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Abstract— K-means is one of the most important clustering 

algorithms, but it does introduce a risk of privacy disclosure 

in the clustering process. One approach to solving this 

problem is by applying differential privacy to K-means 

clustering algorithm to effectively prevent privacy 

disclosure. Increasing amounts of information generated in 

big data processing scenarios make clustering a challenging 

task. In order to deal with the problem, various approaches 

to the parallelization of clustering algorithms have been 

attempted. This paper presents an implementation of a 

differentially private k-means clustering algorithm that uses 

-differential privacy, based on the COMPSs framework for 

parallel computing. The experimental results show that the 

proposed implementation scales well and can be used to 

efficiently process large datasets using high-performance 

computing equipment. 

I. INTRODUCTION 

With a variety of proposed techniques, machine 
learning can perform a classification, clustering or even 
prediction with a reasonable accuracy depending on the 
data it has been trained with. Therefore, data feeding to a 
machine learning algorithm should be accurate and well 
prepared. Training data could contain sensitive fields such 
as a living town or income. Combining these kinds of 
data, an adversary who knows some background or parts 
of the data could identify a participant in the dataset or 
extract sensitive data. As an attempt to solve this problem, 
Dwork proposed differential privacy algorithm that 
introduces random noise to protect sensitive data [1]. 

The accuracy of the model also depends on the amount 
of data that have been used as a training dataset. With the 
rapid growth of data in size, training processes consume 
more time. To reduce the time for training a model, we 
use high-performance computing framework that 
automates parallelization of code called COMPSs [2]. The 
framework distributes specified tasks and portions of data 
to available nodes and aggregates results. 

In 2018, Zhang et al. proposed a parallel differentially 
private K-means clustering algorithm in [3]. The proposed 
algorithm uses the contour coefficients to evaluate each 
clustering iteration and add noise to centroids. 

We propose the implementation of parallel differential 
privacy K-means clustering using COMPSs framework. 
We test the implementation using high-performance 
computing equipment. The results show that the 
implementation scales well and is usable in big data 
processing scenarios that rely on application of high-
performance computing. 

II. DIFFERENTIAL PRIVACY K-MEANS CLUSTERING 

AND COMPSS FRAMEWORK 

A. Differentially private K-means 

Dwork proposed applying differential privacy on K-
means clustering which satisfies ϵ-differential privacy in 
[4]. The noise is added when the centroid in each K 
cluster is updated. For 1≤j≤K, the updating of a new 
centroid 𝑐́j in a cluster Sj, where vector pi is the i-th 
member vector of a cluster Sj can be expressed as follows: 

𝑐́j=
∑ pii∈Sj

⌊Sj⌋
      (1) 

To calculate noises that will be added to both 

numerator and denominator of equation (1), the 

sensitivity values must be determined. For the 

denominator, an absence of the x-th vector which is a 

member of the cluster causes the number of members in 

the cluster changes by 1. Hence, the noise added to the 

denominator is 𝐿𝑎𝑝(
1

𝜖
) regarding the Laplacian 

mechanism.  
The sensitivity value for the numerator is determined by 

the dimension dim of a vector. Adding or removing a 
vector from a cluster can affect the sum by at most 1 for 
each dimension. Thus, the sensitivity for a sequence query 
is 𝑑𝑖𝑚 + 1. The updating a new centroid applying 
differential privacy is changed to equation (2). Where the 
scale parameter b in the numerator is varying depending 
on the following cases: 

a) If the number N of iterations is specified, then 

𝑏 =
(𝑑𝑖𝑚+1)𝑁

𝜖
. 

b) In the case of N is unknown, the parameter b can 

be obtained by increasing the noise parameter 

repeatedly for each iteration. For example, the 

parameter b in the first iteration can be 
(𝑑𝑖𝑚+1)

(𝜖/2)
 

and changed to  
(𝑑𝑖𝑚+1)

(𝜖/4)
 in the next iteration. 

 

𝑐́𝑗 =
∑ 𝑝𝑖𝑖∈𝑆𝑗

+𝐿𝑎𝑝(𝑏)

|𝑆𝑗|+𝐿𝑎𝑝(
1

𝜖
)

            (2)   
 

B. COMPSs Framework 

COMPSs is a programming framework that supports 

parallel computing with C/C++, Java, and, Python 

programming language in distributed environments. 

COMPSs provides a programming model based on 



sequential programming development and execution of 

applications in cloud infrastructures. This framework 

implements a task-based programming model. 

Developers write a sequential program and specify the 

parts they want to be parallelized. 

Since the COMPSs runtime has been implemented in 

Java, running a Java application on COMPSs does not 

require an additional API. However, PyCOMPSs package 

for development in Python has also been provided. 

III. THE IMPLEMENTATION 

 

In K-Means clustering, vectors in dataset D are 

grouped into K clusters. The K centroids (abbreviated as 

C) are initiated by randomly selected K vectors from D. 

To enable parallelization, D is divided into n smaller 

subsets S0 to Sn-1. It is important that the subsets have as 

equal size as possible because of the balancing of 

computational time of tasks being processed in parallel. 

The next step is to perform the first clustering iteration. 

Since COMPSs employs task-based parallelism, we will 

explain the processes in the form of tasks. Fig. 1 shows 

the task dependency graph of the clustering process.  
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Fig. 1  Tasks dependency graph of the clustering process 

Suppose the initialization process mentioned above is 

handled by T1 (denotes for Task No. 1). The n subsets of 

D are distributed to the other n tasks. For example, if D 

contains 1,500 tuples, and n = 5, D is divided into 5 

subsets, each holds 300 tuples. T2 handles S0, T3 handles 

S1, and so on. Each task finds the nearest centroid for 

vectors it handles, performs sum of dimensions and 

calculates the size of each cluster. At this stage, the newly 

created task T7 synchronously collects information from 

T2 to T6, combines it and re-calculates new centroids 𝐶́. 

The clustering process is performed iteratively until C 

and 𝐶́ converge or the configured maximum of iterations 

is reached. 

The Laplace noise is applied to the updating centroids 

step to make our implementation satisfy 𝜖-differential 

privacy. The random selected noise will be added in both 

the numerator and denominator with different base 

parameters. For the numerator, we gradually increase the 

privacy parameter in each iteration (option b), and, 
1

∈
 for 

the denominator. Fig. 2 contains an outline of our 

implementation of the parallel differential privacy K-

means clustering algorithm. The annotation @Parallel 

decorates the part that is processed in parallel. 

IV. EXPERIMENTAL RESULTS 

For the purpose of testing, we randomly created a 

dataset of real numbers containing five million tuples 

with 8 dimensions. This dataset was tested on COMPSs 

cluster infrastructure consisting of 6-core Core i7 CPU 

nodes interconnected by the 10Gbps Ethernet network. 

Fig. 3, 4 and 5 show trends of the execution times, 

speedups, and efficiencies related to the number of 

processes used in computation. 

Fig. 2  Outline of the algorithm implementation. 

The dataset is divided into subsets equal to the number 

of processes to maximize the efficiency of the parallel 

computation. Therefore, adapting the size of subsets 

according to the number of processes used in the 

computation was necessary. 

Algorithm: Parallel Differential Privacy K-Means 

Clustering 

Inputs: number of clusters K, privacy budget 

epsilon, number of processor n, dataset D, 

dimension dim 

Output: centroids 𝐶́ 

Start 

Divide D into n subsets 𝑆0, … , 𝑆𝑛−1 ⊂ 𝐷 

C  initial K centroids 

Add noise to C 

𝐶́  NULL 

While C and 𝐶́ are not converged 

 If 𝐶́ is not NULL then 

  C  𝐶́ 

 End if 

 @Parallel: Start 

 For every i from 0 to n-1: 

  partial_sum += Find_nearest_centroid(Si, C) 

 End For 

 @Parallel: End 

 𝐶́  Recalculate_centroid(patial_sum, dim) 

End While 

Return 𝐶́   



 

Fig. 3 Trends of execution times. 

 

Fig. 4 Measured speedup. 

 
Fig. 5 Measured efficiency trends. 

  
For measuring the impact of the privacy budget on the 

output, we used 3 well-known datasets from UCI Machine 
Learning Repository: Iris, Wine, and Yeast. 

The Silhouette scores for those datasets are obtained by 
the parallel KMeans algorithm provided in dislib library. 
The Silhouette score is used for determining how well 
data in the dataset are clustered [5] ranged from -1 to 1. 
The high values near 1 indicate that the molecule is far 
from the other clusters while the values near -1 indicate 
that the molecule might be assigned to the wrong cluster. 
Table I shows the Silhouette score for each dataset. The 
abbreviation NCM refers to the number of clusters having 
members.  

There are important issues in this experiment. First, 
with the lower privacy budget, e.g., epsilon = 0.1, the 
large noises will be added in the re-calculating centroids 
process. These noises stretch the centroids to be far from 
each other and cause all samples to be assigned to the 

single cluster. In this case, the Silhouette score cannot be 
calculated.  

Another issue is the number of clusters having members 
does not match with the number of clusters. Suppose we 
used K=3, with low possibility, we might get two clusters 

containing members plus one empty cluster. This means 
the empty cluster is positioned too far from the rest. In this 
case, the Silhouette score could be high and difficult to 
compare with the normal KMeans algorithm which 
outputs 3 clusters containing members. 

To avoid the problem mentioned above, we first find 
the least epsilon value that produces K members contained 
clusters for each dataset. Then, we slightly adjust the 
epsilon value to observe the change of the Silhouette 
score.  

It is important to know that a dimension of a dataset 
directly affects the magnitude of noises added. It makes 
the least epsilon value for outputting K members 
contained clusters for one dataset is different from the 

others. Table II. shows the impact of the privacy budget 
on the Silhouette score. 

From the result shown in Table II, we can see the 
greater privacy budget yields the better Silhouette score 
and closer to the result of the normal parallel KMeans 
algorithm.  

V. CONCLUSION 

We implemented differentially private K-means 
clustering algorithm using high-performance computing 
framework - COMPSs. To achieve 𝜖-differential privacy, 
we employed the approach proposed by Dwork in which 
the selected random noise was added to updating centroids 
step using Laplacian mechanism. We performed 
experiments with our implementation using distributed 
environment. The five million tuples dataset was 
randomly created and divided into smaller subsets. The 
number of subsets related to the number of processes 
available in our computer cluster. The dataset was tested 
multiple times with various numbers of processes used. 
The experimental results show that our implementation 
scales well and achieves speedups not lower than 70% of 
linear speedup, for up to 10 processes. 
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TABLE II. 
THE IMPACT OF THE PRIVACY BUDGET ON THE SILHOUETTE SCORE 

Iris Wine Yeast 
Epsilon 

Value 

Silhouette 

Score 

Epsilon 

Value 

Silhouette 

Score 

Epsilon 

Value 

Silhouette 

Score 

2.9 0.5067 0.4 0.5544 86.2 0.1607 

3.5 0.5284 1 0.5611 94.7 0.1630 

4 0.5350 1.5 0.5677 95 0.1678 

 

TABLE I.   
THE DATASETS AND ITS SILHOUETTE SCORE 

Dataset Samples Features K Silhouette 
Scores 

NCM 

Iris 150 4 3 0.5510 3 

Wine 178 13 3 0.5711 3 

Yeast 1484 8 10 0.1695 10 

 



For measuring the privacy-preserving of our algorithm, 
we calculated the Silhouette score for epsilon values 
varying by datasets comparing to the score obtained by the 
normal parallel KMeans algorithm. The results indicate 
that the greater privacy budget yields more accurate 
output. 
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