G8	G10			G2	G4	G6	G8	G10			A	A	A	A	A	A		Α	Α		
0	H1	H3	H5	H7	H9	H11		H1	H3	H5	H7	H9	H11		H11	H11	H11	H11	H11			H3	H3		
Р	H2	H4	H6	H8	H10			H2	H4	H6	H8	H10			R	R	R	R	R	R		R	R		
Marker	K47	K47	K47	K47	K47	K47		K51	K51	K51	K51	K51	K51		K2	K11	K13	K21	K37	K42		K39	K79		
															K2	K11		K21							
Checks:	R	resis	tent															vo	n Pla	tte B					
	Α	anfä	llig																						
	н	hete	го																						

Abbildung 17: Pipettierschema der PCR-Platte C. Die Codierung in den Zellen stammt aus der Extraktions- bzw. Photometerplatte C, bis auf die Spalten 15-23, welche aus der Extraktionsbzw. Photometerplatte B stammen. Die Farben dienen der besseren Orientierung. Die Marker-Beschriftung bezieht sich immer auf eine Spalte.

PCR D	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
A	R	A3		R	A3		R	A3		R	A3													
В	Α			A			Α			A														
с	н	B3		н	B3		н	B3		H	B3													
D	B2			B2			B2			B2														
E	C1	C3		C1	C3		C1	C3		C1	C3													
F	C2			C2			C2			C2														
G	D1	D3		D1	D3		D1	D3		D1	D3													
н	D2			D2			D2			D2														
I	E1	E3		E1	E3		E1	E3		E1	E3													
J	E2			E2			E2			E2														
к	F1	F3		F1	F3		F1	F3		F1	F3													
L	F2			F2			F2			F2														
м	G1	G3		G1	G3		G1	G3		G1	G3													
N	G2			G2			G2			G2														
0	H1	H3		H1	H3		H1	H3		H1	H3													
Р	H2			H2			H2			H2														
Marker	K23	K23		K26	K26		K47	K47		K51	K51													
Checks:	R	Resid	tent																					
	н	hete	ro																					
	A	Anfä	llig																					
	~	74110																						

Abbildung 18: Pipettierschema der PCR-Platte D. Die Codierung in den Zellen stammt aus der Extraktions- bzw. Photometerplatte D. Die Farben dienen der besseren Orientierung. Die Marker-Beschriftung bezieht sich immer auf eine Spalte.

Zu Kapitel 2.2.3: Übersicht der Basen-Sequenzen von Common-, Forward, und Reverse-Primer der KASP-Marker

Tabelle 16: Basen-Sequenzen der Common-, Forward- und Reverse-Primer je KASP-Marker die bei der KASP-Genotypisierung verwendet wurden. Großbuchstaben stellen Protein-Sequenzen der Genbank dar, Kleinbuchstaben stehen für die Nukleotid-Sequenzen des Sequenzprogramms "FASTA".

KASP-Marker	Sequenz
K1 Common-Primer	ttccggtggaaaatcctcaA
K1 Forward-Primer	GAAGGTGACCAAGTTCATGCTcaaatgttCaaaatgctgctcataA
K1 Reverse-Primer	GAAGGTCGGAGTCAACGGATTcaaatgttCaaaatgctgctcataG
K2 Common-Primer	cgaagataacaagagtggttCcA
K2 Forward-Primer	GAAGGTGACCAAGTTCATGCTccagtgaagagagagagagtT
K2 Reverse-Primer	GAAGGTCGGAGTCAACGGATTccagtgaagagagagagagctC
K9 Common-Primer	ggGatcgtcttgagcacaC
K9 Forward-Primer	GAAGGTGACCAAGTTCATGCTgcGattagccAtatcccGtT
K9 Reverse-Primer	GAAGGTCGGAGTCAACGGATTgcGattagccAtatcccGtC
K10 Common-Primer	agttccagagcttttactgca
K10 Forward-Primer	GAAGGTGACCAAGTTCATGCTgtcAgtgcggatgatgggT
K10 Reverse-Primer	GAAGGTCGGAGTCAACGGATTgtcAgtgcggatgatgggC
K11 Common-Primer	catagtctctagctgccggc
K11 Forward-Primer	GAAGGTGACCAAGTTCATGCTcgatcctggagttctggacaT
K11 Reverse-Primer	GAAGGTCGGAGTCAACGGATTcgatcctggagttctggacaC
K13 Common-Primer	TtctcagtagccgcccatT
K13 Forward-Primer	GAAGGTGACCAAGTTCATGCTtccaccatactgctacaccaT
K13 Reverse-Primer	GAAGGTCGGAGTCAACGGATTtccaccatactgctacaccaC
K20 Common-Primer	cacagtgctgaggctggtag
K20 Forward-Primer	GAAGGTGACCAAGTTCATGCTgctggccaaacttttcttcaT
K20 Reverse-Primer	GAAGGTCGGAGTCAACGGATTgctggccaaacttttcttcaC
K21 Common-Primer	atccaggtgcttggtccaac
K21 Forward-Primer	GAAGGTGACCAAGTTCATGCTagacactttgtttgtgggaagT
K21 Reverse-Primer	GAAGGTCGGAGTCAACGGATTagacactttgtttgtgggaagC
K23 Common-Primer	cgtatcatGtagtgtgggtccaT
K23 Forward-Primer	GAAGGTGACCAAGTTCATGCTacatCgcttctgccCgtT
K23 Reverse-Primer	GAAGGTCGGAGTCAACGGATTacatCgcttctgccCgtC
K26 Common-Primer	ggtgaagaggtaggcTgcG
K26 Forward-Primer	GAAGGTGACCAAGTTCATGCTcatcGcAcacatcaacgcT
K26 Reverse-Primer	GAAGGTCGGAGTCAACGGATTcatcGcAcacatcaacgcC
K29 Common-Primer	caaataaccatggctcccgT
K29 Forward-Primer	GAAGGTGACCAAGTTCATGCTatcctttctttagaggtcatgcT
K29 Reverse-Primer	GAAGGTCGGAGTCAACGGATTatcctttctttagaggtcatgcC
K37 Common-Primer	gcagctacagagttagataGATAcA
K37 Forward-Primer	GAAGGTGACCAAGTTCATGCTgcttgctcacccatgtgA
K37 Reverse-Primer	GAAGGTCGGAGTCAACGGATTgcttgctcacccatgtgG
K39 Common-Primer	agaTcaggctggCcaTTgTA
K39 Forward-Primer	GAAGGTGACCAAGTTCATGCTgtcGttgtaagattgcaaaccT

K39 Reverse-Primer	GAAGGTCGGAGTCAACGGATTgtcGttgtaagattgcaaaccC
K42 Common-Primer	ccatggtggcatgtgtcttg
K42 Forward-Primer	GAAGGTGACCAAGTTCATGCTttgcaacctgaaagcccacT
K42 Reverse-Primer	GAAGGTCGGAGTCAACGGATTttgcaacctgaaagcccacC
K43 Common-Primer	aggctggatcctaccatggt
K43 Forward-Primer	GAAGGTGACCAAGTTCATGCTgagtgtggacagcgatgcT
K43 Reverse-Primer	GAAGGTCGGAGTCAACGGATTgagtgtggacagcgatgcC
K44 Common-Primer	gctccacTgCattctggtttG
K44 Forward-Primer	GAAGGTGACCAAGTTCATGCTacccattaatgtcttgcatcctA
K44 Reverse-Primer	GAAGGTCGGAGTCAACGGATTacccattaatgtcttgcatcctG
K47 Common-Primer	agcattcttcaacccAcgG
K47 Forward-Primer	GAAGGTGACCAAGTTCATGCTgctattctctCcgCaaagacA
K47 Reverse-Primer	GAAGGTCGGAGTCAACGGATTgctattctctCcgCaaagacG
K51 Common-Primer	aacgcagcactcgacggT
K51 Forward-Primer	GAAGGTGACCAAGTTCATGCTgctcctgcctgcatcatcA
K51 Reverse-Primer	GAAGGTCGGAGTCAACGGATTgctcctgcctgcatcatcG
K78 Common-Primer	gtagctggggaaActaatacaagtC
K78 Forward-Primer	GAAGGTGACCAAGTTCATGCTCCAAGcAATTtcGGtGCAgtTA
K78 Reverse-Primer	GAAGGTCGGAGTCAACGGATTCCAAGcAATTtcGGtGCAgtTG
K79 Common-Primer	atttgcatttctGtatgtactcgaA
K79 Forward-Primer	GAAGGTGACCAAGTTCATGCTaaacagTggtgcagatatggA
K79 Reverse-Primer	GAAGGTCGGAGTCAACGGATTaaacagTggtgcagatatggG

Zu Kapitel 3: Übersicht der selektierten und verworfenen BC₂F₂-Pflanzen

Tabelle 17: Positiv selektierte Pflanzen der BC₂F₂-Generation. Die Spalten zwei bis vier enthalten Informationen über Resistenz-QTL, Resistenzdonor und jene KASP-Marker die bei der KASP-Genotypisierung pro Pflanzen verwendet wurden. Für die eingeklammerten QTL sind keine polymorphen Marker verfügbar, mit denen das Vorhandensein des QTL in diesem Pflanzenmaterial getestet werden könnte.

BC ₂ F ₂	QTL	Resistenzdonor	KASP-Marker
EE.1_12-2	1A, 1B	Blizzard	K2 K9 K13 K20
EE.1_12-9	1A, 1B	Blizzard	K2 K9 K13 K20
EE.1_13-8	1A, 7A	Blizzard	K2 K9 K13 K21 K37
EE.11_6-18	1A, 1B	Blizzard	K2 K11 K21
EE.11_6-2	1A, 1B	Blizzard	K2 K11 K21
EE.11_6-20	1A, 1B	Blizzard	K2 K11 K21
EE.11_6-25	1A, 1B	Blizzard	K2 K11 K21
EE.11_6-44	1A, 1B	Blizzard	K2 K11 K21
EE.16_3-13	1A, 1B, 7A	Blizzard	K2 K9 K13 K21 K37
EE.16_3-27	1A, 1B, 7A	Blizzard	K2 K9 K13 K21 K37
EE.16_3-28	1A, 1B, 7A	Blizzard	K2 K9 K13 K21 K37
EE.16_3-42	1A, 1B, 7A	Blizzard	K2 K9 K13 K21 K37
EE.17_8-22	1A, 1B	Blizzard	K2 K9 K13 K20
EE.17_8-26	1A, 1B	Blizzard	K2 K9 K13 K20
EE.19_3-18	1A, 1B	Blizzard	K2 K9 K13 K20
EE.19_3-4	1A, 1B	Blizzard	K2 K9 K13 K20

BC ₂ F ₂	QTL	Resistenzdonor	KASP-Marker
EE.2_12-30	1A, 1B, 7A	Blizzard	K2 K9 K13 K21 K37
EE.2_3-14	1A, 1B	Blizzard	K2 K9 K13 K20
EE.20_8-24	1A, 1B	Blizzard	K1 K10 K13 K20
EE.20_8-4	1A, 1B	Blizzard	K1 K10 K13 K20
EE.20_8-46	1A, 1B	Blizzard	K1 K10 K13 K20
EE.20_8-48	1A, 1B	Blizzard	K1 K10 K13 K20
EE.23_11-12	1A, 1B	Blizzard	K2 K11 K20
EE.23_11-17	1A, 1B	Blizzard	K2 K11 K20
EE.23_11-20	1A, 1B	Blizzard	K2 K11 K20
EE.23_3-10	1A, 1B	Blizzard	K2 K11 K20
EE.23_3-28	1A, 1B	Blizzard	K2 K11 K20
EE.23_3-42	1A, 1B	Blizzard	K2 K11 K20
EE.23 4-12	1A, 1B, 7D	Blizzard	K2 K11 K21 K42 K43
EE.23 4-21	1A, 1B, 7D	Blizzard	K2 K11 K21 K42 K43
EE.24 7 27	1A, 7D	Blizzard	K1 K10 K42
EE.24 7 4	1A, 7D	Blizzard	K1 K10 K42
 EE.24 7 48	, 1A, 7D	Blizzard	K1 K10 K42
EE.25 8-19	1A, 1B	Blizzard	K1 K10 K20
EE.25 8-2	, 1A, 1B	Blizzard	K1 K10 K20
EE.25 9-13	1A. 7D	Blizzard	K1 K10 K42 K43
FF.25 9-21	1A. 7D	Blizzard	K1 K10 K42 K43
EE.25 9-44	1A, 7D	Blizzard	K1 K10 K42 K43
EE.25 9-5	1A, 7D	Blizzard	K1 K10 K42 K43
FF.27 4 16	1A. 7D	Blizzard	K2 K10 K42 K44
FF.27 4 17	1A. 7D	Blizzard	K2 K10 K42 K44
EE.27 4 29	1A, 7D	Blizzard	K2 K10 K42 K44
FF.3 12-2	1B. 7A	Blizzard	K13 K21 K37
FE.3 12-25	1B, 7A	Blizzard	K13 K21 K37
FF 32 5 31	1B 7A 7D	Blizzard	K13 K21 K39 K79 K42 K44
FF 32 5 29	1B 7A 7D	Blizzard	K13 K21 K39 K79 K42 K44
FE.32 5 39	1B, 7A, 7D	Blizzard	K13 K21 K39 K79 K42 K44
FF.32 5-12	1B, 7A, 7D	Blizzard	K13 K21 K39 K79 K42 K44
FF.32 9-1	1A. 7A. 7D	Blizzard	K2IK9IK39IK79IK42IK44
FF.32 9-5	1A, 7A, 7D	Blizzard	K2 K9 K39 K79 K42 K44
FF.32 9-9	1A, 7A, 7D	Blizzard	K2 K9 K39 K79 K42 K44
FF.33 6 3	1B. 7A. 7D	Blizzard	K13 K21 K37 K42 K44
EE.33 6 9	1B. 7A. 7D	Blizzard	K13 K21 K37 K42 K44
EE.34 3 14	1A, 7A	Blizzard	K2IK9IK37
EE.34 3 30	1A, 7A	Blizzard	K2IK9IK37
EE.34 3 46	, 1A, 7A	Blizzard	K2IK9IK37
EE.34 3 7	1A. 7A	Blizzard	K2IK9IK37
EE.34 3 9	1A, 7A	Blizzard	K2IK9IK37
EE.35 1-22	7A, 7D	Blizzard	K78 K79 K42 K44
EE.4 3 10	1A. 7A	Blizzard	K2IK9IK37
FF.4 3 38	1A. 7A	Blizzard	K2IK9IK37
EE.4 3 4	1A, 7A	Blizzard	K2IK9IK37
FF.40 4-17	1A, 1B	Blizzard	K2 K9 K13 K20
FF 41 9-5	1A 7D	Blizzard	K2 K10 K42 K44
EE.49 15-13	1A, 1B	Bonneville	K2 K11 K13 K20
EE.49 15-2	1A, 1B	Bonneville	K2 K11 K13 K20
EE.49 15-30	1A, 1B	Bonneville	K2 K11 K13 K20
EE.49 15-5	1A, 1B	Bonneville	K2 K11 K13 K20
FF.49 21-11	1A. 1B	Bonneville	K2 K11 K13 K20
EE.49 21-17	1A, 1B	Bonneville	K2 K11 K13 K20
FF.49 21-26	1A, 1B	Bonneville	K2 K11 K13 K20
FF 50 15-26	10 1B	Bonneville	K2 K11 K13 K20
LC.30_13.20	17, 10	Donnevine	

BC ₂ F ₂	QTL	Resistenzdonor	KASP-Marker
EE.51_8-2	1A, 1B	Bonneville	K2 K11 K13 K20
EE.52_10-12	1A, 1B	Bonneville	K2 K11 K13 K20
EE.52_10-23	1A, 1B	Bonneville	K2 K11 K13 K20
EE.54_13-26	1A, 1B	Bonneville	K2 K11 K13 K20
EE.54_13-28	1A, 1B	Bonneville	K2 K11 K13 K20
EE.54_13-35	1A, 1B	Bonneville	K2 K11 K13 K20
EE.54_13-47	1A, 1B	Bonneville	K2 K11 K13 K20
EE.54_13-6	1A, 1B	Bonneville	K2 K11 K13 K20
EE.54_14-26	1A, 1B	Bonneville	K2 K11 K13 K20
EE.54_14-32	1A, 1B	Bonneville	K2 K11 K13 K20
EE.54_14-37	1A, 1B	Bonneville	K2 K11 K13 K20
EE.54_14-48	1A, 1B	Bonneville	K2 K11 K13 K20
EE.6_14-10	1A, 1B, 7A	Blizzard	K2 K11 K13 K21 K37
EE.6_14-24	1A, 1B, 7A	Blizzard	K2 K11 K13 K21 K37
EE.6 14-8	1A, 1B, 7A	Blizzard	K2 K11 K13 K21 K37
EE.62 10-14	7D	PI119333	K47 K51
EE.62_10-17	7D	PI119333	K47 K51
EE.62_10-18	7D	PI119333	K47 K51
EE.62 10-44	7D	PI119333	K47 K51
EE.62_10-47	7D	PI119333	K47 K51
EE.62 10-5	7D	PI119333	K47 K51
EE.62 10-7	7D	PI119333	K47 K51
EE.62 7-11	7D	PI119333	K47 K51
EE.62 7-23	7D	PI119333	K47 K51
EE.62 7-26	7D	PI119333	K47 K51
 EE.62 7-3	7D	PI119333	K47 K51
EE.62_7-33	7D	PI119333	K47 K51
EE.63_9-10	7D	PI119333	K47 K51
EE.63 9-13	7D	PI119333	K47 K51
EE.63 9-15	7D	PI119333	K47 K51
EE.63_9-27	7D	PI119333	K47 K51
EE.63_9-33	7D	PI119333	K47 K51
EE.63_9-36	7D	PI119333	K47 K51
EE.63_9-9	7D	PI119333	K47 K51
EE.64_4-1	7D	PI119333	K47 K51
EE.64_4-11	7D	PI119333	K47 K51
EE.64_4-16	7D	PI119333	K47 K51
EE.64_4-21	7D	PI119333	K47 K51
EE.64_4-22	7D	PI119333	K47 K51
EE.64_4-25	7D	PI119333	K47 K51
EE.64_4-7	7D	PI119333	K47 K51
EE.64_4-8	7D	PI119333	K47 K51
EE.64_9-16	7D	PI119333	K47 K51
EE.64_9-18	7D	PI119333	K47 K51
EE.64_9-28	7D	PI119333	K47 K51
EE.64_9-35	7D	PI119333	K47 K51
EE.64_9-38	7D	PI119333	K47 K51
EE.64_9-4	7D	PI119333	K47 K51
EE.65_6-1	7D	PI119333	K47 K51
EE.65_6-11	7D	PI119333	K47 K51
EE.65_6-12	7D	PI119333	K47 K51
EE.65_6-24	7D	PI119333	K47 K51
EE.65_6-36	7D	PI119333	K47 K51
EE.65_6-4	7D	PI119333	K47 K51
EE.65_6-42	7D	PI119333	K47 K51
EE.65_6-5	7D	PI119333	K47 K51

BC ₂ F ₂	QTL	Resistenzdonor	KASP-Marker
EE.68_6-31	4B, 7D	PI119333	K23 K26 K47 K51
EE.68_6-39	4B, 7D	PI119333	K23 K26 K47 K51
EE.68_6-43	4B, 7D	PI119333	K23 K26 K47 K51
EE.69_4-25	4B, 7D	PI119333	K23 K26 K47 K51
EE.69_4-26	4B, 7D	PI119333	K23 K26 K47 K51
EE.69_4-31	4B, 7D	PI119333	K23 K26 K47 K51
EE.69_4-41	4B, 7D	PI119333	K23 K26 K47 K51
EE.69_4-42	4B, 7D	PI119333	K23 K26 K47 K51
EE.70_1-14	(4B,) 7D	PI119333	K47 K51
EE.70_1-15	(4B,) 7D	PI119333	K47 K51
EE.70_1-17	(4B,) 7D	PI119333	K47 K51
EE.70_1-2	(4B,) 7D	PI119333	K47 K51
EE.70_1-20	(4B,) 7D	PI119333	K47 K51
EE.70_1-25	(4B,) 7D	PI119333	K47 K51
EE.70_1-29	(4B,) 7D	PI119333	K47 K51
EE.70_1-6	(4B,) 7D	PI119333	K47 K51
EE.70_11-23	(4B,) 7D	PI119333	K47 K51
EE.70_11-41	(4B,) 7D	PI119333	K47 K51
EE.70_11-5	(4B,) 7D	PI119333	K47 K51
EE.70_11-7	(4B,) 7D	PI119333	K47 K51
EE.70_11-9	(4B,) 7D	PI119333	K47 K51
EE.70_2-32	(4B,) 7D	PI119333	K47 K51
EE.70_2-38	(4B,) 7D	PI119333	K47 K51
EE.70_9-5	(4B,) 7D	PI119333	K47 K51
EE.71_1-19	4B, 7D	PI119333	K23 K26 K47 K51
EE.71_1-38	4B, 7D	PI119333	K23 K26 K47 K51
EE.71_1-42	4B, 7D	PI119333	K23 K26 K47 K51
EE.73_6-38	4B, 7D	PI119333	K23 K26 K47 K51
EE.73_6-42	4B, 7D	PI119333	K23 K26 K47 K51
EE.73_6-43	4B, 7D	PI119333	K23 K26 K47 K51
EE.73_6-7	4B, 7D	PI119333	K23 K26 K47 K51
EE.9_12-15	1A, 1B, 7A	Blizzard	K2 K11 K13 K21 K37
EE.9_7-12	1A, 1B	Blizzard	K2 K11 K13 K20
EE.9_7-29	1A, 1B	Blizzard	K2 K11 K13 K20
EE.9_7-4	1A, 1B	Blizzard	K2 K11 K13 K20

Tabelle 18: Verworfene Pflanzen der BC₂F₂-Generation. Die Spalten zwei bis vier enthalten Informationen über Resistenz-QTL, Resistenzdonor und jene KASP-Marker die bei der KASP-Genotypisierung pro Pflanzen verwendet wurden. Für die eingeklammerten QTL sind keine polymorphen Marker verfügbar, mit denen das Vorhandensein des QTL in diesem Pflanzenmaterial getestet werden könnte.

BC ₂ F ₂	QTL	Resistenzdonor	KASP-Marker
EE.1_13-16	1A, 7A	Blizzard	K2 K9 K13 K21 K37
EE.1_13-3	1A, 7A	Blizzard	K2 K9 K13 K21 K37
EE.10_12-14	1A, 1B	Blizzard	K2 K11 K13 K20
EE.10_12-2	1A, 1B	Blizzard	K2 K11 K13 K20
EE.10_12-27	1A, 1B	Blizzard	K2 K11 K13 K20
EE.10_12-7	1A, 1B	Blizzard	K2 K11 K13 K20
EE.10_12-8	1A, 1B	Blizzard	K2 K11 K13 K20
EE.16_3-41	1A, 1B, 7A	Blizzard	K2 K9 K13 K21 K37
EE.17_8-17	1A, 1B	Blizzard	K2 K9 K13 K20
EE.19_3-13	1A, 1B	Blizzard	K2 K9 K13 K20

BC ₂ F ₂	QTL	Resistenzdonor	KASP-Marker
EE.19_3-35	1A, 1B	Blizzard	K2 K9 K13 K20
EE.2_12-7	1A, 1B, 7A	Blizzard	K2 K9 K13 K21 K37
EE.2_3-19	1A, 1B	Blizzard	K2 K9 K13 K20
EE.20_8-2	1A, 1B	Blizzard	K1 K10 K13 K20
EE.23_11-1	1A, 1B	Blizzard	K2 K11 K20
EE.23_11-22	1A, 1B	Blizzard	K2 K11 K20
EE.23_3-26	1A, 1B	Blizzard	K2 K11 K20
EE.23 3-5	1A, 1B	Blizzard	K2 K11 K20
EE.23_4-8	1A, 1B, 7D	Blizzard	K2 K11 K21 K42 K43
EE.24_7_36	1A, 7D	Blizzard	K1 K10 K42
EE.25_8-18	1A, 1B	Blizzard	K1 K10 K20
EE.25_8-21	1A, 1B	Blizzard	K1 K10 K20
EE.25 8-5	1A, 1B	Blizzard	K1 K10 K20
EE.27 4 27	1A, 7D	Blizzard	K2 K10 K42 K44
EE.27 4 41	1A, 7D	Blizzard	K2 K10 K42 K44
EE.27 4 47	1A, 7D	Blizzard	K2 K10 K42 K44
 EE.27 4-7	, 1A, 7D	Blizzard	K2 K10 K42 K44
 EE.3 12-26	1B, 7A	Blizzard	K13 K21 K37
EE.3 12-27	1B, 7A	Blizzard	K13 K21 K37
FF.3 12-29	1B. 7A	Blizzard	K13 K21 K37
FF 32 5-15	1B 7A 7D	Blizzard	K13 K21 K39 K79 K42 K44
FF.32 5-38	1B, 7A, 7D	Blizzard	K13 K21 K39 K79 K42 K44
FF 32 5-4	1B 7A 7D	Blizzard	K13 K21 K39 K79 K42 K44
FF 32 5-42	1B 7A 7D	Blizzard	K13 K21 K39 K79 K42 K44
FF 32 9-11	1A 7A 7D	Blizzard	K2 K9 K39 K79 K42 K44
FF 32 9-13	1A 7A 7D	Blizzard	K2 K9 K39 K79 K42 K44
FF.32 9-14	1A, 7A, 7D	Blizzard	K2 K9 K39 K79 K42 K44
FF 32 9-19	1A 7A 7D	Blizzard	K2 K9 K39 K79 K42 K44
FF 32 9-23	1A 7A 7D	Blizzard	K2 K9 K39 K79 K42 K44
FF 32 9-24	1A 7A 7D	Blizzard	K2 K9 K39 K79 K42 K44
FF 32 9-28	1A 7A 7D	Blizzard	K2 K9 K39 K79 K42 K44
FF.32 9-4	1A, 7A, 7D	Blizzard	K2 K9 K39 K79 K42 K44
FF 33 6 23	1B 7A 7D	Blizzard	K13 K21 K37 K42 K44
FF 33 6 24	1B 7A 7D	Blizzard	K13 K21 K37 K42 K44
FF 34 3 47	1A 7A	Blizzard	K2 K9 K37
FE.35_1-15	7A, 7D	Blizzard	K78 K79 K42 K44
FF.35 1-30	7A, 7D	Blizzard	K78 K79 K42 K44
FF.4 3 21	1A. 7A	Blizzard	K2 K9 K37
FF.4 3 26	1A. 7A	Blizzard	K2 K9 K37
FF.4 3 40	1A, 7A	Blizzard	K2 K9 K37
EE.40 4-13	1A, 1B	Blizzard	K2 K9 K13 K20
FF.40 4-2	1A. 1B	Blizzard	K2 K9 K13 K20
FF.40 4-4	1A. 1B	Blizzard	K2 K9 K13 K20
EE.40 4-5	1A, 1B	Blizzard	K2 K9 K13 K20
FE.49 15-23	1A, 1B	Bonneville	K2 K11 K13 K20
FF.49 15-3	1A, 1B	Bonneville	K2 K11 K13 K20
FF 49 21-16	1A 1B	Bonneville	K2 K11 K13 K20
FF 49 21-3	1A 1B	Bonneville	K2 K11 K13 K20
FF.50 15-23	1A, 1B	Bonneville	K2 K11 K13 K20
FE.51 8-27	1A, 1B	Bonneville	K2 K11 K13 K20
EE.52 10-19	1A, 1B	Bonneville	K2 K11 K13 K20
FF.52 5-3	1A, 1B	Bonneville	K2 K11 K13 K20
 FF.52_5-4	1A, 1B	Bonneville	K2 K11 K13 K20
EE.54 14-47	1A, 1B	Bonneville	K2 K11 K13 K20
FF 6 14-26	1A 1B 7A	Blizzard	K2 K11 K13 K21 K37
FF 6 14-48	10, 10, 7A	Blizzard	K2 K11 K13 K21 K37
	·~, ·D, /A	DIIZZUIU	

BC ₂ F ₂	QTL	Resistenzdonor	KASP-Marker
EE.62_10-13	7D	PI119333	K47 K51
EE.62_10-27	7D	PI119333	K47 K51
EE.62_10-33	7D	PI119333	K47 K51
EE.62_8-1	7D	PI119333	K47 K51
EE.62_8-14	7D	PI119333	K47 K51
EE.62_8-18	7D	PI119333	K47 K51
EE.62_8-21	7D	PI119333	K47 K51
EE.62_8-9	7D	PI119333	K47 K51
EE.63_2-14	7D	PI119333	K47 K51
EE.63_2-19	7D	PI119333	K47 K51
EE.63_2-3	7D	PI119333	K47 K51
EE.63_2-4	7D	PI119333	K47 K51
EE.63_2-5	7D	PI119333	K47 K51
EE.63_2-7	7D	PI119333	K47 K51
EE.63_9-22	7D	PI119333	K47 K51
EE.64_9-25	7D	PI119333	K47 K51
EE.65_7-11	7D	PI119333	K47 K51
EE.65_7-15	7D	PI119333	K47 K51
EE.65_7-2	7D	PI119333	K47 K51
EE.65_7-25	7D	PI119333	K47 K51
EE.65_7-46	7D	PI119333	K47 K51
EE.65_7-48	7D	PI119333	K47 K51
EE.70_11-42	(4B,) 7D	PI119333	K47 K51
EE.70_11-44	(4B,) 7D	PI119333	K47 K51
EE.70_2-1	(4B,) 7D	PI119333	K47 K51
EE.71_1-34	4B, 7D	PI119333	K23 K26 K47 K51
EE.71_1-4	4B, 7D	PI119333	K23 K26 K47 K51
EE.73_6-36	4B, 7D	PI119333	K23 K26 K47 K51
EE.9_12-1	1A, 1B, 7A	Blizzard	K2 K11 K13 K21 K37
EE.9_12-2	1A, 1B, 7A	Blizzard	K2 K11 K13 K21 K37
EE.9_12-3	1A, 1B, 7A	Blizzard	K2 K11 K13 K21 K37
EE.9_7-20	1A, 1B	Blizzard	K2 K11 K13 K20
EE.9_7-44	1A, 1B	Blizzard	K2 K11 K13 K20
EE.9_7-5	1A, 1B	Blizzard	K2 K11 K13 K20

Abbildungsverzeichnis

Abbildung 2: Steinbrand befallene Weizenähren. Das Weizenkorn wird durch dunkle Teliosporen (bunt balls) der Pilze *T. caries* bzw. *T. laevis* ersetzt......4

Abbildung8: DNA-Extraktionsplattemit96TubesinklusivePflanzenmaterialderWeizenpopulationBC2F221

 Abbildung 10: Temperaturprofil des PCR-Cyclers für die KASP-Genotypisierung.31 Abbildung 11: Übersicht über betroffene Wells (schwarz), welche mehr als 200 µL dH₂O benötigen würden, um eine DNA-Konzentration von 50 ng/µL zu erreichen. Von diesen Wells musste vor Zugabe von dH₂O durch den Pipettierroboter die Hälfte des Inhalts (50 µL) entfernt und das Volumen, welches hinzugefügt werden soll halbiert werden, um eine Überfüllung zu vermeiden. Die Farbcodierung gibt einen Überblick über die notwendigen Volumina zur Verdünnung: rot bedeutet mehr und grün weniger Zugabe.

Abbildung 12: Übersicht über die Reduktion der Anzahl an Pflanzen der BC₂F₂-Generation nach der markergestützten Selektion mittels KASP-Genotypisierung. 34

Abbildung 15: Pipettierschema der PCR-Platte A. Die Codierung in den Zellen stammt aus der Extraktions- bzw. Photometerplatte A. Die Farben dienen der besseren Orientierung. Die Marker-Beschriftung bezieht sich immer auf eine Spalte.......57
Tabellenverzeichnis

Tabelle 1: Anregungs- und Emissionswellenlängen der Fluorophore für das KASP-Genotypisierungsverfahren......11 Tabelle 2: Liste der verwendeten Geräte und Materialien bei der DNA-Extraktion. 19 Tabelle 3: Liste der verwendeten Chemikalien bei der DNA-Extraktion.20 Tabelle 4: Liste der Bestandteile mit Mengenangabe zur Herstellung des CTAB-Buffers. Das Volumen bzw. die Menge wurde nach den Angaben im Protokoll des Instituts für Tabelle 5: Liste der verwendeten Geräte und Materialien bei der Messung der DNA-Konzentration und deren Nomalisierung......25 Tabelle 6: Liste der verwendeten Geräte und Materialien bei der KASP-Genotypisierung. Tabelle 8: Verwendete KASP-Marker bei der KASP-Genotypisierung und benötigte Menge an Master-Mix und Primer-Mix. Bei der KASP-Marker-Nr. handelt es sich um eine interne Instituts-Bezeichnung. RXN (für "reactions") gibt an wie viele Wells mit dem KASP-Marker befüllt werden müssen (= Reihe * Spalte inkl. ca. 20% Sicherheitszugabe). Die Volumina an Master-Mix (2,5 µL/Well) bzw. Primer-Mix (0,07 µL/Well) ergeben sich durch Multiplikation von RXN mit dem jeweils notwendigen

Tabelle 11: Resistenzquellen für Ausgangskreuzungen mit Elitesorten mit Informationen über Anzahl der Resistenz-QTL, Position der QTL im Genom und Quelle der Resistenzen.

Tabelle12: AusgangskreuzungenzwischenElitesortenundResistenz-DonorenmitInformationen über vorhandeneResistenz-QTL bei den Nachkommen (F1) und von wemdie Elitesorte entwickelt wurde43

Tabelle 17: Positiv selektierte Pflanzen der BC₂F₂-Generation. Die Spalten zwei bis vier enthalten Informationen über Resistenz-QTL, Resistenzdonor und jene KASP-Marker die bei der KASP-Genotypisierung pro Pflanzen verwendet wurden. Für die eingeklammerten QTL sind keine polymorphen Marker verfügbar, mit denen das Vorhandensein des QTL in diesem Pflanzenmaterial getestet werden könnte.60

Tabelle 18: Verworfene Pflanzen der BC₂F₂-Generation. Die Spalten zwei bis vier enthalten Informationen über Resistenz-QTL, Resistenzdonor und jene KASP-Marker die bei der KASP-Genotypisierung pro Pflanzen verwendet wurden. Für die eingeklammerten QTL sind keine polymorphen Marker verfügbar, mit denen das Vorhandensein des QTL in diesem Pflanzenmaterial getestet werden könnte.63