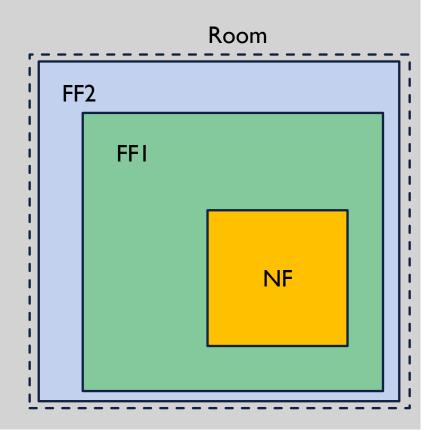


Nikolaos Cheimarios¹
Andreas Tsoumanis¹
Alexander C.Ø. Jensen²
Keld A. Jensen²
Georgia Melagraki¹
Antreas Afantitis¹

¹NovaMechanics Ltd, Nicosia, Cyprus ²The National Research Centre for the Working Environment, Denmark


NANOSOLVEIT

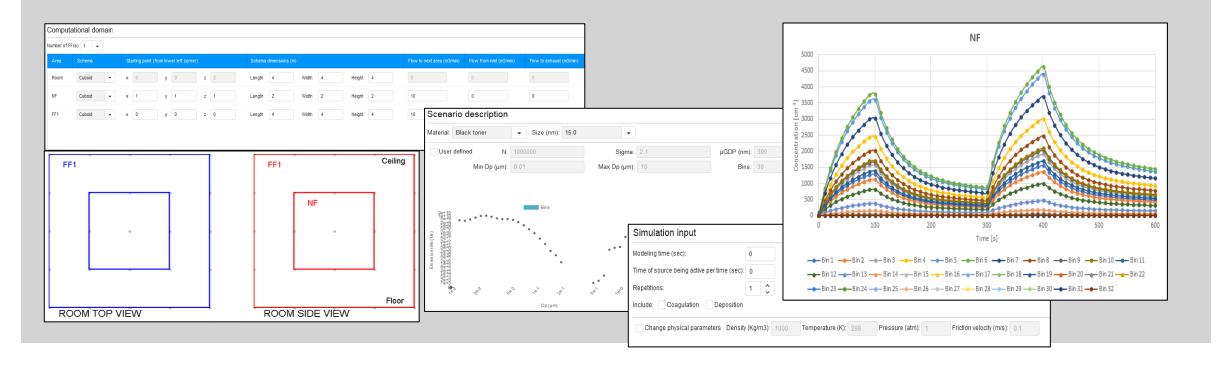
SHOWCASING HUMAN EXPOSURE ASSESSMENT USING https://aerosol.cloud.nanosolveit.eu/1/

HUMAN EXPOSURE ASSESSMENT

Create an easy to use software/web application for the assessment of the human exposure in nanomaterials

- Evaluate the concentration of nanomaterials in indoor environments
- A geometrical region where the nanomaterials are released: Room
 - The location of the source generator: **Near field (NF)**
 - Every other area of the Room: Far field (FFx), x=1,2,...,N
 - Every area of the Room must be embedded to the larger area.
 - Cuboid or Cylindrical.
- Source
 - Diameters (Dp) size distribution that characterizes the source: **Bins**
- Nanomaterials
 - Black Tonner, TiO₂, TiO₂; AgX
 - User defined distributions of bins
- Output: The concentration of nanomaterial per bin per box

THE MULTI-BOX MODEL


• Aerosol dynamics particle population balance equation:

$$dN_{k,i}/dt = J_{source,k,i} + J_{exchange,k,i} + J_{coagulation,k,i} + J_{deposition,k,i}$$

- $dN_{k,i}/dt \ (m^{-3}s^{-1})$: Number concentration over time
- $J_{source,k,i}$: Single point particle generation term
- $J_{exchange,k,i}$: Transport between the kth box and its connected boxes.
- $J_{coagulation,k,i}$: Coagulation due to Brownian diffusion and the number concentration change rate.
- $J_{deposition,k,i}$: Removal of aerosol particles that adhere to surfaces
- k runs over boxes and i over size bins

SOFTWAREAPPLICATION @ https://aerosol.cloud.nanosolveit.eu/1/

- Java
- Time integration: Apache common math3 Dormand Prince
- Web interface: zk framework

CONTACT US!

www.nanosolveit.eu

nanosolveit@novamechanics.com

Training

NSC Training Day @ NANOSAFE Digital Conference Nov., 23rd 12:00-13:30

FOLLOW US!

@NanoSolveIT R^G

Project NanoSolvelT

NanoSolvelT

https://github.com/NanoSolvelT

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 814572