

EXTRAPOLATING THE APPLICABILITY OF WORKER EXPOSURE MEASUREMENT DATA

R.A. FRANKEN, K. MCNALLY, J.P GORCE, H. MARQUART, W. FRANSMAN

ACKNOWLEDGEMENTS

) Project team:

- > TNO: Remy Franken, Wouter Fransman
-) HSE: Kevin McNally, Jean-Philippe Gorce
-) Triskelion: Hans Marquart

> Funding:

) CEFIC LRI

> Exposure assessment is an essential component of the risk assessment process

- In the occupational setting, the "gold standard" approach for exposure assessment is based upon representative measurements
 - Representative?
 - Companies/sites, workers, repeats
- > In practice the vast majority of exposure assessments are not supported by measurement data
 - > A single substance alone may require many exposure assessments
- > Exposure models play an important role
 - > Estimates of exposure based upon contextual information about a task
 - Screening tools such as ECETOC TRA
 - Tier 2 models such as ART and Stoffenmanager

OBJECTIVES OF THE PROJECT

> Develop an approach that enables the use of existing "source" measurement data more extensively

> Please note that this approach was intended for "conventional chemicals"

Identify circumstances where "analogous data" might be introduced and applied to such exposure assessments

- > Apply corrections as necessary to account for differences between "source" and "target" scenarios & account for uncertainties
 - Where "source scenarios" mean situations for which exposure measurements exist which can be used for read-across
 - > Where "target scenario" means the user scenario for which measurements are not available

) User-friendly

> A hybrid modelling and measurement approach that supplements existing exposure models

• An estimate of exposure is based upon existing measurement data from a **similar** source scenario

• Corrections applied to account for differences between source and target scenarios

> Same underpinning theory of exposure determinants as used in models such as ECETOC TRA and ART

- > Step 1: Quality check on the source dataset
- Step 2: Inventory/mapping of the source- and target situation for relevant read-across parameters
- Step 3: Statistical correction for differences between sourceand target situation and quantification of uncertainty
- > Step 4: Read-across results in a user-friendly way

for life 7

STEP 1: DATA QUALITY

- Quality of source data should be sufficient before used for read-across
-) Technical aspects:
 - Sampling / analytical methods
- > Contextual information:
 - Route of exposure
 - Substance & concentration in product/article
 - Activities
 - Scale
 - Duration
 - Localised controls
 - Setting

STEP 2: MAPPING

- Transcribe contextual information on the source and target scenarios into determinants
 - > PROCs and ART activity classes supported
 - Determinants relating to the source depend upon the exposure scenario class
- Systematic comparison of determinants in source and target scenarios to assess whether readacross is reasonable
 - A small rule-base governs the extrapolations from source to target scenario that is supported by the framework

Figure 1: Illustration of the mapping of the target situation and the available data source(s) and the rule-base needed to extrapolate the measured exposure from the available data source(s) to the target situation.

Target situation	Available dataset		Exposure estimate
	Sampling method Analytical method	Effect of sampling method Effect of analytical method	
Toluene 20% Filling drums Fixed LEV Large workplace Good ventilation	Toluene 100% Filling drums No controls Small workplace Good ventilation	Effect of concentration Effect of fixed LEV Effect of room size	
Scenario over companies within Europe	N=25 Workers = 5 Companies = 1 Country=1	Add between company variance to the variance of the available dataset	

STEP 3: STATISTICAL CORRECTION

> Calculate a read-across score

- Read-across scores for emission potential, dispersion, localised control and concentration calculated based on a systematic comparison of source and target scenarios
- > Emission potential is subject to calibration
 - Exposures in "similar" scenarios are closer than an uncorrected ratio of determinants would imply
 - A methodology for accounting for uncertainty in read-across results from this calibration step
- > Final read-across score

DOES IT WORK?

- Framework has been tested in 5 initial case studies and 5 additional challenging case studies following recent refinements to the approach.
 - Single source and multiple target scenarios within each case study
 - Range of activities and substance classes studied

WOULD IT WORK WITH NANOMATERIALS? SEVERAL OUTCOMES POSSIBLE

- > Test approach with a dataset (case studies) containing nanomaterials
- > Possibly extra determinants need to be considered
 - > Particle size (or distribution), aggregation and agglomeration
 - > Additional activities possibly not covered by PROCs or activity classes

) ?

- > Current calculation is (partly) calibrated
 - > Possibly a new calibration needs to be performed on a dataset with nanomaterials
- > Current tools used within the current framework are ECETOC TRA and ART
 - > Possible nano-specific tools can be used if needed to tailor the framework for MNs

> Translate the theory and concept of the framework towards a user-friendly IT tool

THANK YOU FOR YOUR TIME

