
Towards the Next Generation of Reactive Model
Transformations on Low-Code Platforms: Three Research Lines

Benedek Horváth
IncQuery Labs Ltd.
Budapest, Hungary

Johannes Kepler University Linz
Linz, Austria

benedek.horvath@incquerylabs.com

Ákos Horváth
IncQuery Labs Ltd.
Budapest, Hungary

akos.horvath@incquerylabs.com

Manuel Wimmer
Johannes Kepler University Linz

Linz, Austria
manuel.wimmer@jku.at

ABSTRACT
Low-Code Development Platforms have emerged as the next-gen-
eration, cloud-enabled collaborative platforms. These platforms
adopt the principles of Model-Driven Engineering, where models
are used as first-class citizens to build complex systems, and model
transformations are employed to keep a consistent view between
the different aspects of them. Due to the online nature of low-code
platforms, users expect them to be responsive, to complete complex
operations in a short time. To support such complex collaboration
scenarios, the next-generation of low-code platforms must (𝑖) offer
a multi-tenant environment to manage the collaborative work of
engineers, (𝑖𝑖) provide a model processing paradigm scaling up to
hundreds of millions of elements, and (𝑖𝑖𝑖) provide engineers a set of
selection criteria to choose the right model transformation engine
in multi-tenant execution environments.In this paper, we outline
three research lines to improve the performance of reactive model
transformations on low-code platforms, by motivating our research
with a case study from a systems engineering domain.

CCS CONCEPTS
• Software and its engineering→Model-driven software en-
gineering.

KEYWORDS
Low-Code Development Platforms, Model-Driven Engineering

ACM Reference Format:
Benedek Horváth, Ákos Horváth, and Manuel Wimmer. 2020. Towards the
Next Generation of Reactive Model Transformations on Low-Code Plat-
forms: Three Research Lines. In ACM/IEEE 23rd International Conference on
Model Driven Engineering Languages and Systems (MODELS ’20 Compan-
ion), October 18–23, 2020, Virtual Event, Canada. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3417990.3420199

1 INTRODUCTION
In recent years a new generation of cloud-enabled collaborative soft-
ware development tools, Low-CodeDevelopment Platforms (LCDPs),
have emerged allowing citizen developers with no or little prior

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in ACM/IEEE 23rd
International Conference on Model Driven Engineering Languages and Systems (MODELS
’20 Companion), October 18–23, 2020, Virtual Event, Canada, https://doi.org/10.1145/
3417990.3420199.

Low-Code Development Platform

Collaborative
platform

Visual
diagrams

Domain-
specific editors

Low-Code
Engineering Platform

Productivity

Model
transformation
and platform

characteristics

Challenges

Scalability

Number
of users

Model
size

Figure 1: From LCDP to LCEP

programming experience to design and implement full-fledged ap-
plications in a couple of hours, instead of weeks, and thus allow
shorter time-to-market and time-to-value cycles.

LCDPs adopt the recent theoretical and practical advancements
of Model-Driven Engineering (MDE). On these platforms citizen
developers [45] build models of the software, by refining its opera-
tion on diagrams with different levels of abstraction, using domain-
specific editors. Moreover, they use model transformations to derive
platform-specific source code, tests, or configuration artifacts from
the models to realize their systems as fully operational applications.

At the same time, Model-Based Systems Engineering (MBSE)
has been successfully applying MDE techniques in designing and
implementing complex systems. In recent years, several industrial
vendors started to develop cloud-enabled products for MBSE [23].
Their functionality covers the whole life-cycle of modeling, com-
bines multi-domain models from different repositories, and offers a
collaborative platform for engineers from various disciplines.

In order to benefit from the cloud-enabled collaborative prop-
erties of LCDPs in systems engineering, these platforms need to
be adapted for MBSE needs and challenges, and their performance
should be improved in two respects: number of users, who concur-
rently and collaboratively work on different parts of the model,
and scalability w.r.t. the size of models in the range of hundreds of
millions of elements. The characteristics of model transformations on
collaborative platforms should be studied to derive several selection
criteria that can be used to assess state-of-the-art model transforma-
tion engines, to find the most suitable one for the given transforma-
tion context and execution environment. As illustrated by Figure 1,
addressing these challenges will contribute to the advancement
of LCDPs to Low-Code Engineering Platforms (LCEPs) [45] with
advanced model processing and transformation capabilities.

In this paper, we outline three research lines by mapping the
aforementioned challenges into research directions motivated by

https://doi.org/10.1145/3417990.3420199
https://doi.org/10.1145/3417990.3420199
https://doi.org/10.1145/3417990.3420199

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Benedek Horváth, Ákos Horváth, and Manuel Wimmer

Table 1: Model transformation and query approaches

Model
Transformation

Model
Query

Lazy [47] [30, 44]

Incremental [13, 49] [6]

Reactive [5, 36] -

Parallel [10, 11, 31, 46] [7, 30]

Distributed [3, 11] [42]

previous experiences from an industrial project. The paper is struc-
tured as follows: Section 2 introduces the related work, Section 3
shows a motivating example for the research, Section 4 outlines
the research lines, including the main directions of advancement,
Section 5 concludes the paper.

2 RELATEDWORK
In this section, we summarize how different model transforma-
tion and query approaches address the scalability challenge for
very large and complex models (Section 2.1), what methods re-
searchers used to assess the performance of model transformation
engines (Section 2.3). Besides, we introduce some related work
on multi-tenant patterns to leverage scalable cloud architectures
while maintaining separation between the tenants (Section 2.2). Fi-
nally, we conclude the section by positioning ourselves to research
directions that have not been explored yet (Section 2.4).

2.1 Model transformation and query
approaches

Both Kolovos et al. in [27] and Bucchiarone et al. in [8] have listed
scalability of model transformations as one of the key challenges
in MDE. Efficiently running model transformations, in terms of
memory use and execution time, on models with hundreds of mil-
lions of elements is a challenging task. The challenge is multiplied
in the case of distributed models and distributed execution envi-
ronments. Although model transformations is a widely researched
area, state-of-the-art tools lack in performance even for mid-sized
models [8].

In order to address scalability in model transformations, several
execution models have been proposed and implemented, as Table 1
shows it. In lazy mode, transformation rules are executed only if
they are used by other rules [47]. In target incremental transforma-
tions target models are updated according to changes in the source
model [13, 49]. Incremental transformations are usually executed
faster, than batch transformations, which recompute the whole
target model. Reactive model transformations are executed as reac-
tions for events emitted by event sources, and they can combine
incrementality with lazy evaluation [5, 36].

Model transformations are computation heavy operations. In or-
der to make themmore scalable, different parallelization techniques
have been proposed.

Tisi et al. implemented a task-parallel engine for ATL in which
each thread executes a different transformation rule and works
on the whole source and target models [46]. Due to several con-
straints of the ATL language, the application of transformation
rules is highly independent of each other, which is beneficial for
the parallel execution of transformations. However, due to tech-
nical restrictions of the Eclipse Modeling Framework they used,
target element creation, adding values to multi-valued collections,
creating and reading traceability links need to be synchronized.

Burgueno et al. introduced the LinTra framework for model-
to-model (M2M) transformations [10, 11]. The framework adopts
the principles of the Linda coordination language that follows the
Blackboard approach. In this approach, processes communicate via
tuples in shared memory. LinTra cuts the source model into parti-
tions and transforms them in a data-parallel way in a master-slave
architecture. The master process coordinates the work of the slaves
that execute the transformation rules on the model partitions [9].

Mezei et al. proposed a parallelization approach based on the
offline dependency check of transformation rules [31]. Two trans-
formation rules are in metaconflict if their match may conflict ac-
cording to the metamodel items used in the rules. Those rules that
are not in metaconflict can be grouped into independence blocks
because they can be executed in parallel. Consecutive blocks may
not be conflict-free, thus they implemented several heuristics to
avoid and resolve conflicts in VMTS [29].

In order to overcome the memory limitations of a single ma-
chine, and leverage the benefits of a cluster, consisting of many
processing nodes, several distributed model transformations have
been proposed.

Benelallam et al. implemented distributed M2M transformations
in ATL on MapReduce [3]. They equally distributed the source
model among the worker nodes in the map phase. Each node applies
the full transformation code for the subset of the source model they
are assigned to. They call this phase local match-apply. In the reduce
phase, worker nodes are responsible for building the partial target
models into a full target model, by resolving the missing references
in them (global resolve).

Burgueno et al. adapted the LinTra framework for distributed
operation [11]. They experimented with different task and data
allocation strategies in the cluster of two nodes. E.g., source and
target models, and transformation processing nodes are on the
same or different machines.

Model query approaches. A model transformation rule consists
of a precondition, that can be a graph pattern or model query,
whose match on the source model activates the transformation
action which translates the source model elements into target model
elements. In order to achieve scalable model transformations for
very large models, scalable model queries should be employed. To
this end, several approaches have been developed in the literature.

Tisi et al. proposed the lazy evaluation of OCL collection query
operations, by providing their lazy execution algorithms and im-
plementation [44]. Madani et al. proposed a lazy implementation
of chained OCL queries in Epsilon Object Language based on the
Java Stream API [30]. The benefits of lazy evaluation are twofold.
On one hand, they postpone the computation until needed. On the
other hand, they enable the processing of infinite collections.

Towards the Next Generation of Reactive Model Transformations on Low-Code Platforms MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

To further improve the evaluation of OCL queries in Epsilon,
Madani et al. provided parallel implementations for first-order OCL
operations in a data-parallel approach by creating a job for each
model element and submitting it to a thread pool executor [30].
Furthermore, they extended these operations with short-circuiting
thus further improving the processing time.

Bergmann et al. proposed incremental graph pattern matching
on EMF models [6] by implementing the Rete algorithm [21]. In
the Rete algorithm, a network of nodes is constructed from the
graph pattern. In the network, each node caches the matches of
the subpattern they are assigned to. The benefit of the algorithm is
the incrementality and the ability to react to changes in the source
model. However, intensive caching causes a large memory foot-
print, and updating the Rete network has computation complexity
also. In order to improve it, Bergmann et al. proposed a parallel
implementation of incremental pattern matching [7]. They split the
Rete network into containers, where each of them is responsible for
matching a set of subpatterns. Each container runs on a separate
thread and communicates via message queues. The advantage of
this approach is, the update propagation of the network is spread
between the containers, thus the computation can complete faster,
than in the single-threaded implementation.

All the aforementioned model query techniques can leverage
only the computational power of a single machine. To overcome
this limitation, Szárnyas et al. proposed IncQuery-D, a distributed
incremental model query framework in the cloud [42]. The frame-
work implemented a distributed Rete network, where each machine
stores a subset of the Rete nodes which communicate with each
other to update their local caches. They proposed a distributed
termination protocol to know if a model change has propagated
through the whole network.

2.2 Multi-tenant architectures
In multi-tenant architectures, multiple customers (tenants) use the
same computation resource, application or database instance, while
they see it as a highly configurable and isolated environment. The
benefits of these architectures are the high utilization of compu-
tation resources and improved maintenance in the deployment of
applications. Although multi-tenancy is a widely researched topic
in Software as a Service (SaaS) applications [12, 20, 33], there is little
research on their application in MDE, especially for model trans-
formations. The nearest application areas we found were model
checking and formal verification. Hu et al. proposed the Verifica-
tion as a Service (VaaS) concept in a multi-tenant architecture, that
hosts verification software in the cloud which can be composed to
verify a software model on demand [24]. They store the verification
software, models, and results in databases. They implemented a
workflow to compose a verification application for each tenant by
retrieving components from the databases, linking and compiling
them together, and deploying the executable code on provisioned
cloud infrastructure. The deployed environment can be used by the
tenant to verify software models.

2.3 Model transformation performance
evaluation

Researchers followed different strategies to assess the performance
of model transformation engines. One strategy is to implement cus-
tom model transformations on custom metamodels [31, 36, 47]. The
advantage of this approach is the quick implementation; however,
the results are difficult to be compared.

Second strategy is to use a repository like ATL Transformation
Zoo1, that contains a collection of model transformation cases
and metamodels [10, 46]. A similar strategy is to adopt cases from
workshops and contests, like AGTIVE [39], GraBats [16] and Trans-
formation Tool Contest (TTC, [39]). TTC is an annual contest of
model transformation engines on constantly changing case stud-
ies [3, 11, 13]. The advantage of this strategy is, the performance of
different implementations can be compared with each other. How-
ever, there is no benchmark workflow that would automatically
evaluate the case studies on the transformation tools. To address
this shortcoming, a benchmark can be designed that is able to ex-
ecute a set of model transformation rules on source models with
varying sizes and collect run-time metrics during the process on
different engines. Calvar et al. used the VIATRA CPS benchmark to
evaluate the performance of ATL incremental transformations [13].
Although the benchmark has some technical descriptions,2 it has
not been published in the literature yet.

Varró et al. proposed a graph transformation benchmark, a spe-
cial case of model transformations [50]. They defined the paradigm
features of graph transformations, e.g., pattern size, maximum de-
gree of nodes (fan-out), number of matchings, length of transforma-
tion sequence, to describe the characteristics of a transformation
rule. Besides, they investigated how tool features, e.g., parallel rule
execution, ’as long as possible’ rule application, multiplicity-based
optimization, parameter passing between consecutive rule applica-
tions, influence the runtime of model transformations. Although
they applied the benchmark in a transformation case on several
tools, as runtime metrics they only measured the execution times
of the pattern matching and transformation phases.

Benelallam et al. presented four model query and transformation
benchmarks along three dimensions [4]: the context and objectives
of the benchmark, the complexity of the models and metamodels
that were used to assess the engines, the complexity and types of
queries and transformations which were run on the engines. From
the four benchmarks, one of them was only for model queries (the
Train Benchmark framework [43]), one was for queries and trans-
formations, and two of them were for transformations only. Besides,
to the best of our knowledge, only one of the four benchmarks was
published in the literature in detail.

Szárnyas et al. proposed the Train Benchmark framework [43] to
assess the scalability of model query engines for validating graph
patterns on large graph models. The framework focuses on the
query performance evaluation of well-formedness validation con-
straints in the railway domain. Although the benchmark contained
a model manipulation step, to correct the validation error in the
model, it did not focus on measuring the model transformation
itself, but the performance of the query.

1https://www.eclipse.org/atl/atlTransformations
2https://github.com/viatra/viatra-cps-benchmark/wiki

https://www.eclipse.org/atl/atlTransformations
https://github.com/viatra/viatra-cps-benchmark/wiki

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Benedek Horváth, Ákos Horváth, and Manuel Wimmer

2.4 Summary
To achieve responsive low-code platforms, we need scalable reactive
model transformations that are able to quickly react to events which
occur on the platform, e.g., derived views of the model need to be
updated due to a change in the model. On the one hand, these
transformations are executed automatically, if a triggering event
occurs. On the other hand, if many events concurrently occur, and
the transformation actions are long-running tasks, then congestion
in their processing can arise quickly, which hinders the performance
of the platform. To achieve scalable reactive model transformations
on LCDPs, state-of-the-art reactive transformation approaches need
to be improved.

As previously shown, many model transformation approaches
have been already researched, however, there is little empirical
experience about their combinations, e.g., parallel or distributed
approach in combination with reactive transformations. Parallel
extension of reactive transformations could improve the conges-
tion shortcoming of sequential execution of transformation rules
and offer better throughput of the engine. Furthermore, reactive
transformations could be combined with different data and task
distribution strategies ([3, 11]), to leverage the benefits of multiple
computation nodes.

Since LCDPs are cloud-native collaboration platforms, they have
to adopt the multi-tenant architecture patterns to separate the ten-
ants from each other, while maintaining high computation resource
utilization. As shown before, multi-tenant patterns have been ex-
tensively researched for SaaS applications, however, to the best of
our knowledge, there is little research done on their specialization
for MDE, especially for model transformations.

Multi-tenant platforms have different load characteristics than
non-multi-tenant ones, since tenants should be isolated from each
other, while the underlying computation resources are shared be-
tween them. Besides, reactive transformations are executed as reac-
tions for events and so they are expected to complete quickly, to
have a reactive and responsive platform. To the best of our knowl-
edge, there is no benchmark in the literature, that could be used to
assess the performance of reactive model transformation engines
on multi-tenant platforms. Benchmarks have the advantage that
they define a uniform methodology along which engines can be
evaluated. The methodology includes the source and target meta-
models, the source models with varying size and complexity, the
transformation rules that are executed on the models upon the
occurrence of the triggering events described by a reactive scenario.
Several runtime metrics are collected that characterize the behavior
of the transformation engines in the different transformation cases.
Moreover, if the benchmark framework orchestrates the execution
of the measurements, then the evaluation can be automatically
repeated which raises the validity of the measurements.

3 MOTIVATING EXAMPLE
In safety-critical domains the correct behavior of the systems is
crucial, otherwise, a malfunctioning system can cause accidents
that may harm human lives and result in major financial losses.
To minimize this risk, Model-Based Systems Engineering (MBSE)
has been successfully applying MDE techniques in designing and
implementing complex safety-critical systems. Such systems are

UPPAAL

Timed
automata

Properties

Theta

Control flow
automata

Properties

LCDP

2
Simulation,
static checking

1 Modeling 4
Formal model
+ query

5 Result + trace

4
Formal model
+ query

5 Result + trace

3 Transformation

3 Transformation

6 Back-annotation

6
Back-
annotation

Figure 2: Validation and verification workflow

realized by the collaborative work of engineering teams, each fo-
cusing on different aspects of the system: requirements analysis,
system design, validation, and verification. In the systems engineer-
ing V-model [22], model transformations are frequently used means
to derive formal models from the high-level design models to prove
their correctness and adherence to the system requirements and
specifications.

In this paper, as a motivating example, we use an industrial case
study from the aerospace domain. In this domain, engineers use the
Systems Modeling Language (SysML, [34]), the standard modeling
language in systems engineering. The language has been used to
design, analyze, and validate complex systems in safety-critical
domains [15, 37]. Both structural, and dynamic, behavioral, tim-
ing aspects of the system can be modeled in this language. Recent
advancements in modeling tools have enabled the testing and sim-
ulation of models. However, due to the safety-critical nature of the
aerospace domain, model-based testing is not enough to prove the
correctness of the system, because it can only show the presence
of errors in the models, not their absence. Thus, in these cases,
formal methods (model checking) have to be applied. Formal meth-
ods use precise formalisms to prove the correctness of behavioral
models by evaluating formal expressions (properties) on every exe-
cution trace of the model. If the model violates the property then a
counterexample trace is returned from the model checker.

Figure 2 illustrates how LCDPs can be used as cloud-based, collab-
orative modeling tools in a validation and verification workflow of
systems engineering models. Systems engineers design the behav-
ioral models (state machines, activity diagrams, sequence diagrams)
on LCDP 1 , and run static checks or simulate them 2 . If the models
are structurally correct, then engineers prepare them for formal
verification. They define properties to be checked on the model and
transform the properties and the models for the input formalisms
of different model checkers 3 , e.g., UPPAAL [2] and Theta [48].
The formal models (e.g., timed automata, control-flow automata)
and queries (e.g., CTL or LTL expressions [14]) are forwarded to
model checkers 4 . The model checkers evaluate the query on the
model and return the verification result 5 . If the model violates
the checked property, then a counterexample trace is returned as
well. These artifacts are back-annotated to the original formalism
and returned to the user 6 , who can inspect them and correct the
engineering model accordingly.

Towards the Next Generation of Reactive Model Transformations on Low-Code Platforms MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

Parallel Reactive Model
Transformations

Multi-tenant Model
Transformations

Model size

Number of users

Multi-tenant, Reactive
Model Transformation

Benchmark

Model
transformation and

platform
characteristics

needs

evaluates

evaluates

Research lines

Challenges

addressesaddresses addresses

Figure 3: Mapping of challenges to research lines

Due to the inherent complexity of safety-critical domains, the
models of such systems are very complex. The challenge is multi-
plied in the case of product lines where products are constructed
from shared component models. However, their specializations and
unique combinations can result in very large and complex models
in the range of hundreds of millions of elements. To guarantee the
correctness of the system and provide short validation and veri-
fication feedback loop, only those parts of the models should be
revalidated 2 that are influenced by the model update. Moreover,
in step 3 , only the changed parts of the source model should be
transformed to the formal target model. Although several reactive
model transformation engines have been developed in the past,
they are not able to scale for models in this range [8]. Thus further
research is needed to address this challenge and provide a scalable
continuous validation and verification workflow for engineers.

Furthermore, these systems are designed by the collaborative
work of multiple systems engineering teams, who work in a com-
plex, cloud-based low-code environment. Although these platforms
need to be customized for the users’ needs, they are usually de-
ployed on the same physical machine in the cloud. Therefore, the
computational resources are shared among the users who may
perform resource-intensive operations e.g., model transformation
or formal verification. In order to achieve fair resource allocation,
while maintaining users’ isolation, multi-tenant architectures for
model transformations have to be adopted.

Finally, to achieve high-productivity engineering platforms, that
can run transformations efficiently, in terms of model size, change
frequency, and the number of users using the same transformation
engine, Key Performance Indicators (KPI) that characterize reactive
model transformations on multi-tenant architectures should be
identified. From the KPI metrics, several selection criteria can be
constituted, that can be used to assess the different reactive model
transformation engines and choose the most suitable one in the
given transformation context and execution environment.

4 RESEARCH LINES
In order to address the challenges that were introduced in Sec-
tion 1 and highlighted in the motivating example, we map them to
research lines, illustrated by Figure 3.

In order to raise the number of users who collaboratively run
model transformations on the platform, while maintaining high
resource utilization, and keeping users isolated from each other,
we will explore multi-tenant model transformations. To further ad-
vance the scalability of model transformations for models in the
size of hundreds of millions of elements, we aim to improve the
performance of reactive model transformations by extending them
for parallel execution. Finally, we will define a multi-tenant, reac-
tive model transformation benchmark to evaluate the performance
of state-of-the-art reactive model transformation engines by an-
alyzing the characteristics of reactive model transformations on
multi-tenant platforms and deriving selection criteria from them
to be used for the assessment of the engines. The goal is to have a
multi-tenant collaborative platform where engineers can efficiently
run parallel reactive model transformations, using the most suitable
engine for their transformation cases.

4.1 Multi-tenant Model Transformations
Collaborative modeling has become an emerging topic. In systems
engineering, many engineers from different disciplines work to-
gether to design and build the system. During the collaborative
work, similarly to our running example, each team focuses on differ-
ent aspects of the system, thus maintaining a coherent, consistent
picture of the models is essential.

Traditionally in collaborative modeling, rich client applications
are used to design, analyze, validate, and verify the models. Model
repositories are used to keep track of changes in the models and to
make them available for the whole team. Due to the advancements
in cloud infrastructures and supporting technologies, there has
been a paradigm shift in recent years; the functionality of rich
client modeling applications is gradually moving to the cloud. The
advantages of the new paradigm are:

(1) resource-intensive operations are run in an environment,
where computational resources are elastically scalable,

(2) heavy-weight applications can be deployed in the cloud,
(3) platform is accessible for everyone with a lightweight client.

Although the cloud offers elastically scalable computation re-
sources, these resources are on one hand finite, on the other hand,
they are shared among multiple customers, tenants, that led to the
development of multi-tenant patterns. Fehling et al. proposed three
multi-tenancy patterns that differ in the level of isolation they offer
between the tenants: shared component, tenant-isolated component,
dedicated component [20].

The shared component pattern offers the least degree of isolation
between the tenants. Every tenant uses the same instance of the
application or machine, and only minor configuration differences
might be between them. The application is unaware that multiple
tenants use it, thus if one of them puts a heavy workload on the
application, then it negatively influences the experience of others.

In the tenant-isolated component pattern, tenants share the same
application instance, however, an identifier is used to differentiate
and isolate them from each other. They receive a highly customized
application for their needs, with performance monitoring to avoid
unequal resource consumption, and with isolated data access to
ensure each tenant uses the application as if they were its sole user.

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Benedek Horváth, Ákos Horváth, and Manuel Wimmer

In the dedicated component pattern every tenant receives a sep-
arate application stack with separate data stores, thus ensuring
complete isolation and no resource sharing between them.

Mietzner et al. proposed the horizontal and vertical combinations
of multi-tenancy patterns in cloud infrastructures [32]. Horizontal
combinations in the application layer mean, how tenant-aware
and non-tenant-aware services can communicate with each other,
whereas vertical combinationsmean how tenant-aware applications
can be deployed on non-tenant-aware providers.

<<run by>>

<<run by>>
TE2

TE1 Model management
service

<<manage>> <<manage>>

model management
engine

Model
TE1

Model
TE2

LCDP

<<include>>

model
transformation

model
manipulation

Figure 4: Tenant-isolated model management service

In order to advance LCDPs and make them scalable for the num-
ber of users and the number of tenants, we are planning to adopt
the tenant-isolated component and dedicated-component patterns
for LCDPs to support various model manipulation use cases with
many tenants on the same platform.

First of all, we will separate the model management engine from
the low-code platform, due to the high resource need of model
management operations. The model management engine is respon-
sible for loading the model from model repositories into memory,
performing transformations on them, and persisting the results in
model stores. We introduce a model management service, in which
different model management engines can be used. The service is
horizontally combined with the low-code platform using either
the (1) dedicated component or the (2) tenant-isolated component
multi-tenancy pattern, as depicted in Figure 4.

In scenario (1) the service deploys a dedicated management
engine for each tenant which offers a high degree of isolation. The
engines are started exclusively for the tenants without any resource
sharing between them. It is beneficial for the tenants because they
are the sole users of the engine. However, the underlying resources
may not be utilized the best and economies of scale may not be
achieved [20], if the tenant does not use the full capacity.

In scenario (2) the service deploys management engines that are
shared between the tenants. Tenants use the management engines
as if they were their sole users, while the underlying computation
resources are shared between them. In this setting various model
management optimizations can be performed in order to avoid
degraded performance caused by a spike in the workload of a tenant.
E.g., load identical models only once in memory, track changes in
the model according to which tenant made it, off-load infrequently
usedmodels tomodel repository. Moreover, with cloud provisioning
and decommissioning, the available computation resources can be
elastically scaled, however, their cost implications should be covered
by the tenants. Besides, these operations may have severe impacts

on ongoing model manipulation processes, thus they have to be
scheduled accordingly.

Since LCDPs are collaborative platforms, multiple engineers use
them concurrently which imposes several challenges:

• keeping the model consistent among the users in various
views, analysis and edit operations,

• maintaining short response time and high throughput of
user operations,

• maintaining the high availability of the platform.

The challenges are manifold in the case of model transforma-
tions. In model transformations, the intermediate results of the
transformations can be kept in memory to achieve a shorter ex-
ecution time to react to changes in the source model. Besides, if
the source model is simultaneously accessed by multiple users and
operations (e.g., model analysis, code generation, transformation),
then it must be synchronized between the operations.

We are planning to investigate how different locking (e.g., [17])
and lock-free concurrent access mechanisms, researched by the
databases community, can be applied for model management, es-
pecially for model transformations, to achieve short response time
and high throughput, while keeping the models consistent.

Moreover, we are planning to experiment with the aforemen-
tioned multi-tenancy patterns, to see how they can be horizontally
combined between the LCDP and the model management service.

4.2 Parallel Reactive Model Transformations
Reactive programming provides abstractions to express event-driven
applications in which data and computation dependencies are man-
aged automatically [1]. These applications react to events emitted
by external event sources without an explicit notion of time or prior
knowledge of the sequence of events. Paton and Díaz surveyed
active database systems, that provide a knowledge model and exe-
cution strategy for supporting reactive behavior in databases [35].

Reactive model transformations adopt principles from reactive
programming for model transformations. In the modeling environ-
ment, events are created from changes in the model, which cause
new matches for the transformation precondition (pattern), which
in turn activates the transformation action.

As for our motivating example, reactive model transformations
offer a quick and efficient way to continuously derive formal models
from the behavioral engineering models. It is due to the fact that
reactive transformations are automatically executed upon changes
in the source model, and they update the target model following the
traceability links between the two models. In this way, engineer-
ing and formal models are synchronized and can be continuously
verified to find design errors sooner.

To justify it, let us consider the SysML state machine to Timed
Automata transformation. A SysML state machine includes several
Regions that contain States and Transitions. Transitions con-
nect the different States, and can have guard Constraints, while
States may have state invariant Constraints, that must be true
as long as the State is active. A timed automaton is a Template
that consists of several Locations and Edges. Edges connect the
Locations and they can have guard, while Locations can have
invariant Expressions that must be true as long as the Location

Towards the Next Generation of Reactive Model Transformations on Low-Code Platforms MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

traceability

SysML2TA SysML2TATrace

MDObject

EObject

[0..*] traces

[0..*] source

[0..*] target

target

Location Edge

ExpressionTemplate

[1..1] source

[1..1] target

[0..1] invariant

[0..1] guard

[1..*] location

[1..1] parentTemplate

[0..*] edge

[1..1] parentTemplate

source

State Transition

Vertex

Region

Constraint

[0..*] outgoing

[1..1] source

[0..*] incoming
[1..1] target

[0..1] state

[0..*] region

[0..*] transition

[1..1] container

[0..*] subvertex

[0..1] container

[0..1] owningState

[0..1] stateInvariant [0..1] transitionOfGuard

[0..1] guard

Figure 5: Source, target and traceability metamodels excerpt

is active [38]. The translation of the corresponding elements is il-
lustrated by dashed arrows in Figure 5. During each transformation
action, a traceability link (SysML2TATrace) is created, in order to
update the target model according to changes in the source model.

Some state-of-the-art transformation engines provide reactive
model transformation modes, e.g., the Reactive ATL [36], and Event-
driven Virtual Machine (EVM) [5] in VIATRA [49].

Bergmann et al. proposed the EVM concept for reactive model
transformations in VIATRA [5]. EVM contains a set of rule spec-
ifications, which consists of the model transformation action and
the precondition of that action as graph pattern. If a precondition
matches the model, then it is an activation. The EVM contains a
scheduler which fires the transformation actions, depending on the
life-cycle of the activation.

TM 2

EVM1 EVM2 EVM3

model change

 query
match set

 query
match set

TM 1 TM 3

Source
Model (SM)

Target
Model (TM)

Incremental
Query Engine

Figure 6: Parallel reactive model transformations

In order to achieve better execution time of reactive model
transformations in parallel, we are going to extend the EVM for
task-parallel execution mode. The incremental query engine, de-
picted in Figure 6, receives changes from the model and updates
its cache of the partial graph pattern matches, following the Rete
algorithm. After that, the engine forwards the updated query match
sets (appeared, disappeared, updated pattern matches) to the EVM
instances. The rule specifications (tasks) are distributed among the

EVM instances and so each of them is waiting for matches of differ-
ent preconditions. If an activation appears, then the corresponding
action is fired, which results in a change in the target model.� �

1 v a l t r a n s i t i o n 2 E d g eRu l e = c r e a t e R u l e ()
2 . name (" t r a n s i t i o n I n s t a n c e R u l e ")
3 . p r e c o n d i t i o n (t r a n s i t i o n I n s t a n c e)
4 . a c t i o n (Ac t i v a t i onS t a t eEnum . CREATED) [
5 / / c r e a t e a new edge in the t a r g e t model
6 v a l edge = c r e a t e Ch i l d (t emp la t e , Template . Edge , Edge) ;
7 v a l s ou r c e = t r a n s i t i o n . s ou r c e ;
8 v a l t a r g e t = t r a n s i t i o n . t a r g e t ;
9 edge . s ou r c e = ge tTrgTrace (sou r c e) as Lo c a t i on ;

10 edge . t a r g e t = ge tT rgTrace (t a r g e t) as Lo c a t i on ;
11 / / c r e a t e t r a c e a b i l i t y l i n k
12 c r e a t e T r a c e (t r a n s i t i o n , edge) ;
13] . a c t i o n (Ac t i v a t i onS t a t eEnum .UPDATED) [
14 / / f i n d edge in t a r g e t model
15 v a l edge = ge tT rgTrace (t r a n s i t i o n) as Edge ;
16 v a l s ou r c e = t r a n s i t i o n . s ou r c e ;
17 v a l t a r g e t = t r a n s i t i o n . t a r g e t ;
18 / / update l o c a t i o n s
19 edge . s ou r c e = sou r c e == n u l l ?
20 nu l l : g e tT rgTrace (s ou r c e) as Lo c a t i on ;
21 edge . t a r g e t = t a r g e t == n u l l ?
22 nu l l : g e tT rgTrace (t a r g e t) as Lo c a t i on ;
23] . a c t i o n (Ac t i v a t i onS t a t eEnum . DELETED) [
24 / / f i n d edge in t a r g e t model
25 v a l edge = ge tT rgTrace (t r a n s i t i o n) as Edge ;
26 v a l t emp l a t e = edge . pa ren tTemp la t e ;
27 / / remove edge from con t a i n e r
28 t emp l a t e . edge . remove (edge) ;
29 v a l t r a c e = ge tT r a c e (t r a n s i t i o n) ;
30 / / remove t r a c e a b i l i t y l i n k
31 removeTrace (t r a c e) ;
32] . b u i l d () ;� �

Listing 1: Transition’s reactive transformation rule

Listing 1 shows the rule of the Transition to Edge reactive trans-
formation (transition2EdgeRule). As a precondition to the rule,
a simple graph pattern is referred, that matches if a Transition
in the source model is created, removed or its source or target
States are updated. To illustrate the proposed method above, this
rule can be assigned to an EVM instance running on a separate
thread. The instance is going to be monitoring the Transition
pattern’s match set and run the corresponding actions. A similar
rule allocation can be done for the State to Location transfor-
mation (state2LocationRule) as well. Since the create and the

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Benedek Horváth, Ákos Horváth, and Manuel Wimmer

update transformation actions of the transition2EdgeRule de-
pend on the state2LocationRule, thus their executions should be
scheduled accordingly. Besides, the target model should be handled
in transactions to guarantee its consistency. Finally, the impera-
tive code shown in Listing 1 may be derived from a declarative
representation that may allow for more effective static analysis.

Challenges of task-parallel reactive transformations are:
• dependencies between themodel transformation rules should
be discovered to find the independent ones [18],

• the concurrent editing of the target model from multiple
EVM instances requires transactional model processing and
locking mechanisms to guarantee its consistency,

• alternatively, different lock-freemechanisms should be adopted
for reactive transformations [40, 41].

4.3 Multi-tenant, Reactive Model
Transformation Benchmark

Althoughmanymodel transformation engines have been developed
in the last decades [19, 26] there is no de-facto benchmark to com-
pare their performance. The Transformation Tool Contest (TTC)
aims to address this shortcoming by organizing an annual contest to
evaluate the performance, verifiability, conciseness and understand-
ability of transformation tools in several challenging case studies.
Although some of them evaluate incremental transformations, they
are not always reactive transformations that are automatically acti-
vated for events created by the application or external sources.

As it was shown in the motivating example, in order to find
the transformation engine that performs the best according to the
needs of systems engineers on collaborative platforms, state-of-
the-art reactive transformation engines should be compared along
a set of selection criteria that are derived from the characteris-
tics (Key Performance Indicators, KPIs) of parallel reactive model
transformations on multi-tenant platforms.

KPIs of reactive model transformations in single-threaded exe-
cution mode are: (𝑖) initial memory need to cache the source model,
due to the underlying incremental model queries, (𝑖𝑖) model change
type (add, remove, update), (𝑖𝑖𝑖) size of the model change (num-
ber of elements), (𝑖𝑣) frequency of model changes, (𝑣) complexity
of the transformation (memory and CPU footprint). Further KPIs
to examine, due to the proposed parallel execution mode of re-
active transformations: (𝑣𝑖) degree of independence between the
transformation rules, (𝑣𝑖𝑖) number of transformations running in
parallel, (𝑣𝑖𝑖𝑖) model synchronization time overhead between con-
flicting rule applications. Some further KPIs to consider in the
multi-tenant execution environments are: (𝑖𝑥) number of tenants
using the same transformation engine, (𝑥) degree of isolation be-
tween them, (𝑥𝑖) load profile of model transformation engines under
concurrent transformation requests, (𝑥𝑖𝑖) maintenance overhead
of provisioning operations on model transformation engines, to
leverage the elastic resource allocation benefits of the cloud.

From these KPIs, several evaluation criteria can be constructed
to assess the performance of model transformation engines in par-
allel reactive execution mode, on multi-tenant collaborative plat-
forms. Some example evaluation criteria are: (𝑖) how do the size
and frequency of source model changes influence the memory and
CPU consumption of the transformation engine, (𝑖𝑖) how quickly

Benchmark orchestrator
Transformation

engine
Transformation

description

Source
model n

Source
model n

Source
model

Reactive
scenario n

Reactive
scenario n

Reactive
scenario

Benchmark result

Figure 7: Reactive model transformation benchmark

is the engine able to react to changes in the model, (𝑖𝑖𝑖) how many
transformations can run in parallel per second, (𝑖𝑣) how much
synchronization overhead does the resolution of conflicting rule
applications cause, (𝑣) how many tenants can the same model trans-
formation engine serve, (𝑣𝑖) how do cloud provisioning operations
on model transformation engines affect their performance.

In order to support the evaluation of reactive model transforma-
tion engines, we propose a high-level overview of a benchmark,
depicted in Figure 7. The architecture consists of:

• the transformation descriptions, which describe the transfor-
mation cases in a unified format,

• the reactive scenarios that describe the frequency, size and
type of changes that should be made on the source models,

• the source models on which the model transformations are
executed,

• the transformation engines, which execute the given transfor-
mation on the source model according to the transformation
rule and the changes made in the model,

• the benchmark orchestrator that controls the workflow. Se-
lects the source model and transformation in a format the
transformation engine expects it, runs the reactive scenario
on the model to exercise the reactivity of the transformation
engine, and measures the run-time metrics of the engine
(e.g., transformation execution time, memory and CPU use,
number of parallel transformations per second, etc.),

• the benchmark results summarize the run-time metrics of the
transformation cases on the engines.

In order to design and implement the benchmark, we are going
to build on the previous work of Izsó et al. with MONDO-SAM, an
extensible MDE benchmark framework [25]. We are going to adopt
the workflow stages and primitives for our needs and will reuse its
support for metrics calculation and visualization on diagrams.

Similar to Langer et al. [28], we are going to implement a generic
API for the workflow and implement adapters for each transfor-
mation engine. Similar to the Train Benchmark framework [43],
we will design models and transformations with growing size and
complexity to exercise the model transformation engines.

The goals of the benchmark are:
(1) to define a set of evaluation criteria to compare reactive

model transformation engines on multi-tenant platforms,
(2) to support the selection of the most suitable engine in the

given transformation and application context,
(3) to provide means to repeatably measure runtime metrics of

state-of-the-art reactive model transformation engines.

Towards the Next Generation of Reactive Model Transformations on Low-Code Platforms MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada

Table 2: Summary of research lines and challenges

Addressed challenge and summary of the derived research line Research objectives

M
ul
ti-
te
na
nt

m
od

el
tra

ns
fo
rm

at
io
ns

(R
L1
)

Improve the scalability of model transformation engines for
multi-tenant platforms, while keeping the tenants isolated.
Adopt and experiment with different horizontal combinations
of multi-tenancy patterns for model management engines in
conjunction with LCDPs.

(RO1.1.) Isolation of tenants while maintaining fair
resource distribution between them.
(RO1.2.) Tenant-aware model management services
with optimized memory and model access.
(RO1.3.) High-throughput lock-free and lock-based
concurrent model access mechanisms.

Pa
ra
lle
lr
ea
ct
iv
e

m
od

el
tra

ns
fo
rm

at
io
ns

(R
L2
)

Improve the scalability of model transformations for frequently
changing models with hundreds of millions of elements.
Adopt reactive model transformations for parallel execution
mode in order to be able to quickly react to frequent changes
in very large models.

(RO2.1.) Find the independent model transformation
rules that can be executed in a task-parallel execution
mode to achieve high degree of parallelism.
(RO2.2.) Transactional model management with model
synchronization primitives to allow parallel model
editing and guarantee model consistency.
(RO2.3.) Alternatively, adopt different lock-free
mechanisms for reactive transformations.
(RO2.4.) If the task-parallel execution does not provide
satisfactory results, then the data-parallel approach has
to be studied for reactive transformations.
(RO2.5.) Exploit declarative languages and static
analysis to derive efficient imperative transformation
code.

M
ul
ti-
te
na
nt
,r
ea
ct
iv
e

m
od

el
tra

ns
fo
rm

at
io
n
be
nc
hm

ar
k

(R
L3
)

Characterize reactive model transformations on multi-tenant
low-code platforms to select the most suitable transformation
engine in the given context.
Design and implement a novel model transformation
benchmark for reactive transformations on multi-tenant
platforms with increasingly more complex transformation
rules and models.

(RO3.1.) Empirically identify the Key Performance
Indicators of reactive model transformations on
multi-tenant platforms.
(RO3.2.) Derive evaluation criteria that can be used to
assess the model transformation engines.
(RO3.3.) Design transformation rules and models that
are similar in complexity to real-world scenarios.
(RO3.4.) Implement a benchmark workflow that runs
the transformation rules on the engines using the
source models along the reactive scenario descriptions.

4.4 Summary of research lines and challenges
Table 2 summarizes the research lines together with the challenges
they address and the open questions within each of them.

5 CONCLUSION
In this paper, we outlined three research lines to address scalability
and productivity challenges in Low-Code Development Platforms.
We used a model validation and verification workflow to highlight
the challenges in a real-world scenario. Besides, we provided a
mapping of the challenges to research lines:

• adoption of multi-tenant architecture patterns for model
transformations on low-code platforms, to improve the scal-
ability in terms of number of users,

• parallel reactive model transformations, to improve the scal-
ability of model transformations in terms of model size,

• multi-tenant, reactive model transformation benchmark, to
increase productivity by providing different selection criteria
that can be used to assess the performance of reactive model
transformation engines on multi-tenant platforms.

As future work, the practical solutions of the research lines
are going to be integrated to IncQuery Server, a scalable query

evaluation middleware in the cloud [23]. The goal is to enhance
the middleware into a collaborative, multi-tenant engineering plat-
formwith advanced reactive model transformation capabilities over
cloud-based model repositories.

ACKNOWLEDGMENTS
This work is funded by the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie
grant agreement No 813884. The authors are grateful for the valu-
able feedback of Dániel Varró and István Ráth about the paper.

REFERENCES
[1] Engineer Bainomugisha, Andoni Lombide Carreton, Tom Van Cutsem, Stijn

Mostinckx, and Wolfgang De Meuter. 2013. A survey on reactive programming.
Comput. Surveys 45, 4 (2013), 52:1–52:34.

[2] Gerd Behrmann, Alexandre David, and Kim Guldstrand Larsen. 2004. A Tutorial
on Uppaal. In Formal Methods for the Design of Real-Time Systems (LNCS, Vol. 3185).
Springer, 200–236.

[3] Amine Benelallam, Abel Gómez, Massimo Tisi, and Jordi Cabot. 2015. Distributed
Model-to-Model Transformation with ATL on MapReduce. In Proc. of the Inter-
national Conference on Software Language Engineering (SLE 2015). Association
for Computing Machinery, 37–48.

[4] Amine Benelallam, Massimo Tisi, István Ráth, Benedek Izsó, and Dimitris S.
Kolovos. 2014. Towards an Open Set of Real-World Benchmarks for Model

MODELS ’20 Companion, October 18–23, 2020, Virtual Event, Canada Benedek Horváth, Ákos Horváth, and Manuel Wimmer

Queries and Transformations. In Proc. of the 2nd Workshop on Scalability in Model
Driven Engineering (CEUR-WS Proceedings, Vol. 1206). CEUR-WS.org, 14–22.

[5] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán
Ujhelyi, and Dániel Varró. 2015. Viatra 3: A Reactive Model Transformation
Platform. In Proc of the 8th International Conference on the Theory and Practice of
Model Transformations (LNCS, Vol. 9152). Springer, 101–110.

[6] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András Balogh,
Zoltán Balogh, and András Ökrös. 2010. Incremental Evaluation of Model Queries
over EMF Models. In MODELS, Vol. 6394. Springer, 76–90.

[7] Gábor Bergmann, István Ráth, and Dániel Varró. 2009. Parallelization of Graph
Transformation Based on Incremental Pattern Matching. ECEASST 18 (2009).

[8] Antonio Bucchiarone, Jordi Cabot, Richard F. Paige, and Alfonso Pierantonio.
2020. Grand challenges in model-driven engineering: an analysis of the state of
the research. SoSyM 19, 1 (2020), 5–13.

[9] Loli Burgueño, Eugene Syriani, Manuel Wimmer, Jeffrey G. Gray, and Antonio
Vallecillo. 2014. LinTraP: Primitive Operators for the Execution of Model Trans-
formations with LinTra. In Proc. of the 2nd Workshop on Scalability in Model
Driven Engineering (CEUR-WS Proceedings, Vol. 1206). CEUR-WS.org, 23–30.

[10] Loli Burgueño, Javier Troya, Manuel Wimmer, and Antonio Vallecillo. 2015. Par-
allel In-place Model Transformations with LinTra. In Proc. of the 3rd Workshop on
Scalable Model Driven Engineering part of the Software Technologies: Applications
and Foundations (CEUR-WS Proceedings, Vol. 1406). CEUR-WS.org, 52–62.

[11] Loli Burgueño, ManuelWimmer, and Antonio Vallecillo. 2016. A Linda-based plat-
form for the parallel execution of out-place model transformations. Information
and Software Technology 79 (2016), 17–35.

[12] Hong Cai, Ning Wang, and Ming Jun Zhou. 2010. A Transparent Approach of
Enabling SaaS Multi-tenancy in the Cloud. In Proc of the 6th World Congress on
Services. IEEE Computer Society, 40–47.

[13] Théo Le Calvar, Frédéric Jouault, Fabien Chhel, and Mickael Clavreul. 2019.
Efficient ATL Incremental Transformations. JOT 18, 3 (2019), 2:1–17.

[14] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick P Bloem.
2018. Handbook of model checking. Springer.

[15] Pierre David, Vincent Idasiak, and Frédéric Kratz. 2010. Reliability study of
complex physical systems using SysML. Reliability Engineering & System Safety
95, 4 (2010), 431–450.

[16] Juan de Lara and Dániel Varró. 2010. Preface of the 4th International Workshop
on Graph-Based Tools. ECEASST 32 (2010).

[17] Csaba Debreceni, Gábor Bergmann, István Ráth, and Dániel Varró. 2017. Property-
Based Locking in Collaborative Modeling. In MODELS. IEEE Computer Society,
199–209.

[18] Hartmut Ehrig. 1978. Introduction to the Algebraic Theory of Graph Grammars
(A Survey). In Graph-Grammars and Their Application to Computer Science and
Biology (LNCS, Vol. 73). Springer, 1–69.

[19] Juergen Etzlstorfer, Angelika Kusel, Elisabeth Kapsammer, Philip Langer, Werner
Retschitzegger, Johannes Schoenboeck, Wieland Schwinger, and Manuel Wim-
mer. 2013. A Survey on Incremental Model Transformation Approaches. In
Proc. of the Workshop on Models and Evolution (CEUR-WS Proceedings, Vol. 1090).
CEUR-WS.org, 4–13.

[20] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter
Arbitter. 2014. Cloud Computing Patterns - Fundamentals to Design, Build, and
Manage Cloud Applications. Springer.

[21] Charles Forgy. 1982. Rete: A Fast Algorithm for the Many Patterns/Many Objects
Match Problem. Artificial Intelligence 19, 1 (1982), 17–37.

[22] Kevin Forsberg, Hal Mooz, and Howard Cotterman. 2005. Visualizing
project management: models and frameworks for mastering complex systems.
John Wiley & Sons.

[23] Ábel Hegedüs, Gábor Bergmann, Csaba Debreceni, Ákos Horváth, Péter Lunk,
Ákos Menyhért, István Papp, Dániel Varró, Tomas Vileiniskis, and István Ráth.
2018. Incquery server for teamwork cloud: scalable query evaluation over collab-
orative model repositories. In MODELS. ACM, 27–31.

[24] Kai Hu, Lei Lei, and Wei-Tek Tsai. 2016. Multi-tenant Verification-as-a-Service
(VaaS) in a cloud. Simulation Modelling Practice and Theory 60 (2016), 122–143.

[25] Benedek Izsó, Gábor Szárnyas, István Ráth, and Dániel Varró. 2014. MONDO-
SAM: A Framework to Systematically Assess MDE Scalability. In Proc. of the
2nd Workshop on Scalability in Model Driven Engineering (CEUR-WS Proceedings,
Vol. 1206). CEUR-WS.org, 40–43.

[26] Nafiseh Kahani, Mojtaba Bagherzadeh, James R. Cordy, Juergen Dingel, and
Dániel Varró. 2019. Survey and classification of model transformation tools.
SoSyM 18, 4 (2019), 2361–2397.

[27] Dimitrios S. Kolovos, Louis M. Rose, Nicholas Drivalos Matragkas, Richard F.
Paige, Esther Guerra, Jesús Sánchez Cuadrado, Juan de Lara, István Ráth, Dániel
Varró, Massimo Tisi, and Jordi Cabot. 2013. A research roadmap towards achiev-
ing scalability in model driven engineering. In Proc. of the Workshop on Scalability
in Model Driven Engineering. ACM, 2.

[28] Philip Langer and Manuel Wimmer. 2013. A Benchmark for Conflict Detection
Components of Model Versioning Systems. Softwaretechnik-Trends 33, 2 (2013).

[29] Tihamer Levendovszky, László Lengyel, Gergely Mezei, and Hassan Charaf. 2005.
A Systematic Approach to Metamodeling Environments and Model Transforma-
tion Systems in VMTS. Electronic Notes in Theoretical Computer Science 127, 1
(2005), 65–75.

[30] Sina Madani, Dimitris S. Kolovos, and Richard F. Paige. 2019. Towards Optimisa-
tion of Model Queries: A Parallel Execution Approach. Journal Object Technology
18, 2 (2019), 3:1–21.

[31] Gergely Mezei, Tihamer Levendovszky, Tamas Meszaros, and Istvan Madari. 2009.
Towards truly parallel model transformations: A distributed pattern matching
approach. In IEEE EUROCON 2009. IEEE, 403–410.

[32] Ralph Mietzner, Frank Leymann, and Tobias Unger. 2011. Horizontal and vertical
combination ofmulti-tenancy patterns in service-oriented applications. Enterprise
Information Systems 5, 1 (2011), 59–77.

[33] RalphMietzner, Tobias Unger, Robert Titze, and Frank Leymann. 2009. Combining
Different Multi-tenancy Patterns in Service-Oriented Applications. In Proc. of
the 13th International Enterprise Distributed Object Computing Conference. IEEE,
131–140.

[34] OMG. 2019. OMG System Modeling Language (SysML). formal/19-11-01.
[35] Norman W. Paton and Oscar Díaz. 1999. Active Database Systems. ACM Comput.

Surv. 31, 1 (1999), 63–103.
[36] Salvador Martínez Perez, Massimo Tisi, and Rémi Douence. 2017. Reactive model

transformation with ATL. Science of Computer Programming 136 (2017), 1–16.
[37] Mehrdad Sabetzadeh, Shiva Nejati, Lionel C. Briand, and Anne-Heidi Evensen

Mills. 2011. Using SysML for Modeling of Safety-Critical Software-Hardware
Interfaces: Guidelines and Industry Experience. In Proc of the 13th International
Symposium on High-Assurance Systems Engineering. IEEE, 193–201.

[38] Stefano Schivo, Bugra M. Yildiz, Enno Ruijters, Christopher Gerking, Rajesh
Kumar, Stefan Dziwok, Arend Rensink, and Mariëlle Stoelinga. 2017. How to
Efficiently Build a Front-End Tool for UPPAAL: A Model-Driven Approach. In
Proc of the 3rd International Symposium on Dependable Software Engineering
(LNCS, Vol. 10606). Springer, 319–336.

[39] Andy Schürr, Dániel Varró, and Gergely Varró (Eds.). 2012. Proc of the 4th
International Symposium on Applications of Graph Transformations with Industrial
Relevance. LNCS, Vol. 7233. Springer.

[40] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-Free Replicated Data Types. In Proc of the 13th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (LNCS, Vol. 6976).
Springer, 386–400.

[41] David Sun, Chengzheng Sun, Agustina Ng, and Weiwei Cai. 2020. Real Differ-
ences between OT and CRDT in Correctness and Complexitymfor Consistency
Maintenance in Co-Editors. PACMHCI 4, GROUP (2020), 021:1–021:30.

[42] Gábor Szárnyas, Benedek Izsó, István Ráth, Dénes Harmath, Gábor Bergmann,
and Dániel Varró. 2014. IncQuery-D: A Distributed Incremental Model Query
Framework in the Cloud. In Proc. of the 17th International Conference on Model-
Driven Engineering Languages and Systems (LNCS, Vol. 8767). Springer, 653–669.

[43] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. 2018. The Train
Benchmark: cross-technology performance evaluation of continuous model
queries. SoSyM 17, 4 (2018), 1365–1393.

[44] Massimo Tisi, Rémi Douence, and Dennis Wagelaar. 2015. Lazy Evaluation for
OCL. In Proc. of the 15th International Workshop on OCL and Textual Modeling
(CEUR-WS Proceedings, Vol. 1512). CEUR-WS.org, 46–61.

[45] Massimo Tisi, Jean-Marie Mottu, Dimitrios S. Kolovos, Juan de Lara, Esther
Guerra, Davide Di Ruscio, Alfonso Pierantonio, and Manuel Wimmer. 2019.
Lowcomote: Training the Next Generation of Experts in Scalable Low-Code
Engineering Platforms. In Co-Located Events Joint Proceedings with Software
Technologies: Applications and Foundations (CEUR-WS Proceedings, Vol. 2405).
CEUR-WS.org, 73–78.

[46] Massimo Tisi, Salvador Martínez Perez, and Hassene Choura. 2013. Parallel Exe-
cution of ATL Transformation Rules. In Proc. of the 16th International Conference
on Model-Driven Engineering Languages and Systems (LNCS, Vol. 8107). Springer,
656–672.

[47] Massimo Tisi, Salvador Martínez Perez, Frédéric Jouault, and Jordi Cabot.
2011. Lazy Execution of Model-to-Model Transformations. In MODELS (LNCS,
Vol. 6981). Springer, 32–46.

[48] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. 2017.
Theta: A framework for abstraction refinement-based model checking. In Formal
Methods in Computer Aided Design. IEEE, 176–179.

[49] Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and
Zoltán Ujhelyi. 2016. Road to a reactive and incremental model transformation
platform: three generations of the VIATRA framework. SoSyM 15, 3 (2016),
609–629.

[50] Gergely Varró, Andy Schürr, and Dániel Varró. 2005. Benchmarking for Graph
Transformation. In Symposium on Visual Languages and Human-Centric Comput-
ing. IEEE Computer Society, 79–88.

	Abstract
	1 Introduction
	2 Related work
	2.1 Model transformation and query approaches
	2.2 Multi-tenant architectures
	2.3 Model transformation performance evaluation
	2.4 Summary

	3 Motivating example
	4 Research lines
	4.1 Multi-tenant Model Transformations
	4.2 Parallel Reactive Model Transformations
	4.3 Multi-tenant, Reactive Model Transformation Benchmark
	4.4 Summary of research lines and challenges

	5 Conclusion
	Acknowledgments
	References

