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Abstract—Controlling and forecasting environmental variables
(e.g., air temperature) is usually a key and complex part in a
greenhouse management architecture. Indeed, a greenhouse inner
micro-climate, which is the result of an extensive set of inter-
related environmental variables influenced by external weather
conditions, has to be tightly monitored, regulated, and, some-
times, forecast. Nowadays, Wireless Sensor Networks (WSNs)
and Machine Learning (ML) are two of the most successful
technologies to deal with this challenge. In this paper, we discuss
how a Smart Gateway (GW), acting as a collector for sensor
data coming from a WSN installed in a greenhouse, could be
enriched with a Neural Network (NN)-based prediction model
allowing to forecast a greenhouse’s inner air temperature. In
the case of missing sensor data coming from the WSN, the
proposed prediction algorithm, fed with meteorological open data
(gathered from the DarkSky repository), is run on the GW
in order to predict the missing values. Despite the model is
especially designed to be lightweight and executable by a device
with constrained capabilities, it can be adopted either at Cloud
or at GW level to forecast future air temperature’s values, in
order to support the management of a greenhouse. Experimental
results show that the NN-based prediction algorithm can forecast
greenhouse air temperature with a Root Mean Square Error
(RMSE) of 1.50 °C, a Mean Absolute Percentage Error (MAPE)
of 4.91%, and a R2 score of 0.965.

Index Terms—Internet of Things, Smart Farming, Edge AI,
DNN, Greenhouse Management, Wireless Sensor Network, WSN

I. INTRODUCTION

From their invention to nowadays, greenhouses, whose aim
is to reproduce more favourable conditions for the growing of
the inside products [1], have been adopted in order to enable
and improve agricultural production anytime and everywhere.
The maintenance of a suitable growing habitat is a key (and
complex) element in the greenhouse management, since it
usually involves to monitor and control a huge number of
environmental variables influencing the greenhouse’s internal
climate, including, as an example, air and soil temperature and
humidity. Moreover, these parameters are usually interrelated
and influenced by the meteorological conditions external to
the greenhouse (and denoted as “external variables”), such as
wind speed, solar radiation, temperature, and humidity [2].

With the rise of the Smart Agriculture concept and a conse-
quent transfer of digital technologies to the agricultural sector,
the control of greenhouses’ inner variables has become totally

automated. Indeed, the deployment of Internet of Things
(IoT)-oriented systems, usually relying on Wireless Sensor
Networks (WSNs), simplifies the real-time measurement of
(environmental) sensed data, allowing to locally process the
information to keep the environmental status under controlled
conditions. Moreover, data sensed by Sensor Nodes (SNs)
should often be forwarded to another (generally more capable)
entity, denoted as Gateway (GW). The GW, in turn, can
exploit sensor data to perform actuation and, being typically
connected to the Internet, forward them to external services,
located either at the Edge or in the Cloud [3], [4]. At Cloud
level, collected data can be processed and fused with external
information retrieved from other sources (e.g., meteorological
and historical data) for different purposes such as, for example,
to forecast greenhouse’s future variables trend in order to avoid
possible dangerous environmental conditions. Nowadays, this
last task has been successfully accomplished with Machine
Learning (ML) techniques, such as Artificial Neural Networks
(ANNs) [5]–[7].

Since the execution of ML algorithms on IoT devices—near
the source of (sensor) data—provides notable advantages, such
as lowering the network load (thanks to a reduced amount
of data forwarded to the Cloud to be processed) and the
latency, a hot IoT trend is to move the intelligence (i.e.,
execution of Artificial Intelligence, AI, algorithms) from the
Cloud to the Edge [8]. Since IoT devices often have signif-
icantly lower memory, computational, and energy resources
than Cloud platforms, at-the-Edge algorithms have thus to be
carefully designed (e.g., ANN models with reduced number
of parameters) [9].

In the context of greenhouses, algorithms executed at the
Edge and targeting internal variables’ forecasting, can be
adopted with a two-fold purpose. First, the greenhouse’s
micro-climate can be properly controlled even if data—related
to greenhouse’s inner variables to monitor—are not correctly
gathered by SNs (e.g., missing sensors’ data) because of,
for example, exhausted batteries, since they can be estimated
with Edge forecasting algorithms. Second, the prediction of
environmental parameters’ values allows to schedule on-time
management tasks, thus preventing inner variables from reach-
ing critical values (e.g., preemptively activating a cooling
system to avoid dangerous temperatures).



The purpose of this paper is to present a novel approach
aiming to improve greenhouses management and their inter-
nal variables control through the adoption of ANNs, Edge
Computing and IoT technologies. In detail, we propose to
enhance an IoT node, acting as a GW for a WSN installed
in a greenhouse and in charge of monitoring its internal
air temperature, with “Edge Intelligence.” We denote this
GW as “Smart Gateway” (Smart GW). This is expedient to
locally forecast the air temperature of the greenhouse, in the
absence of sensed data and, on the basis of the obtained
results, to regulate the air temperature. In detail, we discuss
(i) the development of a constrained device-friendly prediction
model, based on a fully-connected ANN, to forecast the air
temperature inside a greenhouse, knowing the outside weather
conditions; and (ii) the deployment of the ANN model on
a real Smart GW, gathering data from SNs (equipped with
sensors measuring the air temperature), forwarding them to the
Cloud, and adopting the proposed prediction model to locally
forecast potential missing sensor data.

The rest of the paper is organized as follows. In Section II,
related works addressing the use of ML to forecast the
values of a greenhouses internal environmental variables are
presented. Section III discusses the methodology adopted to
build the ANN-based prediction model, while details on the
considered Smart GW and illustrative experimental results are
provided in Section IV. Finally, in Section V we draw some
conclusions.

II. RELATED WORKS

From a technological point of view, several efforts have
been undertaken in designing approaches and defining systems
aiming at simplifying, enhancing and making the regulation
and supervision of greenhouse inner variables automatic. More
precisely, as discussed in Section I, automatic management of
the internal climate of a greenhouse usually includes: (i) a
WSN for collecting and monitoring internal variables, based
on IoT technologies [10]–[12]; (ii) several control systems,
which automatically perform operations to maintain the in-
ternal conditions within desirable ranges [13], [14]; and (iii)
internal variables’ prediction techniques, in order to forecast
their future trends, based on ML-based algorithms, such as
ANNs [15], [16].

With regard to ML, the models proposed in literature, based
on ANN and targeting the greenhouse domain, differ in terms
of internal processing, input and output variables, and type of
Neural Network (NN)-based architecture adopted to solve the
prediction problem. These models can be classified as (i) time
series-oriented and (ii) “pure” ML.

Concerning the first class of models, they take advantage
of features typical of time series (i.e., data which are sampled
periodically and have a time reference, as sensor data), which
include trends, seasonality, and correlation between samples
which are closest in time. The best results in this field
have been obtained by architectures able to discover deep
relations between temporally-close data, such as Recurrent
Neural Networks (RNNs) [15] and Long-Short Term Memory

(LSTM) Networks [16]. Unfortunately, a drawback of RNNs
and LSTMs is the required significant amount of memory
and computational power, with respect to other models, such
as Convolutional Neural Networks (CNNs) [17]. In detail,
in order to predict the value of a variable at a certain time
instant t, these algorithms usually need a fixed number n− 1
of previous observations to be accessible (collected at time
instants t − 1, t − 2, . . . , t − n), which are not always avail-
able, for example, in IoT systems in which many temporally
consecutive sensor data can be lost.

On the other side, internal variables’ forecast can be
achieved without considering the relation between temporally-
close data, but using other input information, such as external
weather parameters and/or other relevant variables (correlated
with each one) of a greenhouse climate. In this field, notable
results for air temperature prediction have been achieved
with Radial Basis Function (RBF) networks [6], [7] or with
ANN [18].

As a remark, we underline that the aforementioned works
propose algorithms meant to be performed in the Cloud,
hence by systems with computing and memory capabilities
sufficiently high to run the model and store its parameters.
Moreover, although the mentioned models show remarkable
results in forecasting air temperatures (e.g., with a Root Mean
Squared Error, RMSE, value lower than 1 °C), when develop-
ing ML models on IoT nodes, performance optimization has
to take into account the computational and memory resources
required by the algorithm. Indeed, when the intelligence is
moved to an IoT network, where IoT nodes have limited
capabilities with respect to the Cloud, usually a balanced
trade-off between algorithm’s performance and computational
requirements has to be met. This means that, even if their
efficiency is typically lower, lightweight prediction models are
normally preferable to better-performing heavier ML models
(e.g., small ANNs against models with a huge number of
hidden layers and parameters).

Since our proposed forecasting algorithm is intended to
be deployed on a “constrained device” (the Smart GW),
its prediction performance will be compared with those of
algorithms proposed in the literature. Obviously, we expect
that lightweight features will likely lower the Smart GW’s
performance with respect to those of algorithms deployed in
the Cloud.

III. METHODOLOGY

In order to build a fully-connected ANN-based air temper-
ature prediction model, the following steps have been under-
taken: (i) collection of relevant data; (ii) data cleaning and
pre-processing; (iii) features’ selection; (iv) dataset definition
and splitting between training set and test set; (v) definition,
training and optimisation of the prediction model; and (vi)
execution of the model on a training set.

A. Data Gathering, Cleaning and Pre-processing

The agricultural data exploited in this paper, collected from
two different data sources, are the following: (i) meteorological



data, coming from the DarkSky weather data repository [19],
and (ii) air temperature data gathered with the LoRaFarM
platform, a Farm-as-a-Service (FaaS) architecture presented
in [20], during a 10-month period (from August 2019 to June
2020), in an Italian greenhouse (namely, Podere Campàz [21]).

B. Feature Engineering

A preliminary analysis, based on the graphical visualisation
of sensor’s data collected inside the greenhouse, revealed that
the time series associated with the greenhouse’s internal air
temperature have a daily seasonality. In other words, the air
temperatures of different days show similar trends. Moreover,
hourly values of temperatures are influenced by the year’s
month and season in which they are measured. This last
trend is justified by the fact that during months of the same
season, the farmer adopts a common greenhouse rooftop’s
opening/closure pattern, in order to prevent high values of air
temperature and humidity.

Hence, the above described correlation among air tem-
perature values and hour, month, and season in which data
samples are collected (namely, features which can be derived
from a time reference) can be exploited in order to extract
9 new features (denoted as time-based in the following).
Furthermore, beside features related to meteorological data,
time-based features are evaluated as potential inputs for the
ANN-based prediction model in the feature selection stage.

In detail, new time-based features are created as follows.
First, a time-based categorical variable (namely, hour, month,
and season) is denoted as v and will assume an integer value
x ∈ [0, . . . , T − 1], where T is the periodicity of the variable
v and is equal to 24, 12, and 4, for hour, month, and season,
respectively. For example, for v = season, x ∈ [0, 1, 2, 3]
represents a season in [winter, spring, summer, autumn].

Second, three trigonometric functions of the time-based
variables introduced above, based on sine-, cosine-, and 2-
argument arctangent transformations, are defined as follows:

vsin = sin
(
2π
x

T

)
(1)

vcos = cos
(
2π
x

T

)
(2)

vatan2 = atan2 (vsin, vcos). (3)

In detail, the trigonometric functions of v in Eqs. (1)-(3) allow
to properly encode the aforementioned categorical variables
v (i.e., hour, month, and season) in numerical variables
preserving their periodicity. Moreover, this encoding makes
the transformed values of v numerically close to each other
when associated with hours, months or seasons close to each
other in time. For instance, when v = season, x = 0
corresponds to winter and x = 3 corresponds to autumn: the
two seasons are close to each other but the numerical values
identifying them (0 and 3) are not. However, when considering
trigonometric transformations according to Eqs. (1)-(3), the
transformed values corresponding to 0 and 3 (namely, 0 and
−1), are closed to each other.

Finally, the trigonometric transformations in Eqs. (1)-
(3) lead to 9 new features related to hour (denoted

TABLE I
SELECTED FEATURES AND THEIR CORRELATION WITH AIR TEMPERATURE

INTERNAL TO THE GREENHOUSE.
Meteorological Feature Correlation r Time-based Feature Correlation r
Apparent temperature 0.896 hourcos −0.470
Dew point 0.690 monthsin −0.625
Air humidity −0.424 monthcos −0.266
Air temperature 0.900 seasoncos −0.652
UV index 0.659 seasonatan2 0.263

Fig. 1. Layered representation of the proposed fully-connected ANN.

as hoursin, hourcos, and houratan2), month (denoted as
monthsin, monthcos, and monthatan2), and season (denoted
as seasonsin, seasoncos, and seasonatan2).

C. Feature Selection

With the aim of discovering which features are mostly
correlated with the greenhouse’s air temperature, a correlation
analysis [22] between (i) air temperature samples, collected
inside the greenhouse, (ii) meteorological data, and (iii) time-
based features (added in the feature engineering stage) has
been performed. Then, the resulting features have been se-
lected as inputs variables for the ANN-based prediction model.
More precisely, the features, whose absolute correlation value
(denoted as r) with the air temperature is lower than 0.25,
have been discarded. Our experimental results, obtained by
performance evaluation of the forecasting model—in terms
of RMSE with different numbers of features (namely, from
26 to 1, discarded in descending order for r)—show that
the threshold value of 0.25 is a fair trade-off between the
amount of used input features (no mores than 10) and pre-
diction performance (RMSE ≤ 1.50 °C). Indeed, the larger
the number of discarded variables with low correlation with
the internal air temperature (in the algorithm case-study), the
poorer the prediction performance. The 10 selected features
and the corresponding values of the correlation r with air
temperature, are summarized in Table I. As can be seen, there
exists a strong positive correlation between the air temperature
inside and outside the greenhouse. This is justified by the
fact that climate inside the greenhouse is only marginally
regulated by internal actuators. Indeed, the air temperature
(and humidity) values inside the greenhouse are uniquely
controlled by opening or closing the greenhouse’s rooftop.



Moreover, during warm months (May-August), the greenhouse
remains open during all daylight hours. Due to these reasons,
the internal micro-climate is highly influenced by external
weather conditions and, thus, is strongly correlated with the
air temperature outside the greenhouse.

D. Deployed NN-based Model

After the feature selection stage, a 5346-sample dataset
is obtained, in which each sample is composed of: (i) a
10-dimensional vector of input variables, corresponding to
the features shown in Table I; and (ii) an output variable,
corresponding to the air temperature sensor’s value collected
inside the greenhouse. Then, the dataset is randomly split into
a training set and a test set, with a proportion of 3:1, while
the input variables are standardized (i.e., re-scaled in order to
obtain variables with a mean value equal to 0 and a standard
deviation equal to 1).

In detail, the prediction problem is modeled with a pure
ML (and not a time series-oriented) approach, in order to
better deal with consecutive missing sensor data’s prediction.
A lightweight—in terms of required storage space and com-
puting requirements—learning architecture, based on a fully-
connected ANN with 4 hidden layers and 1018 parameters,
has been adopted. As outlined in Section II, another attractive
architecture to be considered for air temperature prediction is
based on RBF networks. Since this kind of networks usually
adopt a weighted sum of non-linear functions (e.g., Gaussian
functions) as neurons’ activation functions, their execution is
generally computationally more expensive than the weighted
sum performed by a typical ANN node. On the basis of
this observation and taking into account the deployment on a
constrained IoT device, the approach based on RBF networks
has been discarded.

The architecture of the designed ANN, which has been
trained with a Back-Propagation (BP) algorithm and RMSE
function as loss function, is shown in Fig. 1. Finally, a k-fold
cross-validation technique (with k = 4) has been adopted in
order to find the best dataset split, i.e., the partition of samples
between training set and test set, which allows the proposed
ANN algorithm to reach the best estimation quality (in terms
of RMSE).

E. Performance Evaluation Criteria

The performance of the proposed forecasting model is eval-
uated considering three common metrics, namely (i) RMSE,
(ii) Mean Absolute Percentage Error (MAPE), and (iii) coeffi-
cient of determination (R2), which can be expressed as follows,

respectively [18]:

RMSE =

√∑n
j=1 (dj − pj)2

n
(4)

MAPE =
1

n

n∑
j=1

∣∣∣∣dj − pjdj

∣∣∣∣ · 100 (5)

R2 =

 ∑n
j=1(dj − d)(pj − p)√∑n

j=1(dj − d)
∑n

j=1(pj − p)

2

(6)

where: dj and pj are the actual and forecast values of the
j-th sample; d and p are the average values of the real
and forecast value of the j-th sample element; and n is the
number of samples predicted. The lower RMSE and MAPE,
and the higher R2 (i.e., close to 1), the better the algorithm
performance.

IV. EXPERIMENTAL RESULTS

The prediction performance of the proposed ANN-based
model has been evaluated on a test set of 1336 samples
(collected from August 2019 to June 2020) using the three
metrics indicated in Subsection III-E. Experimental results
highlight that the AI model can predict air temperatures with
a RMSE, MAPE, and R2 equal to 1.50 °C, 4.91%, and 0.965,
respectively. In other words, this means that the air temperature
can be forecast with a standard deviation of 1.50 °C with
respect to the actual value. If compared with the models
proposed in the literature (recalled in Section II), which allow
to predict air temperature values with a RMSE < 1 °C, then
the RMSE of our proposed model is slightly higher (in the
range of 0.5-1.0 °C [7], [16]) or similar [15]. Considering
the R2 metric, the obtained value (i.e., 0.965) is similar to the
results outlined in [16], but higher than the score in [15]. Nev-
ertheless, the obtained prediction performance is satisfactory,
taking into account the accuracy of the environmental sensor
adopted to measure air temperature (i.e., ±1 °C) and the type
of application (namely, greenhouse’s internal air temperature
monitoring). Moreover, the slight performance degradation
is justified by the fact that the forecasting model is more
lightweight and less resource-intensive then those proposed
in the literature.

In detail, the forecast air temperatures and data collected
from sensors during a 5-day period in August 2019, are
shown in Fig. 2. Moreover, the performance of the proposed
prediction model on the test set, in terms of difference between
the collected air temperature data and the predicted ones, is
shown in Fig. 3. As can be seen from Fig. 2 and Fig. 3, there
is an acceptable agreement between actual sensor data and
forecast values.

For validation purposes, the prediction model has been
successfully deployed on a real Smart GW, based on a
Raspberry Pi 3 Model B (RPi3), receiving air temperature
data from a SN (in detail, a LoPy4 board [23] equipped with a
Si7006-A20 temperature sensor [24]) installed in a greenhouse
and forwarding these data to the Cloud. When one or more
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Fig. 2. Predicted air temperatures compared with data collected from sensors
during a 5-day period.
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Fig. 3. Comparison between air temperature data, measured by sensors, and
predicted values (respectively, yreal and ypred) on the test set.

sensor data—which are collected with a sampling interval of
10 min—are lost, weather data are retrieved by the Smart
GW from the DarkSky repository and prepared as inputs for
the ANN-based prediction algorithm which, in turn, estimates
the values of the lost data and forwards them to the Cloud.
Moreover, the estimated value can be locally exploited to
control the opening or closing of the greenhouse’s rooftop,
avoiding the need of another entity, at Cloud level, taking the
decision and communicating it to the GW. This suggests that a
greenhouse could be completely locally managed by a Smart
GW, thus reducing network traffic and latency, as the decision
is not taken in the Cloud.

V. CONCLUSIONS

In this paper, a possible approach to embed intelligence
into a Smart GW, acting as data collector for SNs measuring
air temperature inside a greenhouse, has been proposed. In
particular, we have developed an ANN-based prediction model
to locally forecast the greenhouse’s air temperature in the pres-
ence of sensor data loss. The obtained data can be exploited to
regulate air temperature: for example, by controlling actuators
installed in the greenhouse.

The external weather conditions of the greenhouse (i.e.,
apparent temperature, dew point, air humidity and temperature,
and UV index) and a time reference (i.e., hour of the day
and harvest month), which can be retrieved from locally-
deployed sensors or from the Cloud (i.e., from the DarkSky
weather data repository), have been adopted as input variables
for the ANN-based model, which predicts the air temperature
inside the greenhouse with a RMSE of 1.50 °C, a MAPE of
4.91%, and a R2 of 0.965. Although the ANN-based prediction
model, which is composed by only 4 hidden layers and 1018
parameters, has been especially designed to be lightweight
and executable by a constrained IoT device (namely, a Smart
GW built on a RPi3), it can also be executed in the Cloud
to forecast future air temperature values, which can help the
farmer in managing his/her greenhouse.

In the future, other ML-based architectures will be evaluated
and compared with the one selected in this paper, in order
to predict the greenhouse’s air temperature. Moreover, other
models will be deployed, in order to forecast other relevant
internal variables for the greenhouse (e.g., air humidity).
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