

Life cycle thinking in nanoform release assessment using GRACIOUS case studies

Nathan Bossa, Camilla Delpivo, Araceli Sanchez, Véronique Adam, Bernd Nowack, Tobias Hammer, Jing Wang, Ana Sofia Godinho da Fonseca, Keld A. Jensen, Emmanuel Ruggiero, Wendel Wohlleben, Apostolos Salmatonidis, Vicenç Pomar, Socorro Vázquez-Campos

Nanomaterials release during their life cycle

• Release of nanomaterials occur during their complete life cycle and have been assessed for a number application.

- Since 20 years, release library is growing, and release database are created with models build on top of it to
 predict exposure.
- Parameters driving the release which can be link to release process, the NFs property or the product property
- We can start to establish hypotheses and provisional criteria for grouping and guiding principles for readacross

Release Form

Exposure route and population

NFs release: Criteria for grouping

Gracious case study

Benchmark materials NMs/ NFs

NEP

- O -			JRC				
EUROPEAN COMMISSION							
CNT NM-402	CNT Mitsui7	BaSO4	JRCNM50001a	CeO2 NM-212	Ag NM-300K	SiO2 NM-200	ZnO NM-110

Cellulose fibers

CNF-50-nm CNF-80-nm Cellulose nanocrystals

Ag-NW1_long Ag-NW2_short

Ag fibers

short

Nouryon managing technologies Paper **Plastics** Paint Matrix: PU + PA6 + NMs: Silica anis Al; Matrix: solid Vit/bas1 PLA Silica_anis_std and and Solid Bas 3 Fe2O2_nano_A and BNMs: NMs: Silica_silane, CuPhatalo_nano_A Fe2O3_nano_A and B and B

BASF We create chemistry

Plastic film

Matrix: PET NMs: Ag-NW1 and 2

NEP produced by an industrial partner

Relevant product -

std

 \overline{A}

anis anis

Silica_ Silica_

silane

Silica

std

Si02

Silica_ Silica_

₹

Information's available on the product, the NF function, the NFs incorporated, the NFs content,...

Simulating the NEP life cycle stage

Food contact

Smooth rubbing: Dermal contact

Weathering

Incineration

Exposure route and population

Release rate

Release Form

Simulating product life cycle: simulating hand contact

Protocol (ISO 105-X12:2016) Force of 9 N

Crockmeter have been validated by the US consumer product safety comision (CPSC) for wood playground impregnated with antifungial copper materials

Simulate the release during paint use involving smooth rubbing

- Hand contact
- Paint cleaning

Simulating product life cycle: weathering

Climatic chamber

Cycle of UV and rain

The UV energy is used as a way of comparison between experiment and to extrapolate to real life climat

Runoff is collected and analyzed (ICP-MS, Microscopy, size fractionation)

Simulating product life cycle: Landfilling

Toxicity characteristic leaching **procedure TCLP method:** EPA standard Method 1311

- Batch test
- LS of 20
- Leaching solution:
- Acid acetic and NaOH (pH: 4,8)
- MilliQ
- 18H rotative aggitation

Extrapolation ???

The need for worst case (accelerated) scenario

Thank you for your attention!

Nathan Bossa nbossa@leitat.org