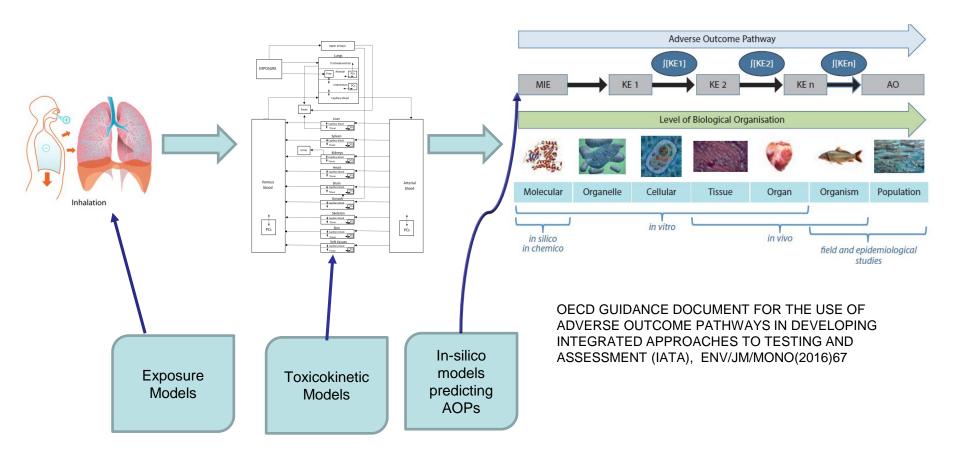


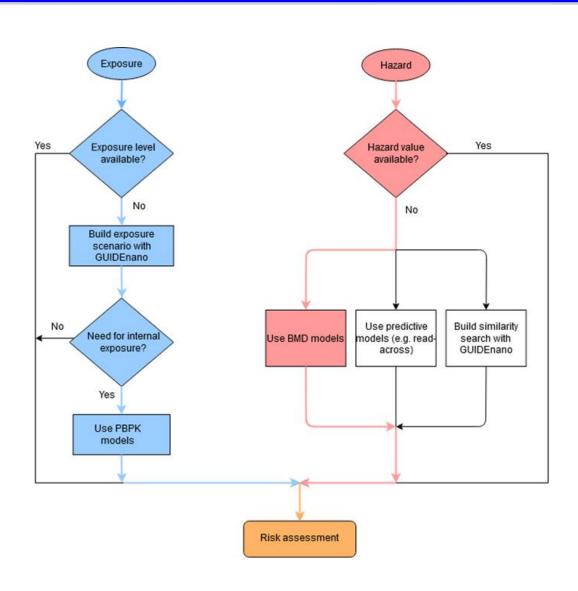
Nano-Knowledge Community

Periklis Tsiros - Harry Sarimveis


Showcasing the NanoCommons exposure/risk assessment tool

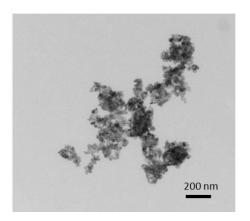
http://enaloscloud.novamechanics.com/nanocommons/exposure

Periklis Tsiros, Irene Liampa, Harry Sarimveis, Philip Doganis, Pantelis Karatzas (NTUA), Antreas Afantitis, Georgia Melagraki, Antreas Tsoumanis, Nikolaos Cheimarios (NovaMechanics), Nathan Bossa (LEITAT) and Iseult Lynch (UoB)


Risk Assessment through the AOP nano 20 concept

nano 20 Risk Assessment Workflow

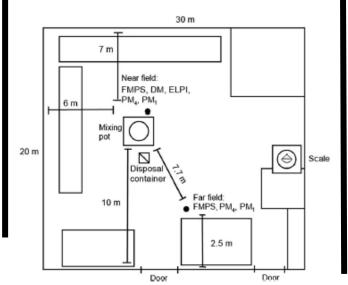
External exposure simulation using



nano 20 GUIDEnano

Nanomaterials property

- TiO2 NM102
- CAS: 13463-67-7
- Anatase
- 21 +/- 2; 100% in 10 to 30 nm range
- Spherical
- Dustiness: 15 mg/kg
- Photocatalyst
- Pure
- Density: 4,3

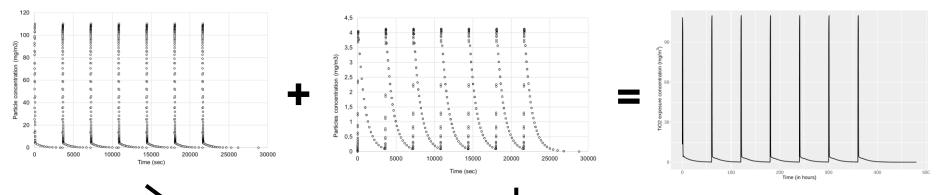


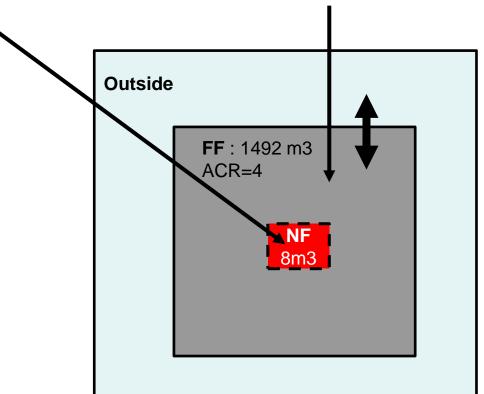
Activity

Compartment: factory

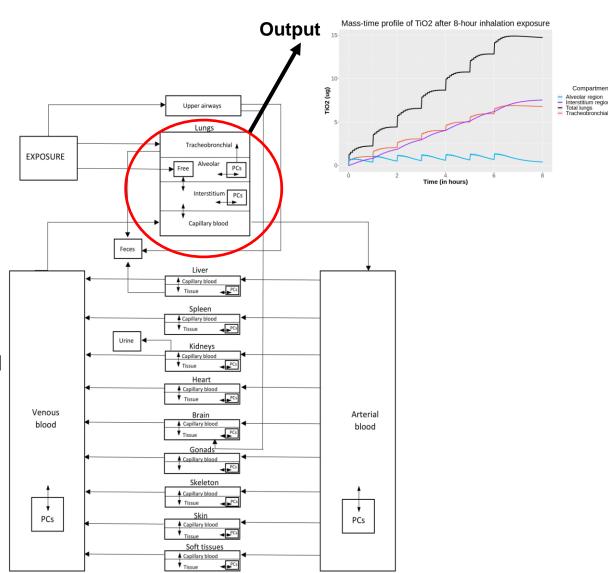
Release

specific model the time evolution of the particle size distribution (PSD) of NMs. In a twobox (or source-receptor) model the room is typically split into two boxes

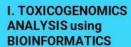

Using the Two-Box Nano-


- Far-Field (8 hours)
- Near-Field (8 hours)

nano 20 External exposure data



Internal exposure simulation – nano 20 Development of a PBPK model

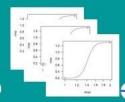

- Rat inhalation biokinetic data from Kreyling et al. (2019).
- Samples from 13 compartments over 5 time points, from 2 to 28 days post exposure.
- Structural model similar to Li et al. (2016).
- Extrapolation from rat to mice by scaling physiological parameters using literature information and deposition and clearance rates using MPPD (Multiple-Path Particle Dosimetry Model).

Workflow of the AOP-based BMD method on toxicogenomics data

<u>Input:</u> publicly available transcriptomics data from

Analysis pipeline developed using gold-standard methods

Gene Set Enrichment Analysis using



Enrichr

Output: Differentially expressed Genes lists, Enriched pathways per ENM

II. BMD ANALYSIS

R code using 'drc' & 'bmd' libraries

Models fit to the centered normalized log2 transformed intensities of all the Differentially Expressed Genes due to exposure to ENMs

Ouput: BMDt values per ENM exposure affected gene, BMDt per ENM exposure affected pathway

III. AOP-BASED GROUPING

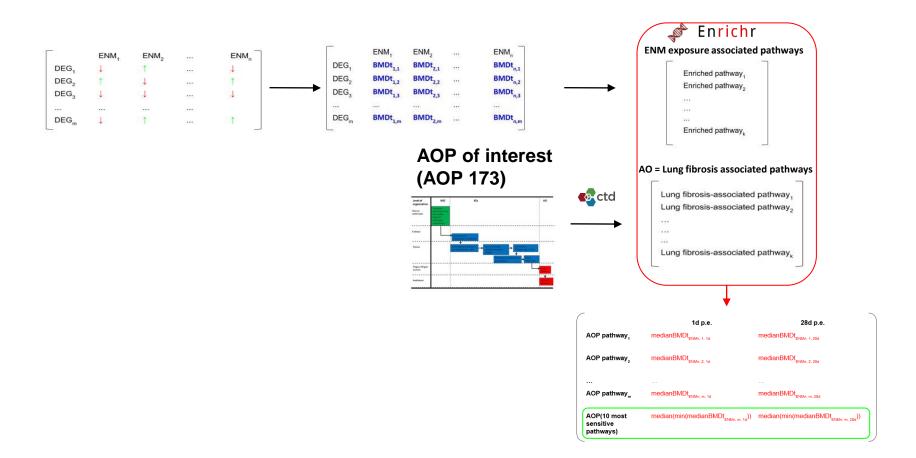
Retrieval of information about the Adverse Outcome (AO) for a specific AOP of interest

Adverse Outcome Pathway WIKI

Filtering of the AO-associated pathways that were found to be affected by the ENM exposure

Retrieval of the BMDt values for the genes that take part in each pathway, for each ENM

Hierarchical clustering of BMDt medians for each perturbed pathway


Output:

ENM grouping based on their potency to induce biological effects that are associated with a specific

nano 20 AOP-based BMD for TiO2

Nano-Knowledge Community

Thank you

Tool showcasing supporting material

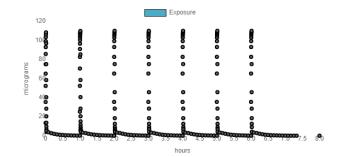
nano 20 Risk assessment tool

NanoCommons Risk Assessment Tool

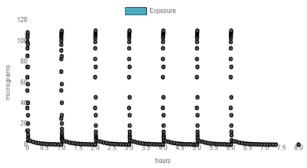
on, hosted and implemented within Enalos Cloud Platform, estimates the risk of triggering AOP 173 (Lung Fibrosis) in mice due to exposure to 20nm TiO2

neered nanoparticl	cs.	
	: Four different exposure scenarios have been simulated using the e user can alternatively enter a custom-made scenario.	Case 1 ▼
		45 g (initial mass 3000 kg) of TiO2 (22nm) poured over 7 hours in the NF, with 1 min activity every hour. For every hour the mouse stays 90 s in the NF and spends the rest of the time i
		Download timeseries
iternal exposure:	Concentration-time profiles for mice are simulated using a PBPK mod	del
hich has been deve	eloped and implemented in the <u>Jagpot platform</u> . A plot depicting the mig is automatically generated.	nass- Weight (5 - 50 grams)
,		Compute
isk assessment: I	s performed by comparing the predicted distribution of TiO2 concentr	ration i
ser can select the F	ture (POD) that have been computed using a <u>gene expression analys</u> POD of interest among different pathways involved in AOP173 or the r	
efines the POD of the	he AOP and short term (1 day) or long term (28 days) effects.	
Pathways	IL-17 signaling pathway	
Time	Median pathway BMDt (1d p.e) ▼	
logarithmic scal	le.	

*This work project has received funding from European Union Horizon 2020 Programme (H2020) via NanoCommons research infrastructure project under grant agreement no 731032


nano 20 First component: external exposure

External exposure: Four different exposure scenarios have been simulated using the <u>GUIDENano tool</u>. The user can alternatively enter a custom-made scenario.


45 g (initial mass 3000 kg) of TiO2 (22nm) poured over 7 hours in the NF, with 1 min activity duration every hour. For every hour the mouse stays 90 s in the NF and spends the rest of the time in the FF.

Download timeseries

External exposure: Four different exposure scenarios have been simulated using the <u>GUIDENano tool</u>. The user can alternatively enter a custom-made scenario.

Second component: internal exposure

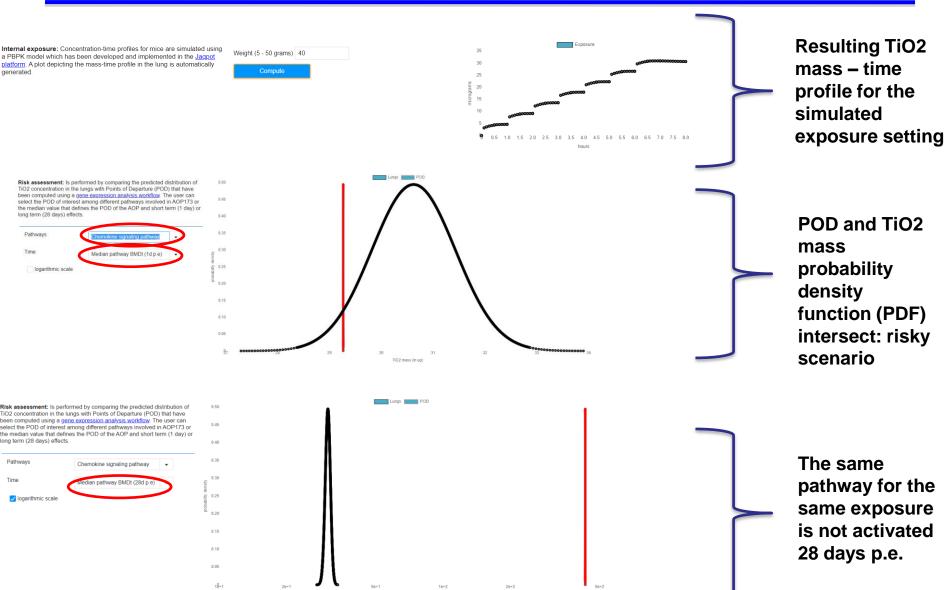
Internal exposure: Concentration-time profiles for mice are simulated using a PBPK model which has been developed and implemented in the <u>Jaqpot platform</u>. A plot depicting the mass-time profile in the lung is automatically generated.

Weight (5 - 50 grams)	
Compute	

nano 20 Third component: risk assessment

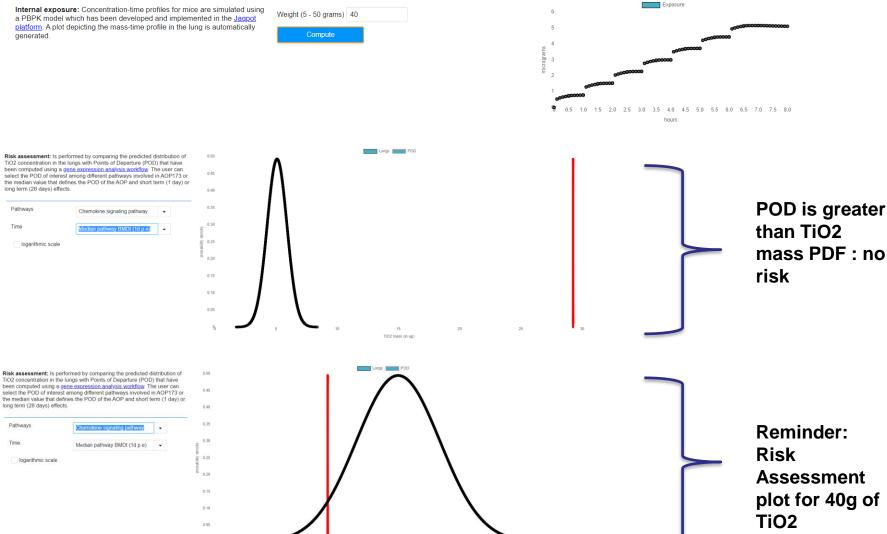
Risk assessment: Is performed by comparing the predicted distribution of TiO2 concentration in the lungs with Points of Departure (POD) that have been computed using a <u>gene expression analysis workflow</u>. The user can select the POD of interest among different pathways involved in AOP173 or the median value that defines the POD of the AOP and short term (1 day) or long term (28 days) effects.

Pathways	IL-17 signaling pathway	•
Time	Median pathway BMDt (1d p.e)	•
logarithmic scale		


Risk assessment: Is performed by comparing the predicted distribution of TiO2 concentration in the lungs with Points of Departure (POD) that have been computed using a <u>gene expression analysis workflow</u>. The user can select the POD of interest among different pathways involved in AOP173 or the median value that defines the POD of the AOP and short term (1 day) or long term (28 days) effects.

Pathways	L-17 signaling pathway	
Time	IL-17 signaling pathway Cytokine-cytokine receptor interaction	
logarithmic scale	Chemokine signaling pathway NOD-like receptor signaling pathway PPAR signaling pathway Pathways in cancer AOPmedianBMDt	

Pathways	IL-17 signaling pathway	•
Time	Median pathway BMDt (1d p.e)	•
logarithmic scale	Median pathway BMDt (1d p.e) Median pathway BMDt (28d p.e)	


Scenario 1: 45g of TiO₂ for 40g mano mouse

Scenario 2: 7.5g of TiO₂ for 40g nano SAFE' 20 mouse

plot for 40g of

Nano-Knowledge Community

Thank you