

The work described in this document has been conducted within the project BigDataStack. This project has
received funding from the European Union’s Horizon 2020 (H2020) research and innovation programme under the
Grant Agreement no 779747. This document does not represent the opinion of the European Union, and the
European Union is not responsible for any use that might be made of such content.

Project Title High-performance data-centric stack for big data applications and
operations

Project Acronym BigDataStack

Grant Agreement No 779747

Instrument Research and Innovation action

Call Information and Communication Technologies Call (H2020-ICT-
2016-2017)

Start Date of Project 01/01/2018

Duration of Project 36 months

Project Website http://bigdatastack.eu/

D3.2 – WP 3 Scientific Report and
Prototype Description – Y2

Work Package WP3 – Data-driven Infrastructure Management

Lead Author (Org) Orlando Avila-García (ATOS)

Contributing Author(s)
(Org)

Ismael Cuadrado-Cordero, Bernat Quesada (ATOS),

Jean Didier Totow, Christos Lyvas (UPRC),

Sophia Karagiorgou (UBI),

Nikos Drosos (SILO),

Mauricio Fadel Argerich, Bin Cheng (NEC),

Patricio Martinez Gracia, Jose Maria Zaragoza (LXS),

Richard McCreadie, Zaiqiao Meng, Craig Macdonald (GLA),

Luis Tomas Bolivar (RHT)

Internal Reviewer(s)

Yosef Moatti (IBM),

Ricardo Jimenez-Peris (LXS),

Dimosthenis Kyriazis (UPRC)

Due Date 30.11.2019

Date 29.11.2019

Version 1.0

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 2 of 85 bigdatastack.eu

Dissemination Level

X PU: Public (*on-line platform)

 PP: Restricted to other programme participants (including the Commission)

 RE: Restricted to a group specified by the consortium (including the Commission)

 CO: Confidential, only for members of the consortium (including the Commission)

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 3 of 85 bigdatastack.eu

Versioning and contribution history

Version Date Author Notes

0.1 30.09.2019 Orlando Avila-García
(ATOS)

Creation of the skeleton and first draft as a copy of
D3.1. Sections 1, 2 and 4 updated for Y2. Updating
description of scenarios by ATOS WDL.

0.2 07.10.2019 Orlando Avila-García
(ATOS)

Changing the template structure for the description
of high-level components.

0.3 18.11.2019 Orlando Avila-García
(ATOS)

Adding updated component design,
implementation and experimentations from GLA,
ATOS, UPRC and UBI within sections 7, 8 and 9.
Updates on Sections 2 and 4 by ATOS. Adding
global experimentation outcomes from GLA within
Section 10 and references.

0.4 19.11.2019 Orlando Avila-García
(ATOS)

Adding updated component design,
implementation and experimentations from RHT
and NEC within sections 5 and 6.

0.5 25.11.2019 Orlando Avila-García
(ATOS)

Adding comments and corrections from internal
review by IBM and LXS. Adding Section 7.4.3 from
ATOS.

0.6 28/11/2019 Orlando Avila-García
(ATOS)

Adding amendments from GLA, ATOS, UPRC,
NEC, UBI and RHT, addressing the internal
review’s corrections and amendments.

1.0 29/11/2019 Orlando Avila-García
(ATOS)

Final format amendments and release of final
version.

Disclaimer

This document contains information that is proprietary to the BigDataStack Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of the BigDataStack
Consortium.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 4 of 85 bigdatastack.eu

Table of Contents

1. Executive Summary ... 9

2. Introduction .. 10

2.1. Relation to other deliverables .. 10
2.2. Relevant aspects unchanged from D3.1 ... 11
2.3. Document structure ... 11

3. Solution Architecture .. 12

4. Implementation and Experimentation ... 13
4.1. Experimental Settings ... 13

4.1.1. Setting 1: Recommendation Inference without Data Storage 13
4.1.2. Setting 2: Recommendation Inference with Data Storage 15

4.1.3. Setting 3: Recommendation Process Modelling 16
4.1.4. Setting 4: Customer Event Stream Cleansing 16

4.2. Implementation .. 16

4.3. Experimental Scenarios .. 18
4.3.1. Scenario 1: Product recommendation service scalability..................... 18
4.3.2. Scenario 2: Product recommendation service steadiness 19

4.3.3. Scenario 3: Product recommendation service cost-effectiveness 20

5. Cluster Management .. 22

5.1. Requirements .. 22
5.2. Design Specifications .. 25

5.2.1. Cluster performance improvements .. 25
5.2.2. Gateway .. 27

5.2.3. East/West Distributed Load Balancing .. 27
5.3. Implementation and Integration Highlights .. 28
5.4. Experimentation Outcomes ... 28
5.5. Next Steps ... 29

6. Dynamic Orchestration ... 30
6.1. Requirements .. 30
6.2. Design Specifications .. 32

6.2.1. Adaptable Distributed Storage Interplay .. 35
6.3. Implementation and Integration Highlights .. 35
6.4. Experimentation Outcomes ... 36
6.5. Next Steps ... 38

7. ADS Ranking & Deploy .. 39
7.1. Requirements .. 39
7.2. Design Specifications .. 44

7.2.1. Connection with the Visualization Service ... 45
7.3. Experimentation Outcomes ... 45

7.3.1. Dataset .. 46
7.3.2. Metrics ... 48
7.3.3. Baselines ... 49

7.3.4. ADS Ranking Performance Results .. 49

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 5 of 85 bigdatastack.eu

7.4. Implementation and Integration Highlights .. 50
7.4.1. Re-Implementation to Decrease Latency .. 50
7.4.2. ADS Ranking Tier 1 Implementation ... 50
7.4.3. ADS Deploy Implementation ... 50

7.5. Next Steps ... 51

8. Triple Monitoring & QoS Evaluation ... 52
8.1. Requirements .. 52
8.2. Design Specifications .. 59
8.3. Experimentation Outcomes ... 62

8.4. Implementation and Integration Highlights .. 63

8.4.1. QoS Evaluation Confidence Levels ... 63
8.5. Next Steps ... 64

9. Information-Driven Networking ... 65
9.1. Requirements .. 65
9.2. Design Specifications .. 66

9.3. Experimentation Outcomes ... 70
9.4. Implementation and Integration Highlights .. 71
9.5. Next Steps ... 71

10. Global Experimentation Outcomes ... 73
10.1. QoS Analysis in CC Use-Case .. 73

10.2. Current Product Recommendation Systems ... 74

10.3. Experimental Methodology .. 75

10.4. Product Recommendation QoS ... 76
10.5. Enhancing QoS (Proposing VBCAR) .. 77

10.6. VBCAR and VBCAR-S Performance ... 79
10.7. Analysis of Use-Case-Specific Factors ... 80
10.8. Study Summary and Lessons Learned ... 82

11. References ... 83

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 6 of 85 bigdatastack.eu

List of tables

Table 1 - Data-driven Infrastructure Management capability
experimentation phases. ... 17

Table 2 - Data-driven Infrastructure Management capability implementation plan. .. 18
Table 3 - Requirement (1) for Cluster Management ... 22
Table 4 - Requirement (2) for Cluster Management ... 23
Table 5 - Requirement (3) for Cluster Management ... 23
Table 6 - Requirement (4) for Cluster Management ... 24
Table 7 - Requirement (5) for Cluster Management ... 24
Table 8 - Requirement (6) for Cluster Management ... 24
Table 9 - Requirement (7) for Cluster Management ... 25
Table 10 - Requirement (8) for Cluster Management ... 25
Table 11 - Requirement (1) for Dynamic Orchestrator ... 30
Table 12 - Requirement (2) for Dynamic Orchestrator ... 30
Table 13 - Requirement (3) for Dynamic Orchestrator ... 31
Table 14 - Requirement (4) for Dynamic Orchestrator ... 31
Table 15 - Requirement (5) for Dynamic Orchestrator ... 31
Table 16 - Requirement (6) for Dynamic Orchestrator ... 32
Table 17 - Requirement (1) for ADS Ranking ... 40
Table 18 - Requirement (2) for ADS Ranking ... 40
Table 19 - Requirement (3) for ADS Ranking ... 41
Table 20 - Requirement (4) for ADS Ranking ... 41
Table 21 - Requirement (5) for ADS Ranking ... 42
Table 22 - Requirement (6) for ADS Ranking ... 42
Table 23 - Requirement (7) for ADS Ranking ... 42
Table 24 - Requirement (8) for ADS Ranking ... 43
Table 25 - Requirement (1) for ADS Deploy ... 43
Table 26 - Requirement (2) for ADS Deploy ... 43
Table 27 - Requirement (3) for ADS Deploy ... 44
Table 28 - Requirement (4) for ADS Deploy ... 44
Table 29 - Requirement (5) for ADS Deploy ... 44
Table 30 - Requirement (6) for ADS Deploy ... 44
Table 31 - Requirement (1) for Triple Monitoring Engine ... 52
Table 32 - Requirement (2) for Triple Monitoring Engine ... 52
Table 33 - Requirement (3) for Triple Monitoring Engine ... 53
Table 34 - Requirement (4) for Triple Monitoring Engine ... 53
Table 35 - Requirement (5) for Triple Monitoring Engine ... 54
Table 36 - Requirement (6) for Triple Monitoring Engine ... 54
Table 37 - Requirement (7) for Triple Monitoring Engine ... 54
Table 38 - Requirement (8) for Triple Monitoring Engine ... 55
Table 39 - Requirement (9) for Triple Monitoring Engine. .. 55
Table 40 - Requirement (10) for Triple Monitoring Engine 55
Table 41 - Requirement (11) for Triple Monitoring Engine 56
Table 42 - Requirement (12) for Triple Monitoring Engine 56
Table 43 - Requirement (13) for Triple Monitoring Engine 56
Table 44 - Requirement (1) for QoS Evaluation ... 57

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 7 of 85 bigdatastack.eu

Table 45 - Requirement (2) for QoS Evaluation ... 57
Table 46 - Requirement (3) for QoS Evaluation ... 57
Table 47 - Requirement (4) for QoS Evaluation ... 57
Table 48 - Requirement (5) for QoS Evaluation ... 58
Table 49 - Requirement (6) for QoS Evaluation ... 58
Table 50 - Requirement (7) for QoS Evaluation ... 58
Table 51 - Requirement (1) for Information-Driven Networking 66
Table 52 - Requirement (2) for Information-Driven Networking 66

List of figures

Figure 1 – Experimental scenario 1: Inference without data access
(data flow view). .. 13

Figure 2 – Experimental scenario 2: Inference with data access (data flow view). ... 15
Figure 3 – Red Hat Kuryr’s architecture to avoid the “double encapsulation

problem.”7 .. 26
Figure 4 – Throughput improvements (POD to POD)... 29
Figure 5 – Throughput improvements (POD to SVC) ... 29
Figure 6 – Reinforcement learning feedback loop with the environment. 33
Figure 7 – High level vision of Tutor4RL. ... 34
Figure 8 – Example of streaming analytics application... 36
Figure 9 – Comparison of performance between Tutor4RL and a plain DQN agent. 37
Figure 10 – CDP Playbook Visualisation and Approval Screen 45
Figure 11 – ADS Ranking Performance ... 49
Figure 12 – Triple Monitoring Engine & QoS Evaluation – conceptual view. 59
Figure 13 – Interaction between monitoring and QoS Evaluation components. 61
Figure 14 – Interaction between Triple Monitoring Engine, QoS Evaluation and ADS

Deploy components. ... 62
Figure 15 – An indicative network policy definition for ingress traffic. 67
Figure 16 – An indicative network policy definition for controlling HTTP GET

requests. ... 69
Figure 17 – Information-Driven Networking UML. .. 70
Figure 18 – Mapping of Information-Driven Networking tool with BDS Use Cases. . 70
Figure 19. Traffic Isolation from internal and external pods. 72
Figure 20 – Grant access to services that use the pod. ... 72
Figure 21 – Grocery recommendation datasets. .. 76
Figure 22 – Grocery recommendation QoS for current state-of-the-art algorithms. . 77
Figure 23 – Representation Learning for VBCAR with Item Side information. 79
Figure 24 – Quality of our new VBCAR model in comparison to Triple2vec. 80
Figure 25 – Analysis of grocery recommendation configurables. 81

file:///C:/Users/Dimosthenis/Dropbox/Projects/BigDataStack/Repository/BigDataStack/WP3/D3.2/BigDataStack_D3.2_v1.0.docx%23_Toc26136878

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 8 of 85 bigdatastack.eu

Acronyms

ADS Application and Data Services

ADW Application Dimensioning Workbench

AWS Amazon Web Services

CD Continuous Delivery

CDP Candidate Deployment Pattern

CEP Complex Event Processing

CI Continuous Integration

CNI Container Network Interface

CRD Kubernetes Custom Resource Definition

DDIM Data-Driven Infrastructure Management

DNS Domain Naming System

DO Dynamic Orchestration

EKS AWS Elastic Kubernetes Service

GCP Google Cloud Platform

KPI Key-Performance Indicators

K8S Kubernetes

LbaaS Load Balancer as a Service

OKD Openshift Origin Kubernetes Distribution

OVN Open Virtual Networking

OVS Open Virtual Service

QoS Quality of service

QoSE Quality of service evaluation

RL Reinforcement Learning

TME Triple Monitoring Engine

SDN Software-Defined Network

SLA Service-Level Agreement

SLO Service-Level Objective

NIC Network Interface Controller

VM Virtual Machine

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 9 of 85 bigdatastack.eu

1. Executive Summary

This is the Scientific Report and Prototype Description (Y2), reflecting the work done in the
scope of the Data-Driven Infrastructure Management (DDIM) capability of the overall
BigDataStack environment. The document describes the DDIM solution as assembled at
M23 of the project (i.e. November 2019) in terms of updated design specifications,
implementation, integration details, experimentation outcomes and next steps for the high-
level components comprising the DDIM solution: Cluster Management, Dynamic
Orchestration, ADS Ranking & Deploy, Triple Monitoring & QoS Evaluation, and Information-
Driven Networking. Regarding research results, it focuses on the research conducted to
optimize the two components bringing artificial intelligence (AI) to the solution: the ADS
Ranking—responsible for ranking and selecting the best application deployment
configurations—and the Dynamic Orchestration—in charge of making re-deployment
decisions. Both components make use of machine learning (ML) techniques to bring the
data-driven aspect to the DDIM capability. The rest of the components complement the
above towards the overall data-driven functionality targeted at the level of infrastructure
management: Cluster Management and Information-Driven Networking, responsible for the
management and monitoring of the infrastructure resources (compute, storage and
networking), and the Triple Monitoring & QoS Evaluation, responsible for the monitoring
and evaluation of the QoS at different levels of the solution, that is, infrastructure resources,
data services and application services. This document concludes with the description of
global experimentation outcomes related to the ranking of the performance of grocery
product recommendation techniques for the Connected Consumer use case.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 10 of 85 bigdatastack.eu

2. Introduction

This deliverable presents the Scientific Report and Prototype Description of the work carried
out during the second year (Y2) of the project, within WP3, to develop the Data-Driven
Infrastructure Management (DDIM) capability of the BigDataStack environment. The
document presents the details of the solution implemented during Y2 as well as the
experimental results obtained from the research conducted to bring intelligence to the
DDIM, that is, on the component ranking and enacting the best application deployment
configurations (ADS Ranking and Deploy) and the component making re-deployment
decisions (Dynamic Orchestrator). In particular, the specific machine learning (ML)
algorithms used to bring data-driven decisions to the infrastructure self-adaption process
are explained, as well as the research conducted to validate them. The rest of services
playing a more conventional role in the infrastructure management are also presented:
from the management of the infrastructure resources (Cluster Management and
Information-Driven Networking) to the monitoring of those resources as well as the
performance of the application and data services making use of them (Triple Monitoring and
QoS Evaluation).

2.1. Relation to other deliverables

This document is related to the following past and immediately upcoming deliverables:

• D2.5 – Conceptual model and Reference architecture II (M18). The description of the
high-level architecture of BigDataStack as well as the interplay and integration
between the main components. The architecture of the Data-Driven Infrastructure
Management as well as the design of the components have been devised to fit into
the overall architecture.

• D2.3 – Requirements & State of the Art Analysis III (M22). The specification of
BigDataStack requirements is centralized in this deliverable. The architecture of the
Data-Driven Infrastructure Management (DDIM) as well as the design of the
components have been devised to satisfy those requirements. Please note that for
the reader’s convenience, the requirements related to each one of the DDIM
components have also been included (literally brought from D2.3) in the present
deliverable, specifically, at subsections 5.1, 6.1, 7, 8.1 and 9.1.

• D3.1 – WP3 Scientific Report and Prototype Description - Y1 (M23). It described the
solution as well as the experimental results produced in Y1. D3.2 presents the results
obtained in Y2, which are necessarily an increment or refinement with respect to
those presented in D3.1. Therefore, please note those aspects of the solution that did
not change during Y2 may appear in the same form in D3.2 and D3.1.

• D4.2 – WP4 Scientific Report and Prototype Description – Y2 (M23). D3.2 makes
references to some of the requirements and components which are designed,
implemented and experimented with at WP4, while also the D4.2 references and
raises requirements that are being described in the current document. In fact, the
Data-Driven Infrastructure Management is meant to provide infrastructure services
(Infrastructure-as-a-Service) to those components.

• D5.2 – WP5 Scientific Report and Prototype Description – Y2 (M23). D3.2 makes

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 11 of 85 bigdatastack.eu

references to some of the requirements and components which are designed,
implemented and experimented with at WP5; this is because the tools developed at
WP5 will interact with the services and resources provided by the infrastructure to
implement certain functionality supporting the different BigDataStack stakeholders.

2.2. Relevant aspects unchanged from D3.1

As described in the previous section, this deliverable presents the Scientific Report and
Prototype Description for Y2 for the work done in WP3. Therefore, much of the
development and research work reported in this deliverable is a continuation or extension
of the work reported in an equivalent report for Y1 (D3.1). However, in order to avoid the
duplication of content, those aspects of the work which have remained unchanged for the
last year are not reported again here but property referred to in D3.1. This is the case for:

i. The Solution Architecture (Section 3), including the architecture vision, assumptions,
platform roles, example scenarios and the high-level design of the Data-Driven
Infrastructure Management (DDIM) capability.

ii. Some of the experimental settings described in Section 4, the setting 1 and setting 2.

iii. The design specification of three out of the five building blocks of the architecture

remained unchanged for the most part: Cluster Management (Section 5), ADS

Ranking & Deploy (Section 7) and Information-Driven Networking (Section 9).

2.3. Document structure

The document is structured as follows: Section 3 describes the solution architecture of the
Data-Driven Infrastructure Management (DDIM) capability of BigDataStack. Section 4
reports the Implementation and Experimentation: Starting with the experimental settings
(Section 4.1), it describes the solution implementation roadmap giving support to the
research (Section 4.2), and then finalizes with the description of experimental scenarios
(Section 4.3).

The following five sections are dedicated to the requirements specification, design
specifications, the presentation of experimental results, the description of interesting
aspects of the implementation and integration of the component within the whole
architecture, and some next steps: Cluster Management (Section 5), Dynamic Orchestration
(Section 6), ADS Ranking & Deploy (Section 7), Triple Monitoring & QoS Evaluation (Section
8) and Information-Driven Networking (Section 9).

Finally, Section 10 presents global experimentation outcomes for the whole DDIM capability
as developed at M23.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 12 of 85 bigdatastack.eu

3. Solution Architecture

For a full description of the technical solution for the Data-driven Infrastructure
Management (DDIM) capability, including architecture vision (context, goal, main functions
or services), assumptions that the WP3 makes about the environment that BigDataStack will
be deployed within, the platform roles engaged in the use of the capability, a full example
scenario, and the global high-level design of the solution, please refer to D3.1 (WP3
Scientific Report and Prototype Description ̶ Y1).

To better understand the structure and content of this deliverable, we bring from D3.1 the
description of the five solution building blocks (components) the DDIM is made of:

1. Cluster Management (WP3-T3.1): Resource (compute and data) cluster services to

BigDataStack, based on OpenShift container orchestration platform running on

either OpenStack infrastructure-as-a-service (IaaS) or bare metal.

2. Dynamic Orchestration (WP3-T3.2): Runtime adaptation service in charge of
resource re-allocation, storage and analytics re-distribution, re-compilation of
network functions and re-deployment or applications and data services.

3. ADS Ranking & ADS Deployment (WP3-T3.3). Self-optimized deployment service for

application components and data services, which are orchestrated following

resource, application and data-aware deployment patterns.

4. Triple Monitoring and QoS Evaluation (WP3-T3.5). It consists of the resource clusters,
data and application-level metrics collectors, the monitoring manager (which also
gathers database related metrics) and the QoS evaluator, which evaluates Service-
Level Objectives (SLOs) over those metrics.

5. Networking (WP3-T3.4). Data-driven networking services (self-)optimize the diverse

networking needs among computing and storage resources as well as application

components and data services (see Section 9).

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 13 of 85 bigdatastack.eu

4. Implementation and Experimentation

This section introduces the experimental scenarios and the methodological approach WP3 is
taking to answer important questions and validate certain hypothesis to develop the Data-
Driven Infrastructure Management (DDIM) capability. This section firstly presents four
experimental settings; secondly, it describes the implementation roadmap to develop them;
finally, it presents the experimental scenarios where they were enacted.

4.1. Experimental Settings

During Y2, we selected the Connected Consumer use case application to experiment with a
series of DDIM capability prototypes (please refer to D3.1 for some use case highlights and
D2.3 for a full description of it). In the following sections, we describe the experimental
settings supporting such experiments, with an increasing level of complexity in terms of the
number of BigDataStack components engaged.

4.1.1. Setting 11: Recommendation Inference without Data Storage

An application engineer wants to deploy a recommendation model implemented by a data
scientist. This recommendation system will provide product recommendations for
customers that are visiting the company’s e-commerce web site. Customer events in such a
site will continuously feed the system to improve the recommendation model.

- The analytics application is made of two services (see Figure 1):

o Normalization: which receives customer events and updates the Customer
Preferences table with the customer activity. This table is then used as input
in the Inference process.

o Inference: takes the up-to-date Customer Preferences table and compute
Product Recommendations table, which contains the list of products
recommended per user.

- These application services contain state (i.e. Customer Preferences and Product
Recommendations tables). Therefore, they cannot scale horizontally unless we
provide a persistent storage. It is not integrated with a datastore, so we must flush
the data to an already made, in-memory, distributed cache, so that the application
services can become stateless and therefore horizontally scalable.

Figure 1 – Experimental scenario 1: Inference without data access (data flow view).

1 Extracted unchanged from D3.1 (WP3 Scientific Report and Prototype Description ̶ Y2). It is reported again
in this document for the reader’s convenience. See Section 2.3 for more details.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 14 of 85 bigdatastack.eu

Requirements and constrains:

• A cache (in-memory) service was required to be deployed alongside the
Normalization and Inference application services to store Customer Preferences and
Product Recommendations tables and hence let them scale out (horizontally).

• The Inference is based on cross-selling by “collaborative filtering.” The algorithm
used is one of those already implemented in the NumPy library for Spark.

• Different experiments on the performance of the recommendation system have
been accomplished, including the evaluation of latency for the Normalization service
and throughput for the Inference service.

• Different experiments executing the Inference process in batches of different sizes.

• The Inference is being executed on a Spark engine, which is bundled and deployed
together with the recommendation algorithm in a single container (stand-alone
deployment). The single-node Spark configuration seek to serve as a first step to
deploy Spark operations: In scenarios 2 and 3 the configuration becomes a more
realistic multi-node cluster.

Customer events

The analytics application which is the subject of the scenarios is meant to provide service to
EROSKI’s e-commerce web site, specifically, product recommendations to customers. The
analytics application service computes recommendations and the web application uses
those recommendations to decide which products to show to the customer visiting the web;
for each product it gives the option to view the detail of the product, add the product to the
car, or discard that product so that it is not shown again as a recommendation to that
customer.

Al these customer actions are captured as events and notified to the Normalization service
which registers them in the Customer Preferences table, which in turn serves as input to the
Inference service to update the Product Recommendations table. The definition of those
events is the following:

• Recommendation shown (attributes: customer id, id recommendation, list of
product ids). It will be used to discard a recommended product if the client has not
shown interest in it (has not displayed it and has not added it to the car) after being
shown as a recommendation a certain (configurable) number of times.

• Product added to the cart (attributes: id client, id recommendation, id product). We
will give more weight to the recommendation of this product for this client.

• Product displayed (attributes: id client, id recommendation, id product). We will give
more weight to the recommendation of this product for this client (but less than if
you add it to the cart).

• Product discarded (attributes: id client, id recommendation, id product). Directly this
product will be eliminated from the list of product recommendations for the given
customers.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 15 of 85 bigdatastack.eu

Deployment

Both services are expected to be containerized and deployed on Kubernetes as a single pod.
This means that the scaling of the services will the carried out together, that is, increasing or
decreasing the number of replicas at the pod level and not at the container level (i.e. scaling
in and out).

The other action that can be carried out to dynamically adapt the deployment is to change
the number of vCPUs per container (i.e. scaling up and down).

Quality of service

In different settings, the data scientist will need both processes to run with varying
constraints of response time. Moreover, the throughout will be also an important
consideration for the application engineer.

Other application-specific metrics (e.g., precision of the prediction, the success rate of the
product recommendation) are not considered in this scenario.

4.1.2. Setting 22: Recommendation Inference with Data Storage

Scenario 1 is enhanced by considering the persistence of both Customer Preferences and
Product Recommendations tables in a data store, LeanXcale database.

Figure 2 – Experimental scenario 2: Inference with data access (data flow view).

Requirements and constrains (refine scenario 1):

• A cache (in-memory) service is required to be deployed alongside the Normalization
and Inference application services to store Customer Preferences and Product
Recommendations tables and hence let them scale out (horizontally).

• The cache (in-memory) service permanently stores Customer Preferences and
Product Recommendations tables in a LeanXcale database every time there is write
operation.

• The Inference is based on “customer habits” by “individual behavioural analytics.”

2 Extracted unchanged from D3.1 (WP3 Scientific Report and Prototype Description ̶ Y2). It is reported again
in this document for the reader’s convenience. See Section 2.3 for more details.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 16 of 85 bigdatastack.eu

o Instead of producing the whole recommendation table for all customers in
every run, the inference process updates just the product recommendations
for those customer/s whose events were received in a given time window.

o The algorithm used will be one of those already implemented in the NumPy
library for Spark.

• The Inference will be executed on a multi-node Spark cluster, so there is a need to
come up with its optimal deployment (e.g., number of nodes, flavour of VMs, etc.).

• Different experiments executing the Inference as streaming analytics in micro-
batches and real-time (i.e., with the arrival of every single event) will be
accomplished.

Deployment

The application components are deployed in Kubernetes in the same way as in Scenario 1.
For this scenario, the LeanXcale data base is expected to be deployed and operated as a
WP4 component. This means that its deployment is not part of this scenario, which focuses
on the integration between WP3 and WP4 regarding the storage layer and the impact on
the analytics application layer.

Quality of service

Like in the previous scenario, different experimental settings with different QoS targeting
low response time and high throughput will be run.

At least one application-specific metric (e.g., precision of the prediction or the success rate
of the product recommendation) will be considered in this scenario.

4.1.3. Setting 3: Recommendation Process Modelling

Scenario 2 at M15 has been enhanced by considering the use of the application process
modelling tool, a component from WP5. The Normalization + Inference process will be
declaratively modelled in the tool and the automated deployment from that tool validated.
Note this tool will be implemented over Node-RED at T5.2 (see D5.2 for more details).

4.1.4. Setting 4: Customer Event Stream Cleansing

Scenario 2 at M15 has been further enhanced by considering the integration with the data
cleansing pre-processing service developed in WP4. In this experimental setting, such a
service will be used to clean and enrich the streaming of customer behavioural events
before being submitted to the Normalization service. Note this process will be implemented
through the Real-time Complex Event Processing (CEP) resulting from T4.6 (see D4.2 for
more details).

4.2. Implementation

Table 1 summarizes the experimentation (evaluation and validation) plan for the Data-

driven Infrastructure Management capability between M15 and M24:

 M15 M18 M21 M24

Milestone Prototype
Validation

Implementation Corrections and
Design Evolution

Performance
Optimization

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 17 of 85 bigdatastack.eu

Objective  WP3 starts
deploying
services in the
(cloud native)
WP3-provided
Kubernetes-
based
computing
infrastructure.

 WP3 and WP5
components are
integrated and
use the same
(cloud native)
WP3-provided
Kubernetes-
based computing
infrastructure.

 WP3, WP4 and
WP5 components
are integrated
and use the same
(cloud native)
WP3-provided
Kubernetes-
based computing
infrastructure.

 WP3, WP4 and
WP5 components
as well as their
collaboration
optimized to
provide cost-
effective
orchestrated
capabilities.

Success
criteria

ALL WP3
services are
deployed and
running on
Kubernetes to
test the
platform.

ALL WP3 and
WP5 services are
integrated and
deployed on
Kubernetes to
evaluate the
platform.

ALL WP3, WP4
and WP5 services
are integrated
and deployed on
Kubernetes to
evaluate the
platform.

ALL WP3, WP4
and WP5 services
are fully
integrated and
deployed on
Kubernetes,
providing a better
platform
performance
than at M21.

Experimentation
with Setting 1

Experimentation
with Setting 2
and 3

Experimentation
with Setting 2
and 3

Experimentation
with Setting 3
and 4

Table 1 - Data-driven Infrastructure Management capability experimentation phases.

Table 2 summarizes the Data-driven Infrastructure Management capability implementation

roadmap for the past seven months:

 M15 M18 M21 M24

Experimental
setting
supported

1 1, 2 1, 2, 3 1, 2, 3, 4

Experimental
scenario
enacted

2 1, 2 1, 2 1, 2, 3

Cluster
Management

OpenStack
integration,
Operators,
Gateway

OpenStack
integration,
Cluster
performance
improvements
Operators,
Gateway

OpenStack
integration,
Cluster
performance
improvements,
Operators,
Gateway
East/West
Distributed Load
Balancing

OpenStack
integration,
Cluster
performance
improvements,
Operators,
Gateway
East/West
Distributed Load
Balancing

Dynamic
Orchestrator

Agent
Interpreter

Agent
Interpreter

Agent
Interpreter

Agent
Interpreter

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 18 of 85 bigdatastack.eu

ADS Interplay ADS Interplay

Ranking &
Deployment

ADS-Ranking,
ADS-Deploy

ADS-Ranking,
ADS-Deploy

ADS-Ranking,
ADS-Deploy
GDT

ADS-Ranking,
ADS-Deploy
GDT

Triple
Monitoring &
QoS
Evaluation

SLALite,
Prometheus,
Graphana,
Data metrics,
Application
metrics

SLALite,
Prometheus,
Graphana,
Data metrics,
Application
metrics,
Manager

SLALite,
Prometheus,
Graphana,
Data metrics,
Application
metrics,
Networking
metrics,
Manager

SLALite,
Prometheus,
Graphana,
Data metrics,
Application
metrics,
Networking
metrics,
Manager,
Resource
Cluster metrics

Information-
driven
Networking

Native Native,
Kubernetes,
Networking &
Policies
Enforcement

Native,
Kubernetes
Networking &
Policies
Enforcement,
Istio

Native,
Kubernetes
Networking &
Policies
Enforcement,
Istio

Table 2 - Data-driven Infrastructure Management capability implementation plan.

4.3. Experimental Scenarios

This section explains the experimental use case scenarios, including success criteria which as
used in the context of WP3 to verify & validate the behavioural invariances of the different
components in order to ensure trustworthy run of component-specific experiments.

4.3.1. Scenario 1: Product recommendation service scalability

This scenario represents a situation where the application suffers a traffic spike that
obligates the DDIM to scale out the application deployment so to keep its QoS, by increasing
the number of one of the services’ instances or replicas—e.g. scaling out.

ID WP3-EXPSCE-01

Use Case ATOS Worldline

Name Scalability of the product recommendation service

Situation Spike in the volume of traffic (requests per second - rps) to the online
serving layer of the product recommendation system.

Settings

Preconditions What happened in the system before running the test? Initial conditions
or state; e.g. the product recommendation system is deployed.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 19 of 85 bigdatastack.eu

Trigger What triggers this scenario, the entire use case, e.g. the traffic or
requests per second (rps) to the product recommendation service
spikes.

QoS
requirements

Response time < 300ms

QoS
preferences

Response time < 100ms

Postcondition Expected result, e.g. the response time meets the QoS requirements.

Scenario

Steps 1. We increase the rps to the product recommendation service
from 0 to 1000. The response time remains under the SLO
warning threshold.

2. We rise to 2000 rps. The response time goes beyond the SLO
warning threshold but still below the SLO error threshold.

3. We rise to 3000 rps. The response time goes beyond the SLO
error threshold.

4. The QoS Evaluator notifies a QoS violation to the DO.
5. The DO makes the decision to increase by one the number of

replicas of the product recommendation service. It sends a
request to the ADS-Ranking.

6. The ADS-Ranking produces the best re-redeployment to enact
the DO decision and sends a request to the ADS-Deploy.

7. The ADS-Deploy executed the deployment specified by the ADS-
Ranking by sending request to the cluster manager (Openshift).

8. Openshift increases by one the number of replicas of the
product recommendation pod.

9. The response time of the product recommendation service
drops below the SLO warning threshold.

4.3.2. Scenario 2: Product recommendation service steadiness

This scenario represents a stable situation, where the application can cope with the increase
in traffic or requests per second (rps) as its keeps QoS as well as its deployment steady.

ID WP3-EXPSCE-02

Use Case ATOS Worldline

Name Steady state of the product recommendation service

Situation Volume of traffic (requests per second - rps) to the online serving layer
of the product recommendation system remains constant.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 20 of 85 bigdatastack.eu

Settings

Preconditions What happened in the system before running the test? Initial conditions
or state; e.g. the product recommendation system is deployed.

Trigger What triggers this scenario, the entire use case, e.g. the traffic or
requests per second (rps) to the product recommendation service
increases, but the application can cope with it remaining in steady
state.

QoS
requirements

Response time < 300ms

QoS
preferences

Response time < 100ms

Postcondition Expected result, e.g. the response time meets the QoS requirements.

Scenario

Steps 1. We increase the rps to the product recommendation service
from 0 to 1000. The response time remains under the SLO
warning threshold.

2. We keep 1000 rps for 5 minutes. The response time remains
under the SLO warning threshold, so no decisions to change the
application deployment occur.

3. We rise to 2000 rps. The response time goes beyond the SLO
warning threshold but still below the SLO error threshold, so no
decisions to change the application deployment occur.

4. We drop to 1000 rps for 5 minutes. The response time remains
under the SLO error threshold, so no decisions to change the
application deployment occur.

4.3.3. Scenario 3: Product recommendation service cost-
effectiveness

This scenario represents a situation where the application suffers a traffic spike that
obligates the DDIM to scale out the application deployment so to keep its response time at
certain SLO, like in Scenario 1, but adding a second SLO to ensure operational costs remain
under certain threshold. Thus, this scenario exemplifies how the operational “cost” can be
managed and enforced as just another SLO or QoS attribute by the DDIM.

ID WP3-EXPSCE-03

Use Case ATOS Worldline

Name Cost-effectiveness of the product recommendation service

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 21 of 85 bigdatastack.eu

Situation Spike in the volume of traffic (requests per second - rps) to the online
serving layer of the product recommendation system.

Settings

Preconditions What happened in the system before running the test? Initial conditions
or state; e.g. the product recommendation system is deployed.

Trigger What triggers this scenario, the entire use case, e.g. the traffic or
requests per second (rps) to the product recommendation service
spikes.

QoS
requirements

Response time < 300ms

Compute resource cost < 2$ per hour

QoS
preferences

Response time < 100ms

Compute resource cost < 1$ per hour

Postcondition Expected result, e.g. the response time as well as the compute resource
cost (CRC) meets the QoS requirements.

Scenario

Steps 1. The CRC is under 1$ per hour.
2. We increase the rps to the product recommendation service

from 0 to 1000. The response time remains under the SLO
warning threshold.

3. We rise to 2000 rps. The response time goes beyond the SLO
warning threshold but still below the SLO error threshold.

4. We rise to 3000 rps. The response time goes beyond the SLO
error threshold.

5. The QoS Evaluator notifies a QoS violation to the DO.
6. The DO makes the decision to increase by one the number of

replicas of the product recommendation service. It sends a
request to the ADS-Ranking.

7. The ADS-Ranking produces the best re-redeployment to enact
the DO decision and sends a request to the ADS-Deploy.

8. The ADS-Deploy executed the deployment specified by the ADS-
Ranking by sending request to the cluster manager (Openshift).

9. Openshift increases by one the number of replicas of the
product recommendation pod.

10. The response time of the product recommendation service
drops below the SLO warning threshold.

11. The CRC rises to 1.5$ per hour so beyond the SLO warning
threshold but still below the SLO error threshold.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 22 of 85 bigdatastack.eu

5. Cluster Management

The cluster management component’s responsibilities are both to deploy the BigDataStack
components as requested and to keep its status healthy overtime. This will not only include
the containers but the related services and even the OpenShift Origen Kubernetes
Distribution (OKD) cluster itself. In addition, it is in charge to adapt the current deployments
to the new preferred status requested by the upper layers, in order for example to increase
the size of the cluster, or scale up/down a given application.

5.1. Requirements

To facilitate the understanding of the design as well as the challenges addressed by this

component, the requirements related to this component have been brought from D2.3 and

literally included into this section. Please note the following requirement tables are

compiled together with the rest of requirements of BigDataStack in D2.3, and that they are

included in here for the reader’s convenience.

 Id Level of detail Type Actor Priority

REQ-CM-01 Software FUNC Application
Engineer, Data
Engineer

MAN

Name Support OpenShift installation on OpenStack VMs

Description Include the needed steps on the OpenShift installer to handle OpenShift
cluster installation on top of OpenStack resources, i.e., VMs, networks,
volumes, etc.

Additional
Information

This needs to be done in the ‘upstream’ way so that it is supported also
after the project lifecycle. It entails modification to different repositories,
not only the Openshift/installer3 but also other related repositories such
as:

- cluster-network-operator4

- cluster-api-provider-openstack5

- gophercloud6

Table 3 - Requirement (1) for Cluster Management

 Id Level of detail Type Actor Priority

REQ-CM-02 Software PERF Application
Engineer, Data
Engineer

MAN

Name Avoid double encapsulation of network packages

3 https://github.com/openshift/installer
4 https://github.com/openshift/cluster-network-operator
5 https://github.com/kubernetes-sigs/cluster-api-provider-openstack
6 https://github.com/gophercloud/gophercloud

https://github.com/openshift/installer
https://github.com/openshift/cluster-network-operator
https://github.com/kubernetes-sigs/cluster-api-provider-openstack
https://github.com/gophercloud/gophercloud

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 23 of 85 bigdatastack.eu

Description Integrate Kuryr into the OpenShift installer to avoid the double
encapsulation problem due to using 2 different overlays (OpenStack SDN
and OpenShift SDN on top). Kuryr enables containers running on top of
OpenStack VMs to use the same SDN as the VMs itself, i.e., the OpenStack
SDN. Thus, avoiding the double encapsulation and enabling a remarkable
throughput gain.

Additional
Information

Similarly, to REQ-CM-01, this needs to be done in the ‘upstream’ way so
that it is supported after the project. It entails modifications to the same
repositories plus the addition of a kuryr operator that will handle the kuryr
related operational actions,

Table 4 - Requirement (2) for Cluster Management

 Id Level of detail Type Actor Priority

REQ-CM-03 Software FUNC Application
Engineer, Data
Engineer

MAN

Name Kubernetes Network Policy support at Kuryr-Kubernetes

Description As we are integrating kuryr to get network performance optimizations
when running OpenShift on top of OpenStack, we need to include the
mechanisms needed for kuryr to be able to enforce Kubernetes network
policies, i.e., to define in a fine grain manner how pods can communicate
with each other

Additional
Information

Similarly, to REQ-CM-01, this needs to be done in the ‘upstream’ way so
that it is supported after the project. It entails modifications to the Kuryr-
Kubernetes repositories.

Table 5 - Requirement (3) for Cluster Management

 Id Level of detail Type Actor Priority

REQ-CM-04 System PERF Application
Engineer, Data
Engineer

DES

Name OVN-base distributed load balancer for Kubernetes services

Description Kubernetes services are implemented through Octavia when using Kuryr.
This means that for each Kubernetes service an Octavia amphora VM is
created. This adds extra latency on the communication, is a single point of
failure, adds extra resources need, and it adds delays on the control plane
actions. By integrating the OVN distributed load balancer (as a new ovn-
Octavia driver) and making Kuryr use it, we avoid all those problems by
implementing the load balancing directly with ovn flows. This remove the
need for VM resources and speed up both control and data planes.

Additional
Information

Similarly, to REQ-CM-01, this needs to be done in an ‘upstream’ way so
that it is supported after the project. It entails modifications and
integration in several upstream projects:
- OVN

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 24 of 85 bigdatastack.eu

- OpenStack Octavia

- OpenStack networking-ovn

- Kuryr-Kubernetes

- OpenShift Cluster Network Operator

Table 6 - Requirement (4) for Cluster Management

 Id Level of detail Type Actor Priority

REQ-CM-05 System FUNC Application
Engineer, Data
Engineer

MAN

Name API managed OpenShift cluster (CAPO)

Description The OpenShift cluster installed on top of OpenStack consists of X VMs on
OpenStack. We need to extend the Cluster API Provider OpenStack in
order to allow the modification of the cluster size through Kubernetes API
calls. This allows flexibility on the OpenShift cluster to adapt to the current
needs

Additional
Information

Similarly, to REQ-CM-01, this needs to be done in the ‘upstream’ way so
that it is supported after the project. It entails modifications to the next
upstream projects:
- openshift/cluster-api
- openshift/cluster-api-provider-openstack

- openshift/installer

Table 7 - Requirement (5) for Cluster Management

 Id Level of detail Type Actor Priority

REQ-CM-06 System ENV Data Engineer DES

Name Spark operator

Description This operator will be responsible for handling the Spark cluster, not only
its installation but also the scaling actions. It will offer an API to the Spark
management through the OpenShift API.

Additional
Information

This is related to the dynamic orchestrator, as the optimization actions
could be then simply triggered through standard OpenShift API commands
(e.g., modifying the information at the associated spark ConfigMap)

Table 8 - Requirement (6) for Cluster Management

 Id Level of detail Type Actor Priority

REQ-CM-07 System ENV Adaptable
Distributed
Storage

DES

Name Accept requests to allocate additional resources to storage components

Description The Adaptable Distributed Storage component can be scaled in/out

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 25 of 85 bigdatastack.eu

independently, considering decisions based on its internal metrics and
handle on its own the reconfiguration of the internal data regions. Due to
this, it is necessary from the Cluster Management to provide a mechanism
that allows the storage layer to request for additional resources or the
release of already provided ones.

Additional
Information

This is closely related to requirement REQ-ADS-04 “Be able to request
additional resources from the infrastructure layer,” described in D4.1.

Table 9 - Requirement (7) for Cluster Management

 Id Level of detail Type Actor Priority

REQ-CM-08 System ENV Adaptable
Distributed
Storage

OPT

Name Force the storage layer to release some of its available resources

Description The cluster management might identify that the overall BigDataStack
platform is running out of available resources. To ensure the execution of
crucial components, it might decide to reduce resources for some services,
to the benefit of others. Due to this, it should be able to request the
release of the storage resources and wait for its proper response. The
storage should be able to reject such requests, in cases that could lead to
data loss.

Additional
Information

This is close related with requirement REQ-ADS-05 “Being able to release
resources and adapt if resources are deallocated from the infrastructure,”
as described in more details in D4.1.

Table 10 - Requirement (8) for Cluster Management

5.2. Design Specifications

The design for this component (specified in Section 5 of D3.1) has mostly remained valid for
Y2. The following sections describe the aspects of the design that have been changed.

5.2.1. Cluster performance improvements

Due to the BigDataStack requirements, not only related to fast data processing but also
speeding up communications between the different components running on top of
OpenShift, there is a need for performance improvements into the network data plane.
Simply installing OpenShift/Kubernetes on top of OpenStack VMs means that, on the one
hand you have the OpenStack network overlay (to manage the traffic between the VMs),
and on the other hand the OpenShift SDN (e.g., openshift-sdn). This leads to the so-called
“double encapsulation problem” which impose severe performance degradation on the
network throughput (besides the added complexity on network management and
debugging upon failures). To avoid this problem Red Hat has been working on an OpenStack
project named Kuryr7 that enables the usage of OpenStack Software-Defined Networks
(SDNs) in the OpenShift cluster running on top of the OpenStack VMs. This allows to have a

7 https://docs.openstack.org/kuryr-kubernetes/latest/

https://docs.openstack.org/kuryr-kubernetes/latest/

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 26 of 85 bigdatastack.eu

single SDN for both systems (OpenStack and OpenShift), as well as to avoid the double
encapsulation problem when having one SDN (openshift-sdn) on top of the other (Neutron
SDN) as there is no VXLAN over VXLAN. In addition, we are working at integrating Kuryr on
the OpenShift installer as well as creating an operator for its management (see Figure 3).
After discussing with the community, it was agreed that Kuryr components should be part of
the Cluster Network Operator and therefore are installed as part of its process.

Figure 3 – Red Hat Kuryr’s architecture to avoid the “double encapsulation problem.”7

This however also imposes certain requirement on the OpenStack side. The next
components need to be installed or have specific configuration:

• Octavia (Load Balancer as a Service) component need to be installed, and with it, its
dependencies such as Barbican in case of using TLS termination

• Neutron needs to be configured with Trunk ports support. Depending on the used
ml2 driver, the configuration can be slightly different. For instance, it is out of the
box if OVN is being used, but if ML2/OVS is being used, it needs to be enabled, and
the openvswitch driver needs to be set to enforce security group policies on the
containers.

• Depending on the installed OpenShift version (3.11 or 4.X), Heat is also needed to
create a stack containing all the OpenShift related resources, i.e., VMs, Volumes,
Networks, LbaaS, … This is needed for the 3.11 OpenShift installer

• Depending on the installed OpenShift version (3.11 or 4.x), Swift is also needed to
store the initial ignition files used to configure the OpenStack VMs. This is needed for
the 4.X OpenShift installer.

• The user quota needs to be adapted to the container deployments scale, i.e., it will
not be enough with just a few neutron ports as each container will be using one.
Consequently, some of the resource’s quota need to be increased by an order of

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 27 of 85 bigdatastack.eu

magnitude (depending on the size of the OpenShift deployment), specially quotas
related to Neutron resources, such as ports, networks/subnets and security groups.

5.2.2. Gateway

The gateway for the BigDataStack engine can also be implemented as part of OpenShift, in 2
different ways depending on the final requirements:

- By using OpenShift routes: Route is a way to expose OpenShift services by giving it
an externally reachable hostname, like www.example.com. It has the option to
perform the routing based on paths, i.e., we can use it to redirect some queries to
the CEP component (i.e., www.example.com/cep/…) and others to the Alarm
component (i.e., www.example.com/alarms/...). The initial design targets to use this,
being able to assign a common OpenStack Floating IP for all the ingress traffic to
OpenShift Apps, in this case BigDataStack components.

- By using Istio service mesh: A service mesh is a network of microservices that
enables applications and the interactions among them. It offers functionality like
load-balancing, fine grain traffic control, access control, logging, tracing, etc.,
through sidecards containers associated to the applications pods. One offered
functionality is Istio-Gateways which controls the exposure of services at the edge of
the mesh. This could be used to tie gateways to specific virtual services that can
perform the extra required actions that the gateway may require besides redirecting
the traffic to the desired endpoint.

5.2.3. East/West Distributed Load Balancing

In Kubernetes and OpenShift, the communication between the different application
components and between applications (i.e., between the Pods) is not meant to be pod to
pod (and using IPs) since pods are supposed to be disposable and therefore they can be
replaced/deleted at any time. Pods are usually behind a service which abstracts the IP/name
of the container(s) that is pointing to. This way, pods can talk to known services IPs (and
names) and containers after that service can be recreated at any time without impacting the
way the caller pods uses to reach them.

Given the above, the pod to svc to pod communication performance is quite important as it
is the most usual pattern. When using Kuryr, Services are implemented as Octavia load
balancers. This means that each K8s service will require Octavia load balancer, and with the
default ‘amphora’ driver that means an OpenStack VM. This has 4 main implications:

1. Resource waste since lots of VMs will be needed for backing the services.
2. User experience as services will need more time to be up and running since the

amphora VM must be created and configure.
3. Single point of failure for services as if the VM dies, a new one will need to be

created to replace it.
4. Network latency as traffic needs to do extra hops to reach the amphora VM.

For these reasons we plan to work on the integration of OVN load balancer into OpenStack,
including Octavia and Kuryr. The OVN load balancer is a distributed load balancer based on
OVS/OVN flows. This means that it does not require any amphora VM to load balance the
traffic and simply creates the needed flows locally on each OpenStack compute node. To
make it easier to understand, it is like if an iptable rule was changing the Kubernetes service

http://www.example.com/
http://www.example.com/alarms/

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 28 of 85 bigdatastack.eu

IP by one of the Kubernetes endpoints (pods) IPs and then the traffic was directly forwarded
to the selected pod.

By working on this integration, the next advantages are obtained:

• Time to create a K8s service will be of a few seconds instead of around 1 minute

• No extra resource waste for services, just a few OVS flows

• No single point of failure

• Distributed routing as the traffic goes directly pod to pod instead of having to jump
to the OpenStack node that has the amphora VM and back

• Reduced latency, increased throughput
• No need to parse Security Groups at amphora load balancer to apply Kubernetes

Network Policies, with the consequent reduction on Neutron OpenStack load.

5.3. Implementation and Integration Highlights

Initial support for OpenStack has been included into the OpenShift installer to handle the
creation of OpenStack resources. Currently the prototype is based on OpenShift 3.11 as
OpenShift 4.X was being developed and an OpenShift cluster was needed so as not to block
the other components. As soon as we have OpenShift 4 working on OpenStack we will move
to the installation type—that is based on operators.

This support extends the OpenShift installer to create OpenStack VMs and later install the
packages, configuration files, keys, services, etc., needed to install and configure the
OpenShift cluster on top of them. It includes the basic operators and prepares the system
for the new ones to be created as part of the BigDataStack project.

We followed the best practices (configuration) for deploying OpenShift on top of OpenStack
already outlined within D3.1; also refer to that deliverable to see an account of the
minimum number of each OpenStack resource types that are needed for a minimal
installation of OpenShift on top of OpenStack.

5.4. Experimentation Outcomes

In this second year, the experimentation has focused on Initial integration testing and scale
testing of OVN-Octavia distributed load balancing for Kubernetes Services.

A performance comparison between Kuryr and OpenShift SDN was carried out, proving a
performance boost of up to nine times better for throughput, as presented in the following
figures, while additional results have been published online at the OpenShift blog8.

8 https://blog.openshift.com/accelerate-your-openshift-network-performance-on-openstack-with-kuryr

https://blog.openshift.com/accelerate-your-openshift-network-performance-on-openstack-with-kuryr

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 29 of 85 bigdatastack.eu

Figure 4 – Throughput improvements (POD to POD)

Figure 5 – Throughput improvements (POD to SVC)

5.5. Next Steps

The plan is to continue with the improvements for running OpenShift on top of OpenStack,
both in terms of performance and operability. The first focus will be on distributed OVN load
balancer integration. And then we will also explore OpenShift autoscaling mechanisms
based on the API extensions made during the first half of the project.

Another focus will be on more performance storage and network integration solution. For
the storage the focus will be at enabling the usage of high-performance storage into the
OpenShift VMs (work already started). For the network, the path is to explore how to enable
secondary NICs in the pods, when Kuryr CNI is used. This should be linked to the usage of
SRIOV NICs on the OpenShift VMs and their exposure to the OpenShift nodes through
multus plugin9.

9 https://kubernetes.io/docs/concepts/cluster-administration/networking/#multus-a-multi-network-plugin

https://kubernetes.io/docs/concepts/cluster-administration/networking/#multus-a-multi-network-plugin

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 30 of 85 bigdatastack.eu

6. Dynamic Orchestration

The Dynamic Orchestrator will provide more flexibility and enhanced performance for
applications that utilize the BigDataStack. The application’s performance and compliance
with its requirements will be monitored during runtime and when a requirement violation is
detected, the Dynamic Orchestrator will change the application’s deployment in order to
comply with all requirements.

6.1. Requirements

To facilitate the understanding of the design as well as the challenges addressed by this

component, the requirements related to this component have been brought from D2.3 and

included into this section. Please note the following requirement tables are compiled

together with the rest of requirements of BigDataStack in D2.3, and that they are included

in here for the reader’s convenience.

 Id Level of detail Type Actor Priority

REQ-DO-01 System FUNC Application
Engineer, Data
Engineer

MAN

Name Playbook Enrichment

Description The Dynamic Orchestrator shall ingest the Playbook when an application
or service is deployed and enrich this playbook with information about the
QoS metrics and intervals to be considered by the Triple Monitoring to
monitor the QoS during runtime.

Additional
Information

N/A

Table 11 - Requirement (1) for Dynamic Orchestrator

 Id Level of detail Type Actor Priority

REQ-DO-02 Stakeholder FUNC Application
Engineer, Data
Engineer

MAN

Name Runtime Re-deployment

Description When an application or service is running, the Dynamic Orchestrator shall
determine if a deployment change should be performed when there is a
violation of an application requirement or Service Level Objective (SLO)
and send a signal to the ADS-ranker to trigger a change in the deployment
to try to satisfy the requirements or SLOs.

Additional
Information

The Triple Monitoring detects this violation and sends an alert to the
Dynamic Orchestrator to start this process.

Table 12 - Requirement (2) for Dynamic Orchestrator

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 31 of 85 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-DO-03 Stakeholder PERF Application
Engineer, Data
Engineer

MAN

Name Decision Efficiency

Description The orchestrator shall consider different re-deployment mechanisms such
as scaling processing nodes, changing configuration of VMs – e.g. vRAM,
vCPU -, data placement and more and decide what mechanism has the
highest probability of improving the requirements or SLOs satisfaction
according to the system and application status.

Additional
Information

The complete list of mechanisms is still being under consideration.

Table 13 - Requirement (3) for Dynamic Orchestrator

 Id Level of detail Type Actor Priority

REQ-DO-04 System FUNC Application
Engineer, Data
Engineer

MAN

Name Resources Limits

Description The orchestrator shall be able to receive a trigger from the ADS-Ranker
when a deployment parameter, such as the number of replicas, the
number of vCPUs or the assigned cluster memory, cannot be further
increased or decreased (i.e. this resource has reached its maximum or
minimum possible value) and use this information in its own decisions.

Additional
Information

The complete list of deployment parameters might vary according to the
application/service and its actual deployment. This information should be
available in the Playbook or other resource.

Table 14 - Requirement (4) for Dynamic Orchestrator

 Id Level of detail Type Actor Priority

REQ-DO-05 Stakeholder FUNC Application
Engineer, Data
Engineer

DES

Name Orchestration for Improvements

Description When an application or service is running, the orchestrator shall detect
changes in the system status or inputs (e.g. less new events per minute)
and trigger a change in the deployment that results in lower costs (e.g. to
use less replicas) without compromising the application functioning.

Additional
Information

N/A

Table 15 - Requirement (5) for Dynamic Orchestrator

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 32 of 85 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-DO-06 System FUNC Application
Engineer

MAN

Name Management of Multiple Objectives

Description Because of the different SLOs/requirements applications can have, the DO
shall consider different objectives such as optimizing application
performance, use of resources and reliability. It might be desired that
multiple objectives are optimized at the same time and some of them
might also be opposed to each other, e.g. application performance might
be maximized by using more resources which affects the resources
optimization

Additional
Information

N/A

Table 16 - Requirement (6) for Dynamic Orchestrator

6.2. Design Specifications

To comply with the requirements stated in section 6.1., we propose to implement the DO’s
logic by developing a Reinforcement Learning (RL) approach. We have chosen RL because it
offers a formal framework in which we can formulate the dynamic orchestration problem
and responds to the above requirements:

1. It offers dynamic and adaptable decisions during runtime, learning from its own
experience and tailoring its decisions according to the environment (in our case the
BigDataStack platform and the application managed) (REQ-DO-02)

2. It can consider multiple actions (in our case re-deployment mechanisms) and learn what
action should be taken according to the state of the environment. Furthermore, it learns
the characteristics of each different application by experience, to identify the effective
actions for each different application (REQ-DO-03 and REQ-DO-04)

3. It can manage and optimize multiple objectives through a proper design of its reward
function [38] (REQ-DO-05 and REQ-DO-06)

In the general setting of RL, an agent learns how to control an unknown environment by
interacting with it, in order to achieve a certain goal. To control the environment, the agent
can perform a set of actions that may alter the state of this environment. For each action
performed, the agent observes the change in the environment’s state and a numerical
signal, usually called reward, that indicates if the action performed moved the agent closer
or further to the completion of its goal.

In the RL framework, the agent is the system’s manager, and the system and its execution
context are seen as the environment; the agent needs to find the best configuration by
modifying the configuration parameters, seen as actions (see Figure 6). Existing studies [39,
40, 41, 44] show that RL can lead to a good performance for the configuration of different
systems, after learning from many iterations doing the same task. However, the need of
extensive experience is a problem, because the RL agent should already start with a
reasonable performance. In fact, every action the agent takes in this case has a high cost of

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 33 of 85 bigdatastack.eu

redeploying the application or service, affecting the current service as well as the computing
resources in the platform.

Figure 6 – Reinforcement learning feedback loop with the environment.

Because of this, we are developing a new approach called Tutor4RL. Tutor4RL takes as input
domain knowledge guidelines that are used to constraint, explore and learn from the
environment in which the agent is deployed, while learning from its own experience the
best actions to achieve its goal in different states.

We modify the RL framework by adding a component we call the Tutor. The tutor possesses
external knowledge and helps the agent to improve its decisions, especially in the initial
phase of learning when the agent is inexperienced. In each step, the tutor takes as input the
state of the environment and outputs the action to take, in a similar way to the agent's
policy. However, the tutor is implemented as a series of programmable functions that can
be defined by domain experts and interacts with the agent during the training phase. We
call these functions knowledge functions and they can be of two types:

• Constrain functions: are programmable functions that constrain the selection of actions
in a given state, “disabling” certain options that must not be taken by the agent. For
example, if the developer of the application has decided a maximum budget for the
application, even the application load is high and this could be fixed by adding more
resources to the deployment, this should not be done if the budget of the user has
already reached its maximum.

• Guide functions: are programmable functions that express domain heuristics that the
agent will use to guide its decisions, especially in moments of high uncertainty, e.g. start
of the learning process or when an unseen state is given. Each guide function takes the
current RL state and reward as the inputs and then outputs a vector to represent the
weight of each preferred action according to the encoded domain knowledge. For
example, a developer could create a guide function that detects the number of current
users for an application and if the number is higher than a certain threshold, more
resources might be deployed for the application.

State Reward Action

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 34 of 85 bigdatastack.eu

Figure 7 – High level vision of Tutor4RL.

The benefit coming from using Tutor4RL is twofold:

• During training, the tutor enables a reasonable performance, opposed of the
unreliable performance from an inexperienced agent, while generating experience
for the agent's training. Furthermore, the experience generated by the tutor is
important because it provides examples of good behaviour, as it already uses
domain knowledge for its decisions.

• The knowledge of the tutor does not need to be perfect or extensive. The tutor
might have partial knowledge about the environment, i.e. know what should be
done in certain cases only; or might not have a perfectly accurate knowledge about
what actions should be taken for a given state. Instead, the tutor provides some
“rules of thumb” the agent can follow during training, and based on experience, the
agent can improve upon the decisions of the tutor, achieving a higher reward than it.

The main functioning of Tutor4RL is as follows:

1. Application developer (i.e., the domain expert) defines guide and constrain functions
These functions encode domain knowledge of the developer that guide and
constrain the RF agent during its initial stage. This is important for new applications
and/or a new system execution context, where traditional RL would need to explore
the state space randomly and thereby negatively impact QoS of the application. If
the application has been deployed before, Tutor4RL can use the historical data from
that previous deployment and encodes it as a guide function.

2. The Triple Monitoring Engine and QoS Evaluation informs the Interpreter about the
current system metrics and the SLO violations, respectively.

3. These metrics are taken as input by the agent and the tutor and both output a vector
with valuations for each action.

The RL Agent selects an action, from its policy or from the suggestions provided by the
tutor, that should be executed by the ADS-Ranker and sent to it.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 35 of 85 bigdatastack.eu

6.2.1. Adaptable Distributed Storage Interplay

The Adaptable Distributed Storage (as described in 4.2) will not rely on the Dynamic
Orchestrator or the Ranking & Deployment to scale in/out its resources; rather, because of
the larger number of metrics available internally, it integrates its own Elasticity Manager
subcomponent that is responsible for taking this kind of decisions for the storage layer. As a
result, the storage can be re-configured automatically, moving data regions across its
current nodes and scale in or out to be adapted under diverse workloads. As these
redeployments are being triggered separately, the Dynamic Orchestrator should be aware
of those, and postpone any redeployment action on the application level until the
reconfiguration of the storage is finished, and the system is balanced.

Therefore, the Dynamic Orchestrator needs to consider there is a second dynamic
adaptation mechanism acting at the storage layer level. This second adaptation component
(i.e., Elasticity Manager) will inform the Dynamic Orchestrator component regarding
reconfigurations of the data storage layer; in fact, this has been specified as a requirement
imposed on the Adaptable Distributed Storage (see REQ-ADS-06) by the Dynamic
Orchestrator. More specifically, the Adaptable Distributed Storage will notify information
regarding pending redeployments of the storage, when the process of data reconfiguration
starts and finishes, along with the current deployment of this layer.

In our setting, the Adaptable Distributed Storage logic is seen as a Guide function, so it is
used by the agent to improve its performance. This information helps the DO to determine
in what cases the Adaptable Distributed Storage should be scaled up or down, first by
observing the behaviour of the already implementing logic, and then repeating and
potentially, improving these decisions thanks to having a broader picture of the application
and system status.

6.3. Implementation and Integration Highlights

We have completed an initial design and implementation of the DO, which has been
completed to provide the following overall functionality:

1. The Triple Monitoring Engine (TME) & QoS Evaluation (QoSE) informs the Interpreter
about the current system metrics and the SLO violations, respectively.

2. The Interpreter converts these metrics and violations in states and rewards:
a. The states represent the system status in a discrete space.
b. The rewards indicate the Reinforcement Learning Agent if an executed action

was “good” or “bad” in terms of requirements and SLOs compliance (e.g. if
the requirements and SLO violations disappeared after the execution of an
action).

3. The Interpreter sends the current state of the system to the RL (Reinforcement
Learning) Agent and according to this, the RL Agent selects an action, from its policy
or from the suggestions provided by the tutor, that should be executed by the ADS-
Ranking:

a. The actions are type of changes in the deployment such as change the
number of replicas, change the number of vCPUs or change the vRAM
assigned—note these are just some of the changes that are being considered,
the full list of deployment changes still needs to be determined.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 36 of 85 bigdatastack.eu

b. One of the actions is to keep the current deployment.
4. Once an action has been executed, the interpreter receives the new metrics and SLO

violations, calculates the reward and sends it to the RL Agent.
5. The RL Agent updates its state-action ranking (Q-values).

Note that so far, we have not implemented Tutor4RL in this early version because the
development of Tutor4RL has come as a result of our experimentation with this early
version of the DO. The implementation of Tutor4RL as part of the DO will be addressed in
our next step.

6.4. Experimentation Outcomes

As described above, we have implemented an early version of the DO using Tabular Q-
learning and tested it in simulations of a streaming application in which the load of the
application increases (see [44]) for a detailed description and evaluation of this prototype).
This streaming application can find lost children based on the processing of camera data. It
can be split in two components: (1) an offline module, which is trained with pictures of
the child in a server and (2) an online module, a face detection and matching service
that is deployed in several devices and is in charge of finding the child (see Error!
Reference source not found.).

Figure 8 – Example of streaming analytics application.

We have shown that RL can be used efficiently (up to 25% better precision than a state-of-
the-art heuristics) to dynamically orchestrate such a data processing pipeline like the ones in
BigDataStack. However, we noticed two issues with applying traditional RL:

i. Bad performance during the “training phase” of the RF agent, and
ii. Missing constrains to avoid clearly wrong actions.

Both issues are very relevant to BigDataStack: BigDataStack applications need to be ready
from the start and the DO should ideally avoid completely wrong actions. We started to
address both issues with Tutor4RL.

Tutor4RL adds two features to traditional RL: Guide Functions and Constrain Functions.
These functions enable the user to give some initial knowledge to the RL agent to direct its
initial exploration.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 37 of 85 bigdatastack.eu

We implemented a prototype of Tutor4RL with standard RL libraries in order to provide a
fair comparison of it against other heavily used RL algorithms. Specifically, we have modified
the library Keras-RL to implement a tutored Deep Q-Network (DQN) agent.

An important question in our model is when the tutor should decide for the agent and vice-
versa. In a similar way to how Epsilon greedy exploration works, we defined Tau as the
threshold parameter for the agent to control when it will use the suggested actions from the
tutor instead of using its own. The initial value of Tau is a parameter of our model and the
best value to initialize it depends on the use in which Tutor4RL is used. This parameter is
linearly reduced while the agent gathers more experience and learns to take better
decisions.

To test Tutor4RL, we have used the library OpenAI gym [42], which provides several
environments ready to be used with RL. As we are testing a DQN agent, we decided to use
the Atari game Breakout [43] which is a complex use case in which we can observe how the
agent performs in cases in which reward is sparse and episodes are long in time steps. This
is a different use case than the one we are addressing in BigDataStack, but we have chosen
it because it is heavily used in the RL literature, so it lets us compare Tutor4RL with the
state-of-the-art in a straightforward manner.

In Breakout, the state of the environment in each time step is the video games’ frame in
pixels. The actions are four: no operation, fire (which throws the ball to start the game), left
and right. The reward is the points achieved in the game, given each time a brick is broken.

We implemented a simple guide function that encapsulates some basic knowledge about
the game: the function takes as input each frame, searches for the ball and the position of
the bar, and moves the bar to the left if the ball is to the left of the bar or to the right if the
ball is on that side. If the ball is not seen, then the action chosen is “fire” to start the game.

We have compared the functioning of Tutor4RL by also training a plain DQN agent for the
same use case. The results can be seen in the plot below:

Figure 9 – Comparison of performance between Tutor4RL and a plain DQN agent.

As it is possible to see, from the initial steps the DQN agent with Tutor4RL manages to
achieve a reasonably high reward while the plain DQN agent performs very poorly, because

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 38 of 85 bigdatastack.eu

of its inexperience. As the agents perform more steps, the plain DQN agent catches up, but
it’s not until step 1 million that it manages to achieve a similar reward to the tutored DQN
agent. Tau is decreased in every step, starting with a value of 1 and reaching 0 in step 1.5
million. It is important to note that after this step, the tutor is not used anymore but the
agent keeps up with its high reward.

6.5. Next Steps

In the future, we plan to improve our early version of the DO by using deep RL and including
Tutor4RL. We also plan on researching what guide functions can be derived from existing
techniques of system’s management/configuration, as well as what actions should be
disable in certain cases and expressing it as constrain functions.

We are also going to research ways to efficiently combine the policy’s output with the guide
and the constrain functions’ outputs. In addition, we plan to implement all the possible re-
deployment actions that the DO will be able to provide during runtime.

As for tests, we plan on carrying out several tests to determine:

i. How reliable is our approach of Tutor4RL for configuration of systems?

ii. What is the performance that the DO can achieve after acquiring experience with
BigDataStack applications, testing it against our use cases?

The set of system and application metrics that should define the state of our RL
environment, finding the right balance between giving the DO a meaningful view of the
application and system status and not creating a too large state space.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 39 of 85 bigdatastack.eu

7. ADS Ranking & Deploy

The role of the ranking and deployment module of Big Data Stack is to decide how to deploy
the user’s application and then operationalize that deployment via a container orchestration
platform (e.g. Kubernetes). Ranking and deployment is part of the application deployment
back-bone that enables a user to get their application running on a hardware cluster. Prior
to ranking and deployment, the user will have defined in a conceptual manner what their
application is comprised of and how the different services within that application interact.
This conceptual definition will have been expanded into multiple candidate deployment
pattern (CDP) playbooks representing different ways that the application/services can be
mapped onto compute resources for deployment. Finally, these CDP Playbooks will have
been benchmarked, providing estimated resource usage and quality of service information
for each, creating Dimensioned Deployment (DD) Playbooks. Ranking and deployment takes
these DD Playbooks and associated benchmarking information as input.

As its name suggests, ranking and deployment is split into two distinct components, namely:
ADS (Application and Data Services) Ranking and ADS (Application and Data Services)
Deployment. ADS Ranking is responsible for taking the different DD Playbooks and
associated benchmarking information, and deciding which DD Playbook is the most suitable
based on the user requirements and preferences. This has two uses within BigDataStack,
namely: to determine what compute resources to request for a user’s application when first
deploying it; and to re-estimate compute resource needs in cases where a current
deployment is predicted to miss one or more Service-Level Objectives. Meanwhile, ADS
Deployment is responsible for taking the selected DD Playbook and using the configuration
information contained within, to operationalize deployment of the user’s application on the
cloud infrastructure.

The initial design and implementation details for ADS Ranking and ADS Deployment were
described in the previous version of this deliverable, i.e. D3.1. In particular, refer to D3.1 for
component requirements specification and design, in addition to information about the
early prototypes and a discussion on how we might evaluate the quality of the outcomes of
ADS Ranking in particular. Note that over the last 11 months there were two minor
terminology changes. First, in D3.1 the central state storage service was referred to as the
Central Decision Tracker, it is now referred to as the Global Decision Tracker (GDT). Second,
we previously did not distinguish between CDP Playbooks and those same playbooks after
benchmarking information was added, which we now distinguish these as CDP (Candidate
Deployment Pattern) Playbooks and DD (Dimensioned Deployment) Playbooks, respectively.
In contrast, in this section we report on updates to the design and implementation of the
two components, as well as provide an experimental evaluation of the current version of
ADS Ranking, that have occurred between M12 and M23.

7.1. Requirements

To facilitate the understanding of the design as well as the challenges addressed by this
component, the requirements related to this component have been brought from D2.3 and
included into this section. Please note the following requirement tables are compiled
together with the rest of requirements of BigDataStack in D2.3, and that they are included
in here for the reader’s convenience.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 40 of 85 bigdatastack.eu

This section contains the requirements for both the ADS Ranking and ADS Deployment
components, denotated as REQ-ADSR-XX and REQ-ADSD-XX, respectively.

 Id Level of detail Type Actor Priority

REQ-ADSR-01 System FUNC Application
Dimensioning
Workbench

MAN

Name Ingest Candidate Deployment Playbooks and Benchmarking Information

Description The Application Dimensioning Workbench sends a series of candidate
deployment patterns (CDP) playbooks and benchmarking information to
the ADS Ranking component. ADS Ranking needs to collect all these
patterns for subsequent scoring/ranking based on the user requirements
and preferences.

Additional
Information

Ingestion occurs via a common publisher/subscriber platform (RabbitMQ).

Table 17 - Requirement (1) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-02 System FUNC Dynamic
Orchestrator,
Application
Dimensioning
Workbench

MAN

Name Deployment Suitability Feature Extraction

Description Once a series of candidate deployment pattern playbooks and associated
benchmarking information has been received, the next step is to
determine how each pattern is predicted to perform based on the
benchmarking information. In effect, this involves defining a series of
functions that relate individual or groups of user requirements to the
predicted performances produced by benchmarking. The output of this
step is a vector representation for each CDP playbook, representing how
that playbook is predicted to perform under different user requirements.

Additional
Information

Features produced here are dependent on the capabilities of the
benchmarking system and the amount of information the user provides in
terms of requirements and preferences.

Table 18 - Requirement (2) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-03 System FUNC Dynamic
Orchestrator,
Application
Dimensioning
Workbench

MAN

Name CDP Playbook Scoring (Heuristic)

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 41 of 85 bigdatastack.eu

Description Given a vector representation for a CDP Playbook, we next need to map
this vector into a single score, representing how suitable that playbook will
be overall (such that we can compare different CDP Playbooks). This
involves combining the different elements within the vector (that each
represent some aspect of pattern suitability, such as cost, or predicted
compute wastage). The first version of this component will use a hand-
tuned linear combination.

Additional
Information

N/A

Table 19 - Requirement (3) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-04 System FUNC Dynamic
Orchestrator,
Application
Dimensioning
Workbench

DES

Name CDP Playbook Scoring (Supervised)

Description Given a vector representation for a CDP Playbook, we next need to map
this vector into a single score, representing how suitable that playbook will
be overall (such that we can compare different CDP Playbooks). This
involves combining the different elements within the vector (that each
represent some aspect of pattern suitability, such as cost, or predicted
compute wastage). The second version of this component will learn how
to combine the elements based on logging information from past
deployments. Models may be non-linear in nature.

Additional
Information

Depends on REQ-ADSR-06.

Table 20 - Requirement (4) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-05 System FUNC Dynamic
Orchestrator,
Application
Dimensioning
Workbench

MAN

Name CDP Playbook Selection

Description Once all candidate deployment patterns have been scored, the final step is
to select one of those patterns to pass to ADS Deployment. In many cases
this will simply involve selecting the highest scoring pattern. However, the
user may have the option to select an alternative configuration at this
stage.

Additional
Information

N/A

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 42 of 85 bigdatastack.eu

Table 21 - Requirement (5) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-06 System FUNC Dynamic
Orchestrator,
Application
Dimensioning
Workbench

DES

Name Supervised Model Training

Description To support REQ-ADSR-04, a supervised scoring model is needed. To react
to changes in the deployment environment over time, this model needs to
be frequently updated based on new information from current
deployments. This model needs to be trained based on logging data being
collected by the Triple Monitoring Framework.

Additional
Information

Requires logging information produced by the Triple Monitoring
Framework and stored in the Central Decision Tracker.

Table 22 - Requirement (6) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-07 System FUNC Dynamic
Orchestrator

MAN

Name CDP Playbook Re-Scoring

Description It is envisaged that in (rare) scenarios, an ongoing application deployment
will fail to meet the user’s quality of service requirements. For instance,
this might occur due to assumptions on data input volumes being violated.
In this case, we may not be able to solve this issue without fully
redeploying the user application with different resources. To support such
re-deployment activities, ADS Ranking supports a re-scoring function,
where a previous set of CDP playbooks for a user’s application can be re-
scored based on updated preferences provided by the Dynamic
Orchestrator, as well as data about how the previous deployment
performed (and failed).

Additional
Information

N/A

Table 23 - Requirement (7) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSR-08 System FUNC ADS
Ranking

DES

Name Deployment Dataset Generation

Description To support REQ-ADSR-06 and hence REQ-ADSR-04, significant volumes of
logging data from past deployments are needed to enable effective model
creation. To this end, a framework and methodology for generating this

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 43 of 85 bigdatastack.eu

data is needed. Such logging data can be produced through either
benchmarking, live deployment of the end-user applications and via
simulated application deployment.

Additional
Information

Data storage for this task is handled by the Triple Monitoring Framework
and Central Decision Tracker. Data generation is supported by
deployments by the application dimensioning workbench and other
dedicated deployment applications.

Table 24 - Requirement (8) for ADS Ranking

 Id Level of detail Type Actor Priority

REQ-ADSD-01 Stakeholder FUNC ADS Ranking MAN

Name Performance Measurability

Description Each environment should be measurable according to a set of
characteristics, that is, Key Performance Indicators (KPIs).

Additional
Information

The KPIs considered must include:
- vCPUs
- Memory

Table 25 - Requirement (1) for ADS Deploy

 Id Level of detail Type Actor Priority

REQ-ADSD-02 Stakeholder FUNC Application
Engineer, Data
Engineer

MAN

Name Standards-based Playbook

Description The description of the environments and deployments (i.e., playbooks) will
follow a specification language that is intuitive and as close (similar) as
possible to well-known and widely-used schemas to describe software
application deployments in cloud infrastructures, such as Docker Compose
or Kubernetes Deployment.

Additional
Information

N/A

Table 26 - Requirement (2) for ADS Deploy

 Id Level of detail Type Actor Priority

REQ-ADSD-03 System FUNC Application
Engineer, Data
Engineer

MAN

Name Standard deployment information

Description When communicating with other components, as described in Section 7.2,
these components will use the playbook standard defined in REQ-RD-02.

Additional
Information

N/A

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 44 of 85 bigdatastack.eu

Table 27 - Requirement (3) for ADS Deploy

 Id Level of detail Type Actor Priority

REQ-ADSD-04 System FUNC ADS Ranking MAN

Name Application Scoring System

Description The ranking system evaluates each environment’s deployment, which
keeps track of the most suitable configuration for each application. When
trying a deployment configuration for a new application, this ranking will
be used to select the most suitable one.

Additional
Information

The evaluation needs to be performed following the measurements
defined in REQ-RD-01.

Table 28 - Requirement (4) for ADS Deploy

 Id Level of detail Type Actor Priority

REQ-ADSD-05 Software FUNC Cluster
Management

MAN

Name Compatibility with Kubernetes

Description Since the technology used to run and orchestrate the applications is based
on Kubernetes (OKD10). Thus, the ADS-Deployment component is required
to be compatible with Kubernetes.

Additional
Information

The ADS-Deploy component should translate from the playbook standard
defined in REQ-RD-01 into Kubernetes primitives.

Table 29 - Requirement (5) for ADS Deploy

 Id Level of detail Type Actor Priority

REQ-ADSD-06 System PERF ADS Ranking MAN

Name Synchronous communication

Description The communication with and within ADS Ranking and ADS Deploy must be
done through an API REST.

Additional
Information

N/A

Table 30 - Requirement (6) for ADS Deploy

7.2. Design Specifications

The design for this component (originally specified in Section 7 of D3.1) has remained valid
for year 2 for the most part. The following sections describe the aspects of the design that
have been updated during Y2.

10 OKD - https://www.okd.io/

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 45 of 85 bigdatastack.eu

7.2.1. Connection with the Visualization Service

In the original design for ADS Ranking, it was envisaged that once the best deployment was
identified, that choice would be immediately sent to ADS Deployment to operationalize
application deployment. However, through discussions with the development team
responsible for the user-facing platform, we realized that in some scenarios the user may
wish to at least approve the recommended deployment, if not even further customise it
based on their knowledge of the application. Hence, a design change was made to ADS
Ranking, de-coupling it from ADS Deployment.

Under the new design, when a new DD Playbook is selected by ADS Ranking, it is now
published to the Visualisation service as well as the Global Decision Tracker, in contrast to
sending the selected pattern directly to ADS Deployment. The Visualisation service now
visualises the DD playbook contents to the user, where they can either approve the
configuration (which sends the DD Playbook on to ADS Ranking as before) or abort the
deployment. This visualisation is shown in Figure 10.

Figure 10 – CDP Playbook Visualisation and Approval Screen

7.3. Experimentation Outcomes

Given that ADS Ranking has reached its Tier 1 implementation that provides the base set of
functionalities, we need to evaluate its performance at identifying effective and efficient
deployment configurations. As its name suggests, ADS Ranking is a ranking service at its
core, i.e. it ranks a set of items provided to it, which are DD Playbooks in our case. Some of
those DD Playbooks will be more suitable than others. By suitability, we refer to whether
the user’s requirements and preferences will be met or exceeded, if we use that DD
Playbook to deploy the user’s application. Hence, we can measure how effective ADS
ranking is for an application by evaluating to what extent the top-ranked DD Playbooks are
suitable. By evaluating the effectiveness of ADS Ranking at deploying different types of
application, we can determine the overall effectiveness of ADS Ranking as a whole. In this
section we describe the experimental framework and setting we use to perform an

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 46 of 85 bigdatastack.eu

evaluation of ADS Ranking11 in terms of dataset, methodology, metrics and baselines. We
then report the performance of ADS Ranking Tier 1 and the baselines under this dataset and
metrics.

7.3.1. Dataset

As discussed in D3.1 Section 7.5, the idea of producing an automatic system to estimate
what resources are needed to deploy a user application is novel. Hence, there are not
readily available standard datasets that we can leverage to evaluate ADS Ranking. Instead,
for our initial evaluation we generate a new dataset. In effect, a dataset for this task can be
considered to be comprised of five main parts:

- BigDataStack Playbooks: The definition of applications that we are going to deploy
onto the cluster infrastructure. Each BigDataStack Playbook describes the services
within a user’s application, along with the quality of service factors that the user
cares about in terms of hard requirements and softer preferences. However, it does
not state how that application should be deployed in terms of resources to be
allocated to the different services within that application.

- Workload: The workload for an application represents the amount of work that the
application needs to do. For a real-time streaming application, this might represent
the stream of records or requests that need to be processed. Meanwhile for batch
operations, this would be the dataset or database that needs to be processed or
queried.

- CDP Playbooks: For a BigDataStack Playbook that describes a single application, we
also need a series of Candidate Deployment Pattern (CDP) Playbooks that describe
the different ways that we might deploy that application on the cluster
infrastructure in terms of resources (CPU, GPU, memory, per service). These CDP
Playbooks are combined with benchmark performances (discussed below) to form
the items that ADS Ranking scores and ranks (Dimensioned Deployment Playbooks).

- Benchmark Performances: As part of the ranking process, ADS Ranking utilizes
predicted performance estimates produced by the Benchmarking (ADW Core)
component of the Application Dimensioning Workbench. In effect, for each CDP
Playbook, Benchmarking provides a series of indicators (features) about how well
the application is expected to perform if deployed using the resources described
within those CDP Playbooks. The combination of a CDP Playbook and this benchmark
data forms what we refer to as a Dimensioned Deployment (DD) Playbook. A DD
Playbook represents a single candidate deployment of a user’s application, but also
has all of the information that ADS-Ranking needs to predict its suitability.

- Ground-truth Performances: To evaluate to what extent each DD Playbook is, in fact
suitable (rather than is predicted to be suitable), we need to have ground truth
information about how the user’s application would actually perform on the cluster

11 Note that as the Openshift Application Simulator Adaptor (OASA) and its plugins that are being developed as
part of WP6 T5.1 becomes more fully-featured, this will also provide further datasets that we can use to
evaluate ADS Ranking. However, at the time of writing, the first version of this service has only just been
completed, and hence is not used here.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 47 of 85 bigdatastack.eu

infrastructure if deployed using those DD Playbooks. Note that this is different to
what the Benchmark Performances provide, as those are only (predictive) estimates
and are subject to error.

To produce our initial dataset, we first created 24 real-time stream processing applications.
Each of these applications have different processing properties, such as start-up time, per-
record processing time, memory usage, maximum throughput and more. We then defined
three quality of service levels, which we refer to as medium, high and extreme, where each
quality of service level specifies the response time bounds and cost for the application that
are acceptable for different classes of user, as follows:

• Medium QoS:

o Requirement: Response Time less than 200ms, Cost less than $1.9/hour

o Preference: Response Time less than 100ms, Cost less than $0.7/hour

• High QoS:

o Requirement: Response Time less than 150ms, Cost less than $1.9/hour

o Preference: Response Time less than 70ms, Cost less than $0.7/hour

• Extreme QoS:

o Requirement: Response Time less than 70ms, Cost less than $1.9/hour

o Preference: Response Time less than 50ms, Cost less than $0.7/hour

Next, we generated one BigDataStack Playbook for each unique application and quality of
service pair, resulting in 72 BigDataStack Playbooks (24 applications x 3 QoS levels). For this
first dataset, we use only a single stream processing workload, where the average input rate
is 300 requests per second, with a peak input rate of 500 requests per second. We refer to
the combination of one of the BigDataStack Playbooks with this workload as an
experimental scenario.

For each of the generated BigDataStack Playbooks, we then submitted them to the ADW
Pattern Generation component deployed on our local testbed, which in turn produced CDP
Playbooks for each. Based on the underlying available hardware, each BigDataStack
Playbook has 35 possible deployment configurations, hence 35 CDP Playbooks are
generated per experimental scenario, creating a total of 2,520 CDP Playbooks (72 scenarios
x 35 deployment configurations). At this point, we deployed each of the 2,520 CDP
Playbooks in turn, collecting resource usage and quality of service information. More
precisely, we tracked average and peak CPU and memory usage, along with average and
peak response time. In this way, we collected our ground truth performances. There was no
competing for resources during these tests and so performances should be comparable
between scenarios.

At the time of this experiment, the WP5 benchmarking component did not yet support our
24 applications, hence we could not directly use it to obtain the benchmark performances
we need for the dataset. Instead, to collect our benchmarking performances, we submitted
each CDP Playbook to a local Benchmarking Simulation service that we developed, which
simply takes the true ground truth performances and generates benchmark performances
from them, with a randomised degree of performance error (+/- 20%) added to represent

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 48 of 85 bigdatastack.eu

imperfect benchmarking. Combining each of the 2,520 CDP Playbooks with their imperfect
benchmarking information, we create the 2,520 DD Playbooks that we will have ADS-
Ranking rank. In this way, we now have a full dataset that we can use to evaluate ADS
Ranking.

7.3.2. Metrics

For each of the 72 experimental scenarios, ADS Ranking will output a ranking of the
associated 35 DD Playbooks. However, to determine how effective each of these rankings
are, we need a means to determine the suitability of each DD Playbook within the rankings.
During dataset creation described above, we have two pieces of information to aid in this
task. First, we have the quality of service requirements and preferences set by the user.
Second, our ground truth performances tell us how well each DD Playbook actually
performed. Hence, we need a mapping function that takes these two pieces of information
and produces a suitability score, where a higher score indicates that the user’s requirements
and preferences were better met (while also minimising cost). Hence, we use a simple
scoring function that produces a suitability score between 0 and 3, where 0 indicates that
the DD Playbook was unsuitable and 3 indicates that all requirements and preferences were
met. Scoring is performed as follows:

• If either response time or cost exceeds the user requirement, the DD Playbook
receives a score of 0.

• If the user requirements are met, but none of the user preferences are met, the DD
Playbook receives a score of 1.

• If the user requirements are met, and either (but not both) of the user preferences
are met, the DD Playbook receives a score of 2.

• If all requirements and preferences are met, then the DD Playbook receives a score
of 3.

We use this function to produce a suitability score/label for each of the 2,520 DD playbooks.

Once the DD Playbooks have been scored, we need to use these scores to evaluate the
performance of ADS Ranking as a whole. To do so, we use standard ranking metrics from the
information retrieval literature. In particular, we report:

- Precision@5: This evaluates whether the top ranked DD Playbook was suitable (had a
score equal to or greater than 1) for the user’s application

- Mean Average Precision (MAP): Average precision (at a particular rank) is the
proportion of suitable (has a score equal to or greater than 1) DD Playbooks down to
that rank. MAP is average precision calculated at the maximum rank (35 in this case)
over multiple application deployments. [13]

- NDCG@5: Discounted Cumulative Gain (DCG) is a measure of the usefulness, or gain,
of an item based on its position in a ranking. Total gain is accumulated starting from
the top of the result list (ranking) and moving downwards to a set rank (@N). Gain of
each result is discounted at lower ranks and can incorporate different (suitability)
grades. Hence, unlike the above two metrics, this metric considers whether the
preferences were met in addition to the requirements. NDCG is DCG normalized

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 49 of 85 bigdatastack.eu

across (in our case) different application deployments to account for some
deployments being easier to find suitable patterns for than others. [9]

7.3.3. Baselines

Using the above dataset and metrics, we can score ADS Ranking in terms of its effectiveness.
However, such a score in isolation can be misleading, as it does not provide us information
about how difficult the task is. Hence, we also need reference baselines to compare against,
providing us context. As this is a new task, there are no standard baselines. Hence, we
propose two new baselines here, representing simple strategies that a human might employ
when selecting a DD Playbook:

• RankByCost: This baseline simply ranks each DD Playbook by its deployment cost on
the cluster hardware, where the cheapest deployment is ranked first. In particular,
cost is calculated as the sum of the cost of the requested resources across the
services defined in the DD Playbook, where a mapping between resources and a US
dollar cost from a commercial cloud provider (Amazon Web Services EC2) is used.

• MidTierFirst: This second baseline represents a user selecting resources that are in
the middle of the available range, as they don’t know what they need. To represent
this, we manually ordered the available DD Playbooks by requested resources,
placing those using mid-tier hardware first, followed by high-tier hardware, and
finally putting the lowest-tier hardware at the bottom of the ranking.

7.3.4. ADS Ranking Performance Results

In this section we report the performance of the ADS Ranking component against the
baselines summarized above. Figure 11 reports the performance of ADS Ranking Tier 1 in
terms of Precision@5, MAP and NDCG@5, * indicates a statistically significant increase in
performance over the MidTierFirst baseline (paired t-test, p<0.05). As we can see from
Figure 11, ADS-Ranking (Tier 1) is significantly better at recommending deployment
configurations than the baselines tested (e.g. 0.5582 vs. 0.2793 NDCG@5). Moreover, the
increase in performance is larger under Precision@5 and MAP (that only consider the user
requirements) than under NDCG@5 (which factors in requirements and preferences),
indicating that ADS Ranking is much better at meeting at least the minimal user
requirements. On the other hand, current average performance of ADS Ranking appears to
be around 0.55, indicating that there is still significant scope to improve ranking
performance. Indeed, in year three we will be investigating on how to achieve further
increases in performance using learning to rank models in ADS Ranking Tier 2.

Approaches Precision@5 MAP NDCG@5

RankByCost 0.0111 0.1407 0.2793

MidTierFirst 0.1778 0.2260 0.3532

ADS
Ranking
Tier 1

0.5500* 0.5204* 0.5582*

Figure 11 – ADS Ranking Performance

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 50 of 85 bigdatastack.eu

7.4. Implementation and Integration Highlights

The following sections describe relevant implementation and integration work carried out
during Y2.

7.4.1. Re-Implementation to Decrease Latency

The original Tier 0 implementation of the ADS Ranking component was created in a modular
fashion using the Apache Spark framework and its Spark Streaming module. The core idea
underpinning this design decision was two-fold. First, it provided a convenient means to
compartmentalize functionality into data transformation operations which were
independent and easily scalable to deal with high volume request loads. This is important,
as complex applications comprised of many services may have thousands of potential
deployment options (represented as DD Playbooks) that need to be considered. Second,
Apache Spark already provides built-in machine learning capabilities that could be leveraged
to support model learning within ADS Ranking (later in Tier 2).

However, after the first implementation (Tier 0) of ADS Ranking was complete, we identified
an issue with this design choice, namely a lack of responsiveness when connected to the
BigDataStack User Interface component. At its core, Apache Spark is a batch-oriented
platform, designed to process groups of data at one time. The Spark Streaming module that
we use enables pseudo-real-time computation by reducing the batch sizes to typically only
10’s of items (DD Playbooks) at a time, referred to as micro-batches. However, while
playbook computation was fast, we observed multiple seconds of wasted time between
these micro-batches, due to the set-up and shut-down of each micro-batch.

As a result, we refactored the initial Apache Spark implementation using a different
platform (Apache Flink). This platform is a similar open source project to Apache Spark, in
that it provides a compute framework for JVM-based languages, but was designed from the
ground-up for real-time computation. As a result of this change, we managed to eliminate
the additional latencies that were introduced by Spark’s micro-batching, reducing the delay
in ADS Ranking processing time by around 4 seconds on average during our initial testing.

7.4.2. ADS Ranking Tier 1 Implementation

As per the initial design and development plan summarised in D3.1 Section 7.6, during the
second period covered by this current deliverable, the second iteration of ADS Ranking (Tier
1) was successfully implemented. This second version of the ADS Ranking component
integrates directly with the first iteration of the application dimensioning workbench to
obtain benchmarking features. The Tier 1 implementation also includes the first
implementation of the re-ranking functionality (REQ-ADSR-07).

Post M18, development efforts have been shifted to the creation of the underlying training
datasets needed to train the Tier 2 implementation of ADS-Ranking. Further details
regarding this can be found in D5.2 Section 8.

7.4.3. ADS Deploy Implementation

Following the initial design, the ADS-Deploy component has been implemented in a two
tiers structure.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 51 of 85 bigdatastack.eu

The first tier considered releasing a prototype which integrated with the existing
technologies referenced in REQ-ADSD-05. This prototype received a DD Playbook, which
followed the structure defined in D2.5) using a RESTful interface. Then, the component
translates the DD Playbook into a Kubernetes’ compatible JSON file, and sends this file to
the infrastructure manager. It utilizes the OKD’s managed API REST to ensure that the
deployment is correctly communicated. In BigDataStack, a deployment is communicated to
OKD using:

• DeploymentConfig: Including the information on the different pods and containers.

• Services: To manage the access point to the application deployed on BigDataStack.

• Routes: Providing the hostname information to access the pods from the outside
world.

For further information on the design of the ADS-Deploy prototype, please refer to D2.5.

In a second tier, the ADS-Deploy component has been integrated with the rest of the
system. This integration has continued being done using the RESTful API, which is reached
by the ADS-Ranking component whenever it becomes necessary. The need for a REST API
has been an architectural decision, due to the synchronous and very dependent nature of
both ADS-Deploy and ADS-Ranking components.

7.5. Next Steps

It is currently envisaged that there will be two further releases of the ADS Ranking
component and one release of the ADS Deployment component during BigDataStack,
integrating more advanced functionality:

- ADS Ranking

o Tier 2: This version will transition from using current heuristic scoring of CDP
Patterns to the first version of our proposed learning to rank approach.

o Tier 3: This version will include our second iteration of the learning to rank
approach with support for reinforcement learning from live data collected by
the Triple Monitoring Framework.

- ADS Deploy

o Tier 3: This version of the ADS Deploy will support enhanced integration with
the Global Decision Tracker for monitoring application deployment state in
cases where immediate deployment is not possible.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 52 of 85 bigdatastack.eu

8. Triple Monitoring & QoS Evaluation

The triple monitoring component collects and stores several metrics regarding the
performance of a deployment at an application, data service and resource cluster level.
These metrics are used to dynamically adapt the environment and ensure the best QoS
(Quality of Service) to the user. When a user requests a service from BigDataStack, a
minimum QoS is agreed between the user and the system. At runtime, certain metrics or
Key Performance Indicators (KPI) are collected by the Triple Monitoring Engine and
evaluated against the agreed Service-Level Objectives (SLOs) by the QoS Evaluator.

8.1. Requirements

To facilitate the understanding of the design as well as the challenges addressed by this
component, the requirements related to this component have been brought from D2.3 and
literally included into this section. Please note the following requirement tables are
compiled together with the rest of requirements of BigDataStack in D2.3, and that they are
included in here for the reader’s convenience.

 Id Level of detail Type Actor Priority

REQ-TME-01 System FUNC Application
Engineer, Data
Engineer

MAN

Name Metrics pusher

Description The metric pusher retrieves KPI data, cleans them and ingests them into
the monitoring collector (Prometheus).

Additional
Information

The metrics pusher is used when the exporter approach is impossible to
apply—since Prometheus exporters require an HTTP server to publish
metrics for the monitoring collector, components that lack this service
need an alternative. Besides, this solution will be very useful for getting
application specific metrics. This component is a REST-API and Prometheus
Exporter which receives KPI data over HTTP in JSON format, then format
them and ingest them into Prometheus.

Table 31 - Requirement (1) for Triple Monitoring Engine

 Id Level of detail Type Actor Priority

REQ-TME-02 System FUNC QoS Evaluation DES

Name RESTful API for accessing the collected monitoring metrics

Description The metrics are accessible through a RESTful API.

Additional
Information

This component translates client’s requests to Prometheus request
compatible. Grafana12 will be used for visualization.

Table 32 - Requirement (2) for Triple Monitoring Engine

12 Grafana. https://grafana.com/

https://grafana.com/

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 53 of 85 bigdatastack.eu

 Id Level of detail Type Actor Priority

REQ-TME-03 System FUNC QoS Evaluation,
Dynamic
Orchestrator

MAN

Name Metrics publication

Description Measurements stored in the metrics repository must be periodically
published through a publisher/subscriber mechanism. The publication of
measurements must start and stop following the request made by the QoS
Evaluation, as this component is also responsible for managing the life
cycle of the quality monitoring and evaluation tasks (see REQ-QOS-07).

Additional
Information

The monitoring metrics getter is implemented using RabbitMQ13.

Table 33 - Requirement (3) for Triple Monitoring Engine

 Id Level of detail Type Actor Priority

REQ-TME-04 Software FUNC Application
Engineer, Data
Engineer

DES

Name Spark compatible

Description The triple monitoring engine monitors the performance of Apache Spark14,
which is used in the BigDataStack project as an analytics engine for Big
Data, and thus needs to be compatible with this technology.

Additional
Information

Monitoring Spark is done using the Spark measure project, which can be
embedded in a Spark application to allow the collection of some metrics
after each SQL execution. Those metrics are sent to push gateway to be
exported to Prometheus.

Table 34 - Requirement (4) for Triple Monitoring Engine

 Id Level of detail Type Actor Priority

REQ-TME-05 Software FUNC Application
Engineer, Data
Engineer

DES

Name LeanXcale compatibility

Description LeanXcale database15 already uses Prometheus for its monitoring
subsystem. However, the integration relies on deployments that require
the manual reconfiguration for the Prometheus in cases of scaling actions.
Thus, it should be extended to consider automatic re-deployments driven
by an elasticity action and automatically reconfigure the integration with

13 RabbitMQ. https://www.rabbitmq.com/
14 Apache Spark. https://spark.apache.org/
15 LeanXcale. https://www.leanxcale.com/

https://www.rabbitmq.com/
https://spark.apache.org/
https://www.leanxcale.com/

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 54 of 85 bigdatastack.eu

the Prometheus monitoring system. In these scenarios, LeanXcale should
reconfigure its integration with the existing Prometheus deployment on
the run-time and provide monitoring information for the new nodes.

Additional
Information

N/A

Table 35 - Requirement (5) for Triple Monitoring Engine

 Id Level of detail Type Actor Priority

REQ-TME-06 Software FUNC Application
Engineer, Data
Engineer

DES

Name OKD compatibility

Description The Triple Monitoring Engine (TPE) monitors the performance of
OpenShift OKD16, which is the baseline technology used in the
orchestration of containers. Therefore, the TME should be compatible
with this technology.

Additional
Information

N/A

Table 36 - Requirement (6) for Triple Monitoring Engine

 Id Level of detail Type Actor Priority

REQ-TME-07 Software FUNC Application
Engineer, Data
Engineer

DES

Name CEP compatibility

Description The Triple Monitoring Engine (TME) monitors the performance of the UMP
CEP (Complex Event Processing), which is used in the BigDataStack project
as a streaming engine for processing data in real-time. Therefore, the TME
needs to be compatible with this technology. The integration with TME is
done by federating Prometheus instances, that is, connecting the CEP’
Prometheus-based monitoring system into DECENTER Prometheus-based
central monitoring system.

Additional
Information

The CEP exposes several monitoring metrics that are exported to
Prometheus.

Table 37 - Requirement (7) for Triple Monitoring Engine

 Id Level of detail Type Actor Priority

REQ-TME-08 Software FUNC Application
Engineer, Data
Engineer

DES

16 Openshift OKD (Origin Kubernetes Distribution). https://www.okd.io/

https://www.okd.io/

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 55 of 85 bigdatastack.eu

Name Minio compatibility

Description The Triple Monitoring Engine (TME) monitors the performance of Minio17,
which is used for object storage in the system. Therefore, the TME needs
to be compatible with this technology.

Additional
Information

N/A

Table 38 - Requirement (8) for Triple Monitoring Engine

 Id Level of detail Type Actor Priority

REQ-TME-09 Software FUNC Application
Engineer, Data
Engineer

DES

Name OpenStack Networking Services compatibility

Description The Triple Monitoring Engine (TME) should monitor the performance of
the internal network connecting the different containers inside a deployed
application. BigDataStack networking resources and services are provided
through a solution stack combining OpenShift, Kuryr and Neutron, that is,
the networking services from OpenStack (see requirements REQ-CM-02,
REQ-CM-03 and REQ-CM-04). This means that networking is ultimately
provided by OpenStack and hence the need for integrating of TME with it
to have networking monitored.

Additional
Information

Cluster Management (OpenShift) and Information-Driven Networking
components interoperate to provide reliable networking to the
applications and services deployed on the BigDataStack platform.

Table 39 - Requirement (9) for Triple Monitoring Engine.

 Id Level of detail Type Actor Priority

REQ-TME-10 Software FUNC Application
Engineer, Data
Engineer

MAN

Name Persistently store the monitoring metrics

Description The Triple Monitoring Engine (TME) should use a database for persistently
storing monitoring metrics and is connected to Prometheus via
PrometheusBeat.

Additional
Information

 Metrics saved persistently will be used for historical reason.

Table 40 - Requirement (10) for Triple Monitoring Engine

 Id Level of detail Type Actor Priority

REQ-TME-11 Software FUNC Application ENH

17 Minio Private Cloud Storage- https://www.minio.io/

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 56 of 85 bigdatastack.eu

Engineer, Data
Engineer

Name Spark Monitoring Pushgateway

Description This component is used to gather metrics from Spark and ingest them into
the metrics collector.

Additional
Information

The connection between this component and the applications will use
HTTP.

Table 41 - Requirement (11) for Triple Monitoring Engine

 Id Level of detail Type Actor Priority

REQ-TME-12 Software FUNC Application
Engineer, Data
Engineer

ENH

Name Metrics visualization

Description The metrics must be shown to the end-user via a graphical interface.
Grafana is used for metrics’ visualization.

Additional
Information

Grafana18 is configured for receiving metrics from two sources
(Prometheus, InfluxDB).

Table 42 - Requirement (12) for Triple Monitoring Engine

 Id Level of detail Type Actor Priority

REQ-TME-13 System FUNC QoS Evaluation DES

Name Metrics aggregation

Description The metrics publication (through publisher/subscriber pattern) process
(see REQ-TME-03) should be also in charge of aggregating measurements
in periods so the aggregated metrics can be then used by the QoS
Evaluation to work in base of confidence levels and time intervals (see
REQ-QOS-06).

Additional
Information

The aggregation function to use will be quantiles/percentiles, depending
on the nomenclature we use (see REQ-QOS-06 for more details).

Table 43 - Requirement (13) for Triple Monitoring Engine

 Id Level of detail Type Actor Priority

REQ-QOS-01 System FUNC Developer MAN

Name Regular recording of QoS metrics

Description When a user’s application is deployed, the Triple Monitoring Engine and
QoS Evaluation monitors that application, tracking statistical information

18 Grafana - https://grafana.com/

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 57 of 85 bigdatastack.eu

about its operation and associated QoS data, including network, data
storage, virtualization layers, etc.

This data is needed to support the learning of ranking models by ADS-
Ranking service (part of Application and Service Deployment; see REQ-
ADSR-03) and regularly saved in a centralised data store for later access.

Additional
Information

N/A

Table 44 - Requirement (1) for QoS Evaluation

 Id Level of detail Type Actor Priority

REQ-QOS-02 System FUNC Developer MAN

Name QoS violation alert

Description If the system does not respect the agreed QoS, an alert is raised.

Additional
Information

This alert is used internally to evaluate the performance of an
environment, relating to REQ-RD-004.

Table 45 - Requirement (2) for QoS Evaluation

 Id Level of detail Type Actor Priority

REQ-QOS-03 System FUNC Developer DES

Name QoS violation monitoring

Description QoS violations are also monitored and shown to the user/admin.

Additional
Information

N/A

Table 46 - Requirement (3) for QoS Evaluation

 Id Level of detail Type Actor Priority

REQ-QOS-04 System PERF Dynamic
Orchestrator

DES

Name Asynchronous rich notification of QoS violations

Description QoS violations should be notified by means of a publisher/subscriber
mechanism, together with the id of the metrics to which the SLO applies.

Additional
Information

The main consumer of the SLA violations notifications is the Dynamic
Orchestrator.

Table 47 - Requirement (4) for QoS Evaluation

 Id Level of detail Type Actor Priority

REQ-QOS-05 System PERF Dynamic
Orchestrator

MAN

Name Ability to detect spike violations of QoS

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 58 of 85 bigdatastack.eu

Description The QoS Evaluation must consider all data points (i.e. measurements)
stored in the monitoring system’s time series database when computing
SLO violations to cover spikes that may be missed by any sampling method
otherwise.

Additional
Information

N/A

Table 48 - Requirement (5) for QoS Evaluation

 Id Level of detail Type Actor Priority

REQ-QOS-06 System PERF Dynamic
Orchestrator

MAN

Name Evaluate aggregated behaviour with a certain level of confidence

Description The QoS Evaluation must consider the aggregated measurements during a
given time window to determine the compliance of the SLO for the most
part or a given period or time window, to avoid notifying violations due to
outliers or sporadic spikes in the measurements. We define “for the most
part” as the level of confidence we can have in the evaluation of the SLO.

Additional
Information

There exist different ways in which we can “assess” a group of data points
or measurements to determine whether they comply with the objective
“for the most part”. The most common way is to aggregate data points in
groups of n and determine whether the entire group complies with the
objective, and using aggregation functions such as quantiles/percentiles.
Thus, the SLO evaluation need to follow the following norm:

- Metric < objective for percentage of measurements collected in

time window

For example, that:

- Response time < 900ms for 99% measurements collected in 10min

This percentage can be calculated as the percentile 99th or 0.99 quantile
(also known as 99% quantile), depending on the nomenclature we use.

Table 49 - Requirement (6) for QoS Evaluation

 Id Level of detail Type Actor Priority

REQ-QOS-07 System FUNC Dynamic
Orchestrator

MAN

Name Management of the quality evaluation tasks

Description The QoS Evaluation must be responsible for managing the life cycle of
quality monitoring and evaluation tasks for the applications and services
deployed in the BigDataStack platform. These tasks must be initiated and
stopped following the lifecycle of the application and service deployments,
i.e., to be active only when the corresponding deployment is running.

Additional
Information

N/A

Table 50 - Requirement (7) for QoS Evaluation

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 59 of 85 bigdatastack.eu

8.2. Design Specifications

Figure 12 shows the high-level architecture of the Triple Monitoring Engine (TME) and QoS
Evaluation components, following the requirements defined in Section 8.1. As it is shown,
the metrics collector is in a central place, receiving information from the compatible
technologies exploiting Prometheus’ federation feature (REQ-TM-8, REQ-TM-9 and REQ-TM-
10) and scraping all endpoint conformably to its configuration file. Since Prometheus’
retention period19 is limited, Prometheus Beat requests metrics each interval (1 second by
default) then ingests these metrics into RabbitMQ and Logstash. Metrics sent to Logstash
are saved to Elasticsearch for ad-hoc access and historical purposes. Those who are
published to RabbitMQ are redirected to queues based on the subscriptions list handled by
the manager.

Figure 12 – Triple Monitoring Engine & QoS Evaluation – conceptual view.

The QoS (Quality of Service) Evaluation guarantees the compliance of a given KPI (Key
Performance Indicator) with an SLO (Service-Level Objective) for the most part of a given
period or time window. We define “for the most part” as the level of confidence we can
have in the evaluation of the SLO. There exist different ways in which we can “assess” a
group of data points or measurements to determine whether they comply with the
objective “for the most part”. One way is to aggregate data points in groups of n and
determines whether the group as a whole complies with the objective. There are different
aggregation functions we can use: from quantiles/percentiles to mean (average) and

19 Prometheus retention period, https://prometheus.io/docs/prometheus/latest/storage/

https://prometheus.io/docs/prometheus/latest/storage/

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 60 of 85 bigdatastack.eu

median; we chose the former percentile2. In other words, that, metric’s value is lower or
higher than the objective for the percentage of measurements collected in the time
window. The TME provides through the so-called Manager a functionality dedicated to the
specific needs of the QoS Evaluation; the real-time stream of values of a given percentile of
a bucket of measurements collected during a specific time window. Notice a 95th percentile
will be the value which is greater than or equal to 95% of values collected in that bucket of
measurements.

If a condition is not met, then the QoS Evaluation component raises an alert to the system,
which is sent to the manager, through the Pub/Sub mechanism. Figure 12 shows the
interaction between the Triple Monitoring Engine (based on Prometheus) for KPI monitoring
and RabbitMQ for publication of metrics. Prometheus focuses on collecting metrics.
RabbitMQ is used for managing the messages between components; one of the most
important messages are those publishing metrics from Prometheus to the Manager and the
QoS Evaluation. Subscribers, such as the QoS Evaluation, register in the Pub/Sub service and
are notified every time that there is new data collected by Prometheus.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 61 of 85 bigdatastack.eu

Figure 13 – Interaction between monitoring and QoS Evaluation components.

Figure 13 shows the interaction between the TME and QoS Evaluation, and the rest of the
system. As described before, the Triple Monitoring Engine can provide aggregated
information on the performance of the system and compare it against the expected QoS.
The information on performance is delivered through the pub/sub system, and it starts
providing it after a petition from the QoS evaluator. Following this comparison, the QoS

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 62 of 85 bigdatastack.eu

Evaluator component triggers and alert every time that the minimum agreed QoS is not
respected. This alert is intercepted by the Dynamic Orchestrator component, which decides
if it is necessary to re-deploy the monitored application.

Figure 14 – Interaction between Triple Monitoring Engine, QoS Evaluation and ADS Deploy components.

8.3. Experimentation Outcomes

No individual or specific experiments are conducted for this component; the Triple
Monitoring engine and QoS Evaluation (QoSE) play a supportive role to the components
bringing the intelligence to the DDIM capability: the ADS Ranking & Deploy and the Dynamic
Orchestrator (DO). Therefore, for experiments where the TME & QoSE participate are
engaged please go to Sections 5 and 6.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 63 of 85 bigdatastack.eu

8.4. Implementation and Integration Highlights

The following sections describe relevant implementation and integration work carried out
during Y2.

8.4.1. QoS Evaluation Confidence Levels

The QoS Evaluation need to request the Manager to start aggregating and computing a
certain percentile on a specific metric (KPI). In response, the Manager publishes the
percentile to the queue the QoS Evaluation is waiting for. This request needs to contain the
name of the queue to publish the percentile in, the name of the request and a list where
each element is an object composed by the name of metrics, the percentage, the name of
the application producing the corresponding metric, the interval and the time window (time
span). This request has the following format:

{

"request":"qos_start",

"queue":"qos", "metrics":[

 {

 "application":"tester",

 "metric":"scrape_duration_seconds",

 "interval":10,"percentage":90}

]

}

As explained in the design specifications section, this integration between the QoS
Evaluation and the Manager is made fully synchronous through the RabbitMQ messaging
(publisher/subscriber) system.

The manager creates a bucket based on the interval of time specified in the request, then
compute the percentile considering the percentage.

This percentage can be calculated as the percentile 99th or 0.99 quantile (also known as 99%
quantile), depending on the nomenclature we want to use. The formula is the following:

index = (percentage)*(size+1)

where “size” is the amount of observation in the given time window.

Algorithm of percentile computation

Input: list_of_value, percentage

list_of_value.sort()

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 64 of 85 bigdatastack.eu

size = get_size_of_list(list_of_value)

index = percentage * (size + 1)

If index == size then

index = size – 1

return list_of_value[index]

Output:

{

"application":"tester",

"metric":"scrape_duration_seconds",

"percentile":"0.016867146",

"request":"qos"

}

This computation will be periodically performed until the manager receives a request to
stop.

The integrations with LeanXcale database, UPM CEP and Apache Spark to collect metrics
from those systems were fully explained in D3.1, Sections 8.2.1, 8.2.2 and 8.2.3,
respectively.

8.5. Next Steps

The following features in the roadmap of this component are:

- Triple Monitoring Engine (TME)

o Collect metrics from the resources cluster manager (Openshift/Kubernetes)
through the Prometheus federation mechanism.

- QoS Evaluation (QoSE)

o Management of the evaluation lifecycle so the main consumer of the QoSE
services can create, start, pause, resume and delete QoS evaluation jobs.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 65 of 85 bigdatastack.eu

9. Information-Driven Networking

The Information-Driven Networking mechanisms provide a set of functionalities for traffic
engineering and network management in the cloud infrastructure by taking into
consideration that the services / applications, while running, have requirements which
should be fulfilled in real-time and close to real-time settings and need to be discoverable,
accessible and exposed on the network safely. These requirements concern the efficient
Domain Naming System (DNS) resolution for services and pods among different compute
nodes, services prioritization, the satisfaction of time critical constraints and security
aspects.

All these properties are controlled by means of labels and pods selectors which are defined
and have as effect to enforce specific network policies. This is required in order to make the
service / application accessible from any node within the private cluster and through the
Internet. The RedHat OpenShift built on top of the Kubernetes Container Management
System supports a networking model which assumes that pods can communicate with other
pods, regardless of which host they land on. Every time a pod is launched, a cluster-private-
IP address is assigned in order not to explicitly create links between pods or map container
ports to host ports. This means that containers within a pod can all reach each other’s ports
on localhost, and all pods in a cluster can see each other without Network Address
Translation (NAT). This is a network engineering novelty which is realized by integrating
Kuryr into the OpenShift and enables to avoid the double encapsulation problem due to
using two (2) different overlays (OpenStack SDN and OpenShift SDN on top). It has been
presented in more details in the section presenting the Cluster Management (cf. Section 5).
All the microservices are packaged with a sidecar that intercepts incoming and outgoing
calls for the services, providing the hooks needed to externally manage and control routing,
telemetry collection, and policy enforcement for the whole application. This ensures
advanced performance and security in the cloud infrastructure and is achieved by defining
rules. These rules specify the connections that are allowed or not allowed to specific
services or specific nodes in the cloud infrastructure of the BigDataStack project and support
a set of features including (dis)enabling the enforcement of specific policies, rate limits to
dynamically adjust the traffic to a service, control headers, routing and denials, white/black
listing.

The outcome of the Information-Driven Networking mechanisms will be to translate these
requirements into networking primitives that achieve the desired dissemination, regulatory
compliance and sharing of the information in the BigDataStack environment.

9.1. Requirements

To facilitate the understanding of the design as well as the challenges addressed by this
component, the requirements related to this component have been brought from D2.3 and
literally included into this section. Please note the following requirement tables are
compiled together with the rest of requirements of BigDataStack in D2.3, and that they are
included in here for the reader’s convenience.

 Id Level of detail Type Actor Priority

REQ-IDN-01 System FUNC Data Scientist MAN

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 66 of 85 bigdatastack.eu

Name Information-Driven Networking based on type of data

Description The Information-Driven Networking mechanisms enforce a set of policies
by specifying the rules of how two or more components can communicate
(send/receive data) with each other according to the available resources.

Additional
Information

A different policy is enforced based on different incoming data
requirements, following the type of processing requirements (stream,
micro-batch, batch) and the type of data (structured, semi-structured,
unstructured).

Table 51 - Requirement (1) for Information-Driven Networking

 Id Level of detail Type Actor Priority

REQ-IDN-02 Software FUNC Data Scientist MAN

Name Information-Driven Networking based on application requirements

Description The Information-Driven Networking mechanisms enforce a set of policies
by specifying the rules of how to handle applications with different
requirements according to the available resources. For instance, an
application with analytics requiring real-time data processing may impose
time-critical constraints on the handling, operation and transformation of
data. To support online analytics and decision making in time-critical
conditions specific network policies need to be applied to deliver the
results within predefined time constraints.

Additional
Information

The Data Scientist can set an “allow/deny access” policy regarding the set
of applications and their requirements (real-time, close to real-time needs)
accessing the backend services of the BigDataStack environment to
prioritize/isolate the set of ingress/egress workloads that are enabled/dis-
based on their IP & Port in order to achieve efficient services interaction.

Table 52 - Requirement (2) for Information-Driven Networking

9.2. Design Specifications

Through the Information-Driven Networking component the Data Scientist declares her
intend to be realized by the underlying system to translate either the data or the application
or the security requirements into specific networking primitives that achieve the desired
Service-Level Objective (SLO). This objective may refer to various kinds of traffic – streams,
batches and micro batches – get the isolation/priority of availability and bandwidth that are
needed to serve the network users effectively. With the convergence of all data and services
in the same network, the Information-Driven Networking will manage traffic according to
the network utilisation, the applications requirements and the communication latency
without compromising the functionality of the network. Using policy statements, either the
Network Administrators or the Data Scientists can specify which kinds of service / pod need
to be given priority, at what times and on what part of their communication protocol (TCP,
HTTP, etc.).

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 67 of 85 bigdatastack.eu

As all the mandatory building blocks of BigDataStack are containerized, a pod representing
the basic building block in Kubernetes, encapsulates an application container (or multiple
containers). Therefore, a set of labels and selectors need to be defined to assign key/value
pairs to pods and set up the expressions that combine these labels in order to identify the
traffic from/to individual containers, virtual machines and hosts that it needs to handle
before it is routed/delivered to its destination. Then, the network policy definition includes
a pod selector and the rules that apply to all the pods that meet the selector criteria. These
rules are applicable to egress and ingress resources establishing connections to the pods,
refer to labels with specific IPs or IP ranges and can permit or restrict communication to
specific ports or allow/deny access to/from specific namespaces. For instance, there may be
various namespaces serving different needs such as client and UIs services/applications. To
configure network policies enforcement, specific services (frontend, backend) need to be
exposed to specific namespaces (client, UIs). In the following, we present an example of
controlling ingress traffic by giving an indicative network policy definition.

kubectl create -f - <<EOF

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: access-nginx

 namespace: sample-policy-demo

spec:

 podSelector:

 matchLabels:

 run: nginx

 ingress:

 - from:

 - podSelector:

 matchLabels: {}

EOF

Figure 15 – An indicative network policy definition for ingress traffic.

To address the challenges of a specific application, its requirements and the respective
policies enforcement, a set of mechanisms operating at the services layer are expected to
set up the appropriate attributes to understand the virtual hosts, URLs and other HTTP
headers. This functionality implements the policy enforcement endpoint inside the pod as
sidecar container in the same network namespace. This approach is highly flexible and HTTP
aware and facilitates to apply policies in support of operational goals, such as service
routing, retries, circuit-breaking, etc.

Containers networking is realised by Networking as a Service (through Neutron in
OpenStack) and easily deployed containers (through Magnum either as Virtual Machines or
Physical Machines). The idea is to bridge networking functionalities supported by Neutron

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 68 of 85 bigdatastack.eu

for Containers Use Cases using abstraction mechanisms (exploiting functionalities of Istio20
and/or Kuryr21, presented in section 5). The outcome is to deliver Neutron networking and
services to Docker containerised services.

The Information-Driven Networking mechanisms also operate at the network layer. The
latter gives the advantage of being universal. Our focus is to address the challenges arising
from the diverse data types (i.e., stream, micro-batch, batch) to enforce policies to DNS,
storage services (i.e., scalable storage of LeanXscale, Object Store, etc.), real-time streaming,
and a plethora of other services that do not use HTTP. This functionality implements the
policy at the host node outside the network namespace of the guest pods. The workloads in
the BigDataStack environment can communicate without IP encapsulation or network
address translation for bare metal performance, which enables easier troubleshooting, and
better interoperability. In settings that require an overlay, the Information-Driven
Networking mechanisms will work with tunnelling. This approach is universal, highly
efficient, and isolated from the pods and facilitates to apply policies in support of security
and data privacy goals. In the following, we present an example of controlling
communications to HTTP GET requests by giving an indicative network policy definition
which consists of three policy objects.

Restricting customer’s communications to HTTP GET requests.

kind: SampleNetworkPolicy

metadata:

 name: customer_app

spec:

 selector: app == 'customer_app'

 ingress:

 - action: Allow

 http:

 methods: ["GET"]

 egress:

 - action: Allow

--

The customer_app is the consumer of this service.

Restricting incoming connections to customer_app.

kind: SampleNetworkPolicy

metadata:

 name: summary

spec:

 selector: app == 'summary'

20 Istio. https://istio.io/
21 Kuryr. https://wiki.openstack.org/wiki/Kuryr

https://istio.io/
https://wiki.openstack.org/wiki/Kuryr

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 69 of 85 bigdatastack.eu

 ingress:

 - action: Allow

 source:

 serviceAccounts:

 names: ["customer_app"]

 egress:

 - action: Allow

--

Restricting access to LXS.

Only the summary microservice has direct access to LXS database.

kind: SampleNetworkPolicy

metadata:

 name: LXS_db

spec:

 selector: app == 'LXS_db'

 ingress:

 - action: Allow

 source:

 serviceAccounts:

 names: ["summary"]

 egress:

 - action: Allow

Figure 16 – An indicative network policy definition for controlling HTTP GET requests.

In the following figure, we present the high-level functionalities of the Information-
Driven Networking tool in a UML Components diagram.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 70 of 85 bigdatastack.eu

Figure 17 – Information-Driven Networking UML.

9.3. Experimentation Outcomes

The Data Scientist uses the Information-Driven Networking (IDN) tool, to define metadata
and means of communication to apply tailored controls to data intensive operations and
applications related with data intensive tasks according to specific requirements, by also
including:

• The identification of the end-to-end application objectives in terms of specifying KPIs
and criteria for optimal networking management and engineering (i.e. throughput,
packet loss, jitter);

• The definition of the constraints arising from the type of data to be processed (data
transfer, liveness, readiness among services) and the requirements of the application
(time criticality, security, privacy);

• The validation of the applied network controls by evaluating that the policies have
been correctly enforced and that resources are distributed among consumer
services/applications as requested.

Figure 18 – Mapping of Information-Driven Networking tool with BDS Use Cases.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 71 of 85 bigdatastack.eu

The IDN plays a supportive role to the components bringing the intelligence to the Data-
Driven infrastructure Management: the ADS Ranking & Deploy and the Dynamic
Orchestrator (DO). Furthermore, due to the late start of the development of this component
(according with the original plan), the IDN has not been engaged yet in the experimentation
carried out for those two components.

9.4. Implementation and Integration Highlights

The Information-Driven Networking component combines the Kubernetes Network
Policies22 to handle Ingress and Egress traffic in the cloud infrastructure at the Network and
the Transport Level with the Istio23 open source service mesh that transparently layers the
services / pods at the Service Layer according to the OSI Model. The service mesh is used to
describe the network of containerized microservices that interact in the BigDataStack
environment. As the project progresses and the service mesh grows in size and complexity,
it requires efficiency in service discovery, load balancing, failure recovery, metrics, and
monitoring.

In this direction, we deploy special sidecar proxies throughout the BigDataStack
environment which intercept all network communication between microservices. The key
capabilities include: i) the efficient traffic management, incorporating the rules
configuration and traffic routing which controls the traffic flows and API calls between
services / pods; and ii) the secure traffic management, providing the underlying secure
communication channel between services, which manages authentication, authorization,
and encryption.

9.5. Next Steps

In the proceeding time period, we will work in the direction to enrich the Information-
Driven Networking mechanisms and their experimentation with variable scenarios by
enforcing different policies in diverse application requirements and for multiple constraints
imposed by the data types, the time flexibility and the security constraints.

To achieve this, we will define a set of scenarios including simple cases (i.e. dropping all the
traffic) and complex cases (i.e. limiting traffic to an application).

The simple case includes to isolate traffic to a service from other pods. This includes pods
coming by the BigDataStack environment and external services as depicted in Figure 19.

22 https://kubernetes.io/docs/concepts/services-networking/network-policies/
23 https://istio.io

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://istio.io/

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 72 of 85 bigdatastack.eu

Figure 20 – Grant access to services that use the pod.

Figure 19. Traffic Isolation from internal and external pods.

The complex case includes the traffic restriction to a service by allowing connections only

through microservices that need to use it, as depicted in Figure 20.

Additionally, the use case of DANAOS will serve as a ground truth scenario to assess the

enforcement of time constrained policies as it has a set of real-time data processing

requirements. At the same time, the use case of Connected Consumer of ATOS WRL and

personalised Insurance Services of GFT will serve as a ground truth scenario to assess the

enforcement of security policies which preserve the privacy of the end user.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 73 of 85 bigdatastack.eu

10. Global Experimentation Outcomes

To support the development of the Data-Driven Infrastructure Management (DDIM) services
within BigDataStack, it is important to understand the impact of different configurable
parameters (such as CPU, Memory or application-specific factors) inherent to the
applications that the platform may need to deploy. This is because DDIM services such as
ADS-Ranking and the Dynamic Orchestrator need to make decisions about how to best set
those configurable parameters, such that QoS (Quality of Service) objectives are met, and at
minimal cost. In an ideal world, there would be enough time to perform a detailed analysis
of each possible application type that might be deployed, quantifying the impact of each
configurable. However, the universe of applications that can be deployed is so large that this
is not a realistic goal. Indeed, DockerHub, the largest public repository of containerized
applications currently holds over 2.8 million images. Instead, we opt to perform a deep-dive
analysis of the most complex of the BigDataStack use cases from a deployment perspective
(Connected Consumer), with the aim of identifying the main configurable parameters that
impact QoS, as well as broader lessons. By doing so, the observations that we make can
then be used to enhance the design and implementation of the DDIM services themselves.
Additionally, through our analysis, new ways to improve QoS for the use-case may also be
identified.

10.1. QoS Analysis in CC Use-Case

The Connected Consumer (CC) use case is a particularly suitable candidate for analysis, as it
spans both intensive batch-style computation (during model learning), in addition to real-
time streaming computation (serving recommendations to users). It also needs to tackle
challenges with variable data rates for the real-time setting, as request volume will vary
over time and can be impacted by external events (e.g. flash sales). As such, this use-case
utilises all the DDIM services, including ADS-Ranking, ADS-Deployment, Triple Monitoring,
the Dynamic Orchestrator, and more. Furthermore, as the aim of this use-case is to produce
state-of-the-art supervised models (including GPU-based deep learned models), it is
representative of a wide range of current applications that BigDataStack may need to deploy
and manage.

The following sections are dedicated to our deep dive analysis of this use-case, including
experiments examining how different deployments perform on cluster infrastructures in
terms of QoS. Moreover, as a result of this analysis, we also identified an avenue to enhance
QoS for this use-case over the state-of-the-art, which we also describe and report
performance results for here.24 We structure this section as follows. In Section 10.2, we
provide a short literature review into product recommendation and more specifically,
grocery product recommendation. Section 10.3 describes our methodology for evaluating
QoS for the use-case, in terms of datasets, metrics and data pre-processing performed. In
Section 10.4 we analyse the QoS of different grocery recommendation algorithms across
three datasets, representing the current-state-of-the-art. Section 10.5 describes the
weakness of these models and introduces a new model that we propose called VBCAR to
tackle these deficiencies. In Section 10.6 we compare the performance of VBCAR against the

24 We also recently published this enhancement, and as such we include the full research paper in Appendix A.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 74 of 85 bigdatastack.eu

state-of-the-art and discuss the trade-offs in terms of QoS that it brings. Finally, in Section
10.7 we provide an investigation into key configurables of state-of-the-art grocery
recommendation models that impact QoS, namely: embedding size, hidden layer size and
the data sample size.

10.2. Current Product Recommendation Systems

Grocery recommender systems are increasingly used by supermarkets and online shopping
platforms to assist their users in selecting and choosing products to purchase, as is the case
for the EROSKI use-case. The most significant difference between the grocery
recommendation task and other recommendation tasks, such as video recommendation
[16] and movie rating prediction [17], is that the basket contextual information is both very
common and important in grocery shopping scenarios. Most of the existing commonly used
techniques for recommender systems, for example, the matrix factorization (MF)-based
methods and the neural network (NN)-based methods, can be directly applied to solve the
grocery recommendation task.

A number of MF-based recommender systems have been proposed, which mainly focused
on modelling interactions between users and items as explicit feedback about those items
(i.e. rating scores) from users [16,17,18]. For example, a basic MF algorithm [17] encodes
the user-item explicit feedback as a rating matrix and predicts the rating scores of unseen
items for users by completing the matrix. Many sophisticated matrix factorization
techniques, such as Time Singular Value Decomposition [18], implicit Factorization Machines
(FM) [19] and context-aware FM [20], have been proposed to address both classical item
recommendation as well as more advanced scenarios, such as time-aware [18], implicit
feedback [19] and context-aware recommendation [20]. In the scenario of grocery
recommendation with implicit feedback, it is common practice to assign positive rating
values to those user-item pairs that have purchase records and negative rating values for
those that have zero purchases on record. These rating values can then be used to train
different recommendation models, including the aforementioned MF-based models.
Furthermore, the MF method that uses Bayesian personalized ranking optimisation (MF-
BPR) loss [16] has been shown to be effective for grocery recommendation. However, this
and similar matrix completion-based methods [16,17,21] have a significant limitation,
namely that they are unable to incorporate basket information (i.e. information about sets
of items bought together), limiting their effectiveness.

Recently, some prior works have started to apply neural networks to learn latent factors
between users and items, with the aim of better capturing non-linear relationships among
these interactions. For instance, the Neural Collaborative Filtering (NeuCF) [21] model is a
general framework that integrates deep learning into matrix factorization approaches using
implicit feedback. The attention mechanism was introduced by Chen et. al [22] to integrate
item- and component-level implicit feedback in multimedia recommendation. Additionally,
a lot of recurrent neural network (RNN) models have been applied to recommender systems
to better capture contextual information. For example, Manotumruksa et al. [23] applied
two gating RNNs, i.e. a Contextual Attention Gate (CAG) and Time- and Spatial-based Gates
(TSG), incorporating both time and geographical information for (venue) recommendation.
Meanwhile, Li et al. proposed a collaborative variational auto-encoder [24] that learns deep
latent representations from content data in an unsupervised manner, while also learning

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 75 of 85 bigdatastack.eu

implicit relationships between items and users from both content and ratings. More
recently, the Graph Neural Networks (GNNs) [25,26] that jointly learn network embeddings
integrating node information and topological structure from graph data, have been applied
into recommender systems to jointly model the user-user social graph and the user-item
graph for item recommendation [27 ,28].

Considering specifically the grocery product recommendation domain, state-of-the-art
neural network-based approaches have been recently proposed to learn latent
representations that incorporate the basket information to enhance the performance of
grocery recommendation [29,30,31,32]. Most notably, Triple2vec [26,30] is an effective
model that learns latent representations capturing the basket context by maximizing the
likelihood of reconstructing sampled triples, where each triple is constructed by the
previously observed two items co-occurring within the same basket of one user. This
approach is currently the state-of-the-art in grocery recommendation approaches and is the
natural choice for deployment for the EROSKI use-case. As such, we use Triple2vec in
addition to other more traditional MF approaches in this study.

10.3. Experimental Methodology

In this section we summarize our experimental setup for the grocery recommendation use-
case, in terms of datasets, metrics, baselines and any pre-processing techniques that we
apply.

Baselines: Among the existing product recommendation methods discussed above, we
choose three state-of-the-art methods, namely the MF-BPR [17], NeuCF [21] and Triple2vec
[30], for evaluation.

Datasets: We conduct experiments on three real-world grocery transaction datasets,
namely Instacart25, Tafeng and Dunnhumby26, which are public benchmark datasets in the
research community of grocery recommender systems. Due to the very large number of
interactions within the Instacart dataset, we use a 10% random sample in terms of users
and items to reduce training time. The statistics of these datasets are shown in Figure 21. Of
the three datasets, two contain item side information. In particular, the Instacart dataset
contains three types of item side information, where two types (‘aisle_id' and
‘department_id') are categorical data and (‘product name') is textual data. Meanwhile, the
Dunnhumby dataset contains four types of item side information, where two types
(Manufacturer and Department) are regarded as categorical data and two types
(Commodity Description and Sub Commodity Description) are textual data. The Tafeng
dataset does not have side information.

25 http://www.instacart.com/datasets/grocery-shopping-2017
26 http://www.dunnhumby.com/careers/engineering/sourcefiles

http://www.instacart.com/datasets/grocery-shopping-2017
http://www.dunnhumby.com/careers/engineering/sourcefiles

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 76 of 85 bigdatastack.eu

Figure 21 – Grocery recommendation datasets.

Pre-processing: All three datasets are subject to filtering to remove rare items and users
since they will not have enough associated interactions, in a similar way to previous works
[26,33]. In particular, any user that has purchased less than 30 items and/or has less than 10
baskets, is filtered out. Furthermore, any item that was purchased less than 20 times is
removed. For model evaluation, we split all the baskets for each of the three datasets into
training (80%) and test (20%) sub-sets based on time order. Depending on the model type,
we then may further split or sample the (80%) training sub-set.
Metrics: We treat product recommendation as an item ranking task (for each user). We
report two main metrics, namely NDCG@k and Recall@k, which are all standard ranking
evaluation metrics and widely used in recommender systems [16,17,18], as the metrics for
evaluating the effectiveness. We also evaluate the efficiency of each model based on the
running time, the consumption of memory, CPU and GPU. Recommendation algorithm
deployment is performed on a local cluster powered by GeForce RTX 2080Ti GPUs. To
provide cost estimates for each algorithm per dataset we calculate the cost for equivalent
hardware in commercial clouds. Indeed, based on current cloud pricing (Amazon Web
Services, EC2), we estimate that the cost for an equivalent machine in the cloud would be
around $0.75 per hour.

10.4. Product Recommendation QoS

We initially assess the QoS (effectiveness and efficiency) for state-of-the-art
recommendation methods (i.e. MF+BPR, NeuCF and Triple2vec) from the literature. Figure 22
shows the results of this comparison in terms of the next basket recommendation task on
the Dunnhumby, Tafeng and Instacart (10%) datasets. Note that we exclude some baselines
for the larger Instacart dataset due to excessive training time. We observe that the
Triple2vec model shows consistently better performance on NDCG@5 and Recall@5 metrics
in all our three datasets, compared with the MF+BPR and NeuCF models. In terms of the
efficiency, MF+BPR needs less running time for obtaining the recommendation result in
both the Dunnhumby and Tafeng datasets, while Triple2vec needs less running time in the
Instacart dataset. By comparing the prices and the recommendation performance, we
suggest that Triple2vec is the best algorithm in handling the grocery recommendation task
since no other baselines can outperform it in both effectiveness and efficiency.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 77 of 85 bigdatastack.eu

Figure 22 – Grocery recommendation QoS for current state-of-the-art algorithms.

10.5. Enhancing QoS (Proposing VBCAR)

The previous experiment provides us a strong conclusion on what recommendation
algorithm should be deployed for this use-case, i.e. Triple2vec. However, that algorithm has
a notable limitation, it is not able to capture side information (e.g. product categories or
descriptions), which are likely to be useful when recommending groceries. Hence, in order
to enhance QoS for grocery recommendation, we make modifications on the Triple2vec
model in terms of two aspects to improve performance. First, we extend the Triple2vec
model to the Bayesian situation and make the model to be able to learn distributional
representations. Second, we integrate the model with item side information to better
capture the item similarities among the learned embeddings.

In particular, given a grocery purchase history represented as:

with

being the sets of baskets, users and items respectively, Triple2vec and similar models first
sample a large number of triples

reflecting two items purchased by the same user in the same basket from historical grocery
shopping baskets. Triple2vec aims to learn the latent embedding for users and items to
predict the occurrence probability of these triples. Following the basic idea of word2vec
[34], one can treat these sampled triples as context windows and learn latent embeddings
by optimizing the likelihood of the triple samples:

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 78 of 85 bigdatastack.eu

which leads to the training objective of Triple2vec [30]. Here P(i | j, u), P(j | i, u) and P(u | i,
j) are the softmax formulations predicting the occurrence probability of a context entity
from the embeddings of two target entities, e.g.

where

are the latent representations of user u and items i and j. This skip-gram-based loss
objective is commonly trained with the negative sampling trick that uses the Noise
Contrastive Estimation (NCE) to approximate the softmax function [30].

We propose a new model, Variational Bayesian Context-Aware Representation (VBCAR) that

extends Triple2vec by assuming that both and are random variables. Instead of
optimizing the likelihood, VBCAR introduces a variational evidence lower bound of the triple
samples and maximizes this lower bound by the amortized inference [35,36]:

where KL is the Kullback-Leibler divergence and is the variational distribution of
the embedding, which can be factorized as Gaussian distributions of the mean-field form.
These two variational distributions are independent and can be inferred by two different
encoder networks with the item key representations of users and items as input
respectively [26]:

where , , and are parameters of their embedding distributions inferred by
the fully connected layers (FC). Since encoding items and users using a one-hot identity
representation is computationally expensive for large datasets, our model uses randomly
generated keys27 for items and users. For ease of reference, we denote these key-based
representations of each item and user as the Item Key and User Key representations,
respectively. Figure 23 (a) provides an overview of our VBCAR model.

27 A key is a random initialization from the standard normal distribution to represent the
input feature.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 79 of 85 bigdatastack.eu

Figure 23 – Representation Learning for VBCAR with Item Side information.

Besides the Item Key representation of items, we also adopt three feature extraction
methods for pre-processing the item description/name into vectoral representations. Figure

23 (b) shows the integration process of the side information. The three feature extraction
techniques are summarized below:

• One-hot (One): Since encoding the full item description into one-hot category
representations would be prohibitively expensive due to the large vocabulary size, we
instead resort to encoding only the high frequency words from the training triples into
one-hot representations.

• Word2vec (W2c) [34]: Word2vec is one of the most popular methods to learn word
embeddings using neural networks. We use the Google pre-trained word2vec model28 to
obtain embeddings for all the words appearing in the item descriptions. We use the
mean vector of these word embeddings to construct the product description
embedding.

• BERT [37]: We also use the Bidirectional Encoder Representations from Transformers
(BERT), a popular pre-trained language model for encoding words and sentences into
embeddings. We use the DistilBert29 from HuggingFace, which is a smaller and faster
architecture based on BERT.

In our later experiments, we also combine (concatenate) different item representations
together to evaluate the impact each has on product recommendation performance.

10.6. VBCAR and VBCAR-S Performance

We assess the QoS provided by VBCAR and our VBCAR-S model by comparing with
Triple2vec. Figure 24 shows the results of this comparison in terms of the next basket
recommendation task on our datasets.

28 http://code.google.com/archive/p/word2vec/
29 http://github.com/huggingface/pytorch-transformers

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 80 of 85 bigdatastack.eu

Figure 24 – Quality of our new VBCAR model in comparison to Triple2vec.

We can observe from Figure 24 that both the VBCAR and VBCAR-S models show better
performances than Triple2vec in almost all the metrics and all the datasets, which validates
the effectiveness of these models. Furthermore, our VBCAR-S model when combining the
item keys with encoded product name/commodity descriptions obtained the best
performance over all evaluation metrics and datasets. Moreover, the performance
improvements observed for VBCAR-S over the baseline methods are statistically significant
(paired t-test p < 0.05) in both datasets. This shows that incorporating item side information
can enhance the performance of state-of-the-art grocery recommendation. However, it is
notable that these gains in recommendation performance comes at a cost. The time needed
to train the VBCAR models is over 10x-15x that of Triple2vec, due to the need to extract and
train based on the additional features. Hence, if time or cost are critical considerations for
the application owner, it may be advisable to still use the less effective Triple2vec models.

10.7. Analysis of Use-Case-Specific Factors

Finally, we analyze the impact of key configurables of Triple2vec and VBCAR, namely the
embedding size, the hidden layer size and the number of sampled triples on both the
effectiveness and efficiency. Figure 25 summarizes the experimental results.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 81 of 85 bigdatastack.eu

Figure 25 – Analysis of grocery recommendation configurables.

i. The Effect of Embedding Size: We report the performance of both the VBCAR and
Triple2vec models in Figure 25 (a) by varying the embedding size. We can observe that
increasing the embedding size substantially enhances the performance of
recommendation (in terms of NDCG@10 and Precision@10) for both models.
Indeed, the highest effectiveness observed for VBCAR used an embedding size of
150, while the highest effectiveness of Triple2vec was observed when using an
embedding size is 120.

ii. The Effect of Hidden Layer Size: As both VBCAR and VBCAR+S models infer
embeddings of nodes and attributes by MLP with the fixed dimensional hidden
layers, we analyse the performance of both the VBCAR and VBCAR+S models in Figure

25 (b) by testing different values for hidden layer size. We can observe that
increasing the hidden layer size substantially enhances the performance of
recommendation (in terms of NDCG@10 and Precision@10) for both the VBCAR
model and VBCAR+S model.

iii. The Effect of Triple Sample Size: Figure 25 (c-d) reports the effect of the number of
triples sampled for training on the recommendation performance and running time.
As the number of triples increase from 0.5 million to 2.5 million, we can clearly see
that the performance of Triple2vec improves, but the changes of the NDCG@10 and
Precision@10 performance in both the VBCAR and VBCAR+S model are not nearly as
large. In particular, both the VBCAR and VBCAR+S model trained with only 0.5 million

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 82 of 85 bigdatastack.eu

sampled triples can outperform Triple2vec trained with 2.5 million sampled triples,
which means our VBCAR model with limited sample size as input can learn more
expressive representations, result in better improvement compared with Triple2vec.
In Figure 25 (d), we can observe that the running time of all the three models
increases as the number of triples increases, Triple2vec is the most efficient model
under all the triple size settings, while in contrast the VBCAR+S model is the most
expensive to train. This result can be explained by the fact that VBCAR has more
parameters (hidden layers) needed to be learned than Triple2vec. Meanwhile,
VBCAR+S also has additional input features derived from the item side information
which need to be encoded.

In general, we can see from these results that each of these three configurables, which are
particular to this type of recommendation algorithm can have a large and significant impact
on grocery recommendation QoS.

10.8. Study Summary and Lessons Learned

In this section we have analysed the EROSKI grocery recommendation use-case, with the
aim of identifying the main configurables that impact QoS, as well as broader lessons. We
first analysed the literature to find the current state-of-the-art approaches in grocery
recommendation and evaluated those models over three datasets to determine the QoS
that they provide and at what cost. From these results, we conclude that the Triple2vec
model is both the most effective, and the most efficient for use on large datasets, and hence
is the recommended choice for deployment for this use-case.

However, we also noted that this model has a significant limitation, in that it is not able to
encode side information, such as product category or descriptions. As such, we also
proposed two new models, namely VBCAR and VBCAR+S, which aim at tackling this issue.
Through analysis of this new model, we show that significantly improved recommendation
accuracy is possible, although this comes at a notable additional cost in training time and
hence monetary cost when using cloud infrastructures.

Finally, we analysed the main configurables that are specific to Triple2vec and VBCAR(+S).
Through this analysis, we demonstrated that the configurables Embedding size, Hidden
Layer Size and Triple Sample Size have a large and significant impact on grocery
recommendation QoS. Considering this outcome from the perspective of the DDIM services,
this shows that simply considering generic configurables such as CPU and memory allocation
for an application will not be enough to predict application QoS. Hence, we recommend that
models such as those used by ADS-Ranking and the Dynamic Orchestrator should consider
application-specific configurables as well during their operation where possible.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 83 of 85 bigdatastack.eu

11. References

[1] Network Policies in Kubernetes. Available Online:
https://kubernetes.io/docs/concepts/services-networking/network-policies/

[2] Project Calico. Available Online: https://www.projectcalico.org/

[3] Istio. Available Online: https://istio.io/

[4] de Vaulx, Frederic J., Eric D. Simmon, and Robert B. Bohn (2018). “Cloud computing
service metrics description.” Special Publication (NIST SP)-500-307. 2018.

[5] William Voorsluys, James Broberg, Srikumar Venugopal, Rajkumar Buyya, Martin Gilje
Jaatun, Gansen Zhao, Chunming Rong (2009). “Cost of Virtual Machine Live Migration in
Clouds: A Performance Evaluation”, Cloud Computing, Springer Berlin Heidelberg, 2009, P
254-265

[6] D. Guyon, A. Orgerie, C. Morin and D. Agarwal (2017). “How Much Energy Can Green
HPC Cloud Users Save?” in 25th Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), St. Petersburg, 2017, pp. 416-420.

[7] Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., & Valduriez, P. (2012).
“Streamcloud: An elastic and scalable data streaming system.” IEEE Transactions on Parallel
and Distributed Systems, pp. 2351-2365.

[8] H. Rui et al. (2014). “Enabling cost-aware and adaptive elasticity of multi-tier cloud
applications.” Future Generation Computer Systems, pp. 82-98.

[9] Kalervo and Jaana. (2002). “Cumulated gain-based evaluation of IR techniques.” ACM
Transactions on Information Systems (TOIS), pp. 422--446.

[10] L. Tie-Yan. (2009). “Learning to rank for information retrieval.” Foundations and Trends
in Information Retrieval, pp. 225-331.

[11] M. Ferdman et al. (2012). “Clearing the clouds: a study of emerging scale-out workloads
on modern hardware.” ACM SIGPLAN Notices, pp. 37-48. ACM.

[12] Raschke, R. (2010). “Process-based view of agility: The value contribution of IT and the
effects on process outcomes.” International Journal of Accounting Information Systems,
11(4), pp. 297-313.

[13] Salton and McGill. (1986). “Introduction to modern information retrieval.” McGraw-Hill,
Inc.

[14] Sergey and Christian. (2015). “Batch normalization: Accelerating deep network training
by reducing internal covariate shift.” arXiv preprint.

[15] Z. Jia et al. (2013). “Characterizing data analysis workloads in data centers.” IEEE
International Symposium on Workload Characterization (IISWC), pp. 66-76. IEEE.

[16] Andriy Mnih and Ruslan R Salakhutdinov. Probabilistic matrix factorization. In
Advances in Neural Information Processing Systems, pages 1257–1264, 2008.

[17] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of the 25th
conference on uncertainty in artificial intelligence, pages 452–461, 2009.

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 84 of 85 bigdatastack.eu

[18] Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings of the
15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
447–456, 2009.

[19] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In 2008 Eighth IEEE International Conference on Data Mining, pages 263–272,
2008.

[20] Steffen Rendle, Zeno Gantner, Christoph Freudenthaler, and Lars Schmidt-Thieme. Fast
context-aware recommendations with factorization machines. In Proceedings of the 34th
international ACM SIGIR conference on Research and development in Information Retrieval,
pages 635–644, 2011.

[21] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference on World Wide
Web, pages 173–182, 2017.

[22] Jingyuan Chen, Hanwang Zhang, Xiangnan He, Liqiang Nie, Wei Liu, and Tat-Seng Chua.
Attentive collaborative filtering: Multimedia recommendation with item-and component-
level attention. In Proceedings of the 40th International ACM SIGIR conference on Research
and Development in Information Retrieval, pages 335–344, 2017.

[23] Jarana Manotumruksa, Craig Macdonald, and Iadh Ounis. A contextual attention
recurrent architecture for context-aware venue recommendation. In Proceedings of the 41st
International ACM SIGIR Conference on Research & Development in Information Retrieval,
pages 555–564, 2018.

[24] Xiaopeng Li and James She. Collaborative variational autoencoder for recommender
systems. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 305–314, 2017.

[25] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. In International Conference on Learning Representations, 2017.

[26] Zaiqiao Meng, Shangsong Liang, Hongyan Bao, and Xiangliang Zhang. Co-embedding
attributed networks. In Proceedings of the 12th ACM International Conference on Web
Search and Data Mining, pages 393–401, 2019.

[27] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph
neural networks for social recommendation. In The World Wide Web Conference, pages
417–426, 2019.

[28] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph
collaborative filtering. In Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, 2019.

[29] Duc Trong Le, Hady W Lauw, and Yuan Fang. Basket-sensitive personalized item
recommendation. In Proceedings of the 26th International Joint Conference on Artifical
Intelligence, pages 2060–2066, 2017.

[30] Mengting Wan, Di Wang, Jie Liu, Paul Bennett, and Julian McAuley. Representing and
recommending shopping baskets with complementarity compatibility and loyalty. In

 Project No 779747 (BigDataStack)

 D3.2 – WP 3 Scientific Report and Prototype Description – Y2

 Date: 29.11.2019

 Dissemination Level: PU

 page 85 of 85 bigdatastack.eu

Proceedings of the 27th ACM International Conference on Information and Knowledge
Management, pages 1133–1142, 2018.

[31] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric, Narayan Bhamidipati, Jaikit
Savla, Varun Bhagwan, and Doug Sharp. E-commerce in your inbox: Product
recommendations at scale. In Proceedings of the 21st ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1809–1818, 2015.

[32] Zaiqiao Meng, Richard McCreadie, Craig Macdonald, and Iadh Ounis. Variational
bayesian context-aware representation for grocery recommendation. In Workshop on
Context-Aware Recommender Systems, 2019.

[33] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing
personalized markov chains for next-basket recommendation. In Proceedings of the 19th
International Conference on World Wide Web, pages 811–820, 2010.

[34] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems, pages 3111–3119, 2013.

[35] David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

[36] Rui Shu, Hung H Bui, Shengjia Zhao, Mykel J Kochenderfer, and Stefano Ermon.
Amortized inference regularization. In Advances in Neural Information Processing Systems,
pages 4393–4402, 2018.

[37] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv:1810.04805, 2018.

[38] Mossalam, H., Assael, Y. M., Roijers, D. M., & Whiteson, S. (2016). Multi-objective deep
reinforcement learning. arXiv preprint arXiv:1610.02707.
[39] Mao, H., Alizadeh, M., Menache, I., & Kandula, S. (2016, November). Resource
management with deep reinforcement learning. In Proceedings of the 15th ACM Workshop
on Hot Topics in Networks (pp. 50-56). ACM.
[40] Mao, H., Netravali, R., & Alizadeh, M. (2017, August). Neural adaptive video streaming
with pensieve. In Proceedings of the Conference of the ACM Special Interest Group on Data
Communication (pp. 197-210). ACM.
[41] Bu, X., Rao, J., & Xu, C. Z. (2009, June). A reinforcement learning approach to online
web systems auto-configuration. In 2009 29th IEEE International Conference on Distributed
Computing Systems (pp. 2-11). IEEE.
[42] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., &
Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

[43] Breakout-v0 – Openai gym. https://gym.openai.com/envs/Breakout-v0/

[44] Fadel Argerich, M., Cheng, B., & Fürst, J. (2019). Reinforcement Learning based
Orchestration for Elastic Services. arXiv preprint arXiv:1904.12676.

https://gym.openai.com/envs/Breakout-v0/

