
Parallel Differentially Private K-Means

Implementation Using COMPSs Framework
Sukgamon Sukpisit*, Srdjan Skrbic*, Dusan Jakovetic*

*University of Novi Sad, Faculty of Sciences, Department of Mathematics and Informatics, Novi Sad, Serbia

sukgamon.s@psu.ac.th, srdjan.skrbic@dmi.uns.ac.rs, dusan.jakovetic@dmi.uns.ac.rs

Abstract— K-means is one of the most important clustering

algorithms, but it does introduce a risk of privacy disclosure

in the clustering process. One approach to solving this

problem is by applying differential privacy to K-means

clustering algorithm to effectively prevent privacy

disclosure. Increasing amounts of information generated in

big data processing scenarios make clustering a challenging

task. In order to deal with the problem, various approaches

to the parallelization of clustering algorithms have been

attempted. This paper presents an implementation of a

differentially private k-means clustering algorithm that uses

-differential privacy, based on the COMPSs framework for

parallel computing. The experimental results show that the

proposed implementation scales well and can be used to

efficiently process large datasets using high-performance

computing equipment.

I. INTRODUCTION

With a variety of proposed techniques, machine
learning can perform a classification, clustering or even
prediction with a reasonable accuracy depending on the
data it has been trained with. Therefore, data feeding to a
machine learning algorithm should be accurate and well
prepared. Training data could contain sensitive fields such
as a living town or income. Combining these kinds of
data, an adversary who knows some background or parts
of the data could identify a participant in the dataset or
extract sensitive data. As an attempt to solve this problem,
Dwork proposed differential privacy algorithm that
introduces random noise to protect sensitive data [1].

The accuracy of the model also depends on the amount
of data that have been used as a training dataset. With the
rapid growth of data in size, training processes consume
more time. To reduce the time for training a model, we
use high-performance computing framework that
automates parallelization of code called COMPSs [2]. The
framework distributes specified tasks and portions of data
to available nodes and aggregates results.

In 2018, Zhang et al. proposed a parallel differentially
private K-means clustering algorithm in [3]. The proposed
algorithm uses the contour coefficients to evaluate each
clustering iteration and add noise to centroids.

We propose the implementation of parallel differential
privacy K-means clustering using COMPSs framework.
We test the implementation using high-performance
computing equipment. The results show that the
implementation scales well and is usable in big data
processing scenarios that rely on application of high-
performance computing.

II. DIFFERENTIAL PRIVACY K-MEANS CLUSTERING

AND COMPSS FRAMEWORK

A. Differentially private K-means

Dwork proposed applying differential privacy on K-
means clustering which satisfies ϵ-differential privacy in
[4]. The noise is added when the centroid in each K
cluster is updated. For 1≤j≤K, the updating of a new
centroid 𝑐́j in a cluster Sj, where vector pi is the i-th
member vector of a cluster Sj can be expressed as follows:

𝑐́j=
∑ pii∈Sj

⌊Sj⌋
 (1)

To calculate noises that will be added to both

numerator and denominator of equation (1), the

sensitivity values must be determined. For the

denominator, an absence of the x-th vector which is a

member of the cluster causes the number of members in

the cluster changes by 1. Hence, the noise added to the

denominator is 𝐿𝑎𝑝(
1

𝜖
) regarding the Laplacian

mechanism.
The sensitivity value for the numerator is determined by

the dimension dim of a vector. Adding or removing a
vector from a cluster can affect the sum by at most 1 for
each dimension. Thus, the sensitivity for a sequence query
is 𝑑𝑖𝑚 + 1. The updating a new centroid applying
differential privacy is changed to equation (2). Where the
scale parameter b in the numerator is varying depending
on the following cases:

a) If the number N of iterations is specified, then

𝑏 =
(𝑑𝑖𝑚+1)𝑁

𝜖
.

b) In the case of N is unknown, the parameter b can

be obtained by increasing the noise parameter

repeatedly for each iteration. For example, the

parameter b in the first iteration can be
(𝑑𝑖𝑚+1)

(𝜖/2)

and changed to
(𝑑𝑖𝑚+1)

(𝜖/4)
 in the next iteration.

𝑐́𝑗 =
∑ 𝑝𝑖𝑖∈𝑆𝑗

+𝐿𝑎𝑝(𝑏)

|𝑆𝑗|+𝐿𝑎𝑝(
1

𝜖
)

 (2)

B. COMPSs Framework

COMPSs is a programming framework that supports

parallel computing with C/C++, Java, and, Python

programming language in distributed environments.

COMPSs provides a programming model based on

sequential programming development and execution of

applications in cloud infrastructures. This framework

implements a task-based programming model.

Developers write a sequential program and specify the

parts they want to be parallelized.

Since the COMPSs runtime has been implemented in

Java, running a Java application on COMPSs does not

require an additional API. However, PyCOMPSs package

for development in Python has also been provided.

III. THE IMPLEMENTATION

In K-Means clustering, vectors in dataset D are

grouped into K clusters. The K centroids (abbreviated as

C) are initiated by randomly selected K vectors from D.

To enable parallelization, D is divided into n smaller

subsets S0 to Sn-1. It is important that the subsets have as

equal size as possible because of the balancing of

computational time of tasks being processed in parallel.

The next step is to perform the first clustering iteration.

Since COMPSs employs task-based parallelism, we will

explain the processes in the form of tasks. Fig. 1 shows

the task dependency graph of the clustering process.

T1

T2 T3 T4 T5

T7

T6

(S0, C)
(S1, C)

(S2, C)
(S3, C)

(S4, C)

partial0 partial1 partial2
partial3 partial4

T8 T9 T10 T11 T12

(S0, C) (S1, C)
(S2, C) (S3, C) (S4, C)

T13

partial0

partial1 partial2 partial3
partial4

Fig. 1 Tasks dependency graph of the clustering process

Suppose the initialization process mentioned above is

handled by T1 (denotes for Task No. 1). The n subsets of

D are distributed to the other n tasks. For example, if D

contains 1,500 tuples, and n = 5, D is divided into 5

subsets, each holds 300 tuples. T2 handles S0, T3 handles

S1, and so on. Each task finds the nearest centroid for

vectors it handles, performs sum of dimensions and

calculates the size of each cluster. At this stage, the newly

created task T7 synchronously collects information from

T2 to T6, combines it and re-calculates new centroids 𝐶́.

The clustering process is performed iteratively until C

and 𝐶́ converge or the configured maximum of iterations

is reached.

The Laplace noise is applied to the updating centroids

step to make our implementation satisfy 𝜖-differential

privacy. The random selected noise will be added in both

the numerator and denominator with different base

parameters. For the numerator, we gradually increase the

privacy parameter in each iteration (option b), and,
1

∈
 for

the denominator. Fig. 2 contains an outline of our

implementation of the parallel differential privacy K-

means clustering algorithm. The annotation @Parallel

decorates the part that is processed in parallel.

IV. EXPERIMENTAL RESULTS

For the purpose of testing, we randomly created a

dataset of real numbers containing five million tuples

with 8 dimensions. This dataset was tested on COMPSs

cluster infrastructure consisting of 6-core Core i7 CPU

nodes interconnected by the 10Gbps Ethernet network.

Fig. 3, 4 and 5 show trends of the execution times,

speedups, and efficiencies related to the number of

processes used in computation.

Fig. 2 Outline of the algorithm implementation.

The dataset is divided into subsets equal to the number

of processes to maximize the efficiency of the parallel

computation. Therefore, adapting the size of subsets

according to the number of processes used in the

computation was necessary.

Algorithm: Parallel Differential Privacy K-Means

Clustering

Inputs: number of clusters K, privacy budget

epsilon, number of processor n, dataset D,

dimension dim

Output: centroids 𝐶́

Start

Divide D into n subsets 𝑆0, … , 𝑆𝑛−1 ⊂ 𝐷

C  initial K centroids

Add noise to C

𝐶́  NULL

While C and 𝐶́ are not converged

 If 𝐶́ is not NULL then

 C  𝐶́

 End if

 @Parallel: Start

 For every i from 0 to n-1:

 partial_sum += Find_nearest_centroid(Si, C)

 End For

 @Parallel: End

 𝐶́  Recalculate_centroid(patial_sum, dim)

End While

Return 𝐶́

Fig. 3 Trends of execution times.

Fig. 4 Measured speedup.

Fig. 5 Measured efficiency trends.

For measuring the impact of the privacy budget on the

output, we used 3 well-known datasets from UCI Machine
Learning Repository: Iris, Wine, and Yeast.

The Silhouette scores for those datasets are obtained by
the parallel KMeans algorithm provided in dislib library.
The Silhouette score is used for determining how well
data in the dataset are clustered [5] ranged from -1 to 1.
The high values near 1 indicate that the molecule is far
from the other clusters while the values near -1 indicate
that the molecule might be assigned to the wrong cluster.
Table I shows the Silhouette score for each dataset. The
abbreviation NCM refers to the number of clusters having
members.

There are important issues in this experiment. First,
with the lower privacy budget, e.g., epsilon = 0.1, the
large noises will be added in the re-calculating centroids
process. These noises stretch the centroids to be far from
each other and cause all samples to be assigned to the

single cluster. In this case, the Silhouette score cannot be
calculated.

Another issue is the number of clusters having members
does not match with the number of clusters. Suppose we
used K=3, with low possibility, we might get two clusters

containing members plus one empty cluster. This means
the empty cluster is positioned too far from the rest. In this
case, the Silhouette score could be high and difficult to
compare with the normal KMeans algorithm which
outputs 3 clusters containing members.

To avoid the problem mentioned above, we first find
the least epsilon value that produces K members contained
clusters for each dataset. Then, we slightly adjust the
epsilon value to observe the change of the Silhouette
score.

It is important to know that a dimension of a dataset
directly affects the magnitude of noises added. It makes
the least epsilon value for outputting K members
contained clusters for one dataset is different from the

others. Table II. shows the impact of the privacy budget
on the Silhouette score.

From the result shown in Table II, we can see the
greater privacy budget yields the better Silhouette score
and closer to the result of the normal parallel KMeans
algorithm.

V. CONCLUSION

We implemented differentially private K-means
clustering algorithm using high-performance computing
framework - COMPSs. To achieve 𝜖-differential privacy,
we employed the approach proposed by Dwork in which
the selected random noise was added to updating centroids
step using Laplacian mechanism. We performed
experiments with our implementation using distributed
environment. The five million tuples dataset was
randomly created and divided into smaller subsets. The
number of subsets related to the number of processes
available in our computer cluster. The dataset was tested
multiple times with various numbers of processes used.
The experimental results show that our implementation
scales well and achieves speedups not lower than 70% of
linear speedup, for up to 10 processes.

0.00

50.00

100.00

150.00

200.00

0 5 10 15

E
x
ec

u
ti

o
n

 T
im

e
(s

)

Number of processes

Execution Times

0.00

2.00

4.00

6.00

8.00

0 5 10 15

S
p

ee
d

u
p

Number of Nodes

Speedup

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 5 10 15

E
ff

ic
ie

n
cy

Number of nodes

Efficiency

TABLE II.
THE IMPACT OF THE PRIVACY BUDGET ON THE SILHOUETTE SCORE

Iris Wine Yeast
Epsilon

Value

Silhouette

Score

Epsilon

Value

Silhouette

Score

Epsilon

Value

Silhouette

Score

2.9 0.5067 0.4 0.5544 86.2 0.1607

3.5 0.5284 1 0.5611 94.7 0.1630

4 0.5350 1.5 0.5677 95 0.1678

TABLE I.
THE DATASETS AND ITS SILHOUETTE SCORE

Dataset Samples Features K Silhouette
Scores

NCM

Iris 150 4 3 0.5510 3

Wine 178 13 3 0.5711 3

Yeast 1484 8 10 0.1695 10

For measuring the privacy-preserving of our algorithm,
we calculated the Silhouette score for epsilon values
varying by datasets comparing to the score obtained by the
normal parallel KMeans algorithm. The results indicate
that the greater privacy budget yields more accurate
output.

ACKNOWLEDGMENT

This work is supported by the I-BiDaaS project, funded

by the European Commission under Grant Agreement No.

780787. This publication reflects the views only of the

authors, and the Commission cannot be held responsible

for any use which may be made of the information

contained therein. The authors gratefully acknowledge the

AXIOM HPC facility at the Faculty of Sciences,

University of Novi Sad, where all the tests were run.

REFERENCES

[1] C. Dwork, “Differential privacy” Automata, Languages and
Programming, 33rd International Colloquium, ICALP2006,
Venice, Italy, Proceedings, Part II, pp. 1–12, 2006.

[2] R. M. Badia, J. Conejero, C. Diaz, J. Ejarque, D. Lezzi, F. Lordan,
C. Ramon-Cortes, R. Sirvent, “COMP Superscalar, an
interoperable programming framework”, SoftwareX, vol. 3–4, pp.
32-36, 2015.

[3] Y. Zhang, N. Liu, and S. Wang S, “A differential privacy
protecting K-means clustering algorithm based on contour
coefficients,” PLOS ONE, vol. 13(11), e0206832, 2018.

[4] C. Dwork, “A firm foundation for private data analysis,”
Communications of the ACM, vol. 54, pp. 86-95, 2011.

[5] P. Rousseeuw, “Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis,” Computational and Applied
Mathematics, vol. 20, pp. 53-65, 1987.

