

Panel Data Methods and Applications

Online Course DAY2 - November 20th, 2020

This project is funded by the European Union under Horizon2020 Research and Innovation Programme Grant Agreement n° 824091

Introduction to VICO

- VICO contains geographical, industry and accounting information on companies:
 - Founded starting from 1/1/1988
 - Which have received at least 1 VC investment starting from 1/1/1998
 - Operating in seven EU27 countries + United Kingdom + Israel
- Strengths:
 - Extent of information gathered
 - Overall number of companies: 24,238
 - Country coverage
 - Information on 8,568 distinct investors

Units and definition of observations

- Data can be broadly classified as:
 - Company-level data
 - General company information
 - Accounting data
 - Investor-level data
 - Investment-level data (deal specific)

Company-level data General company information

- Company ID (Company ID code, Company Name)
- Address (e.g. Nation, City, Zip Code, NUTs, FUAs, Lat, Long)
- Industry classification (e.g. NACE Rev. 2 codes, NACE main section)
- Year of incorporation
- Status (active, listed, acquired, bankrupt)

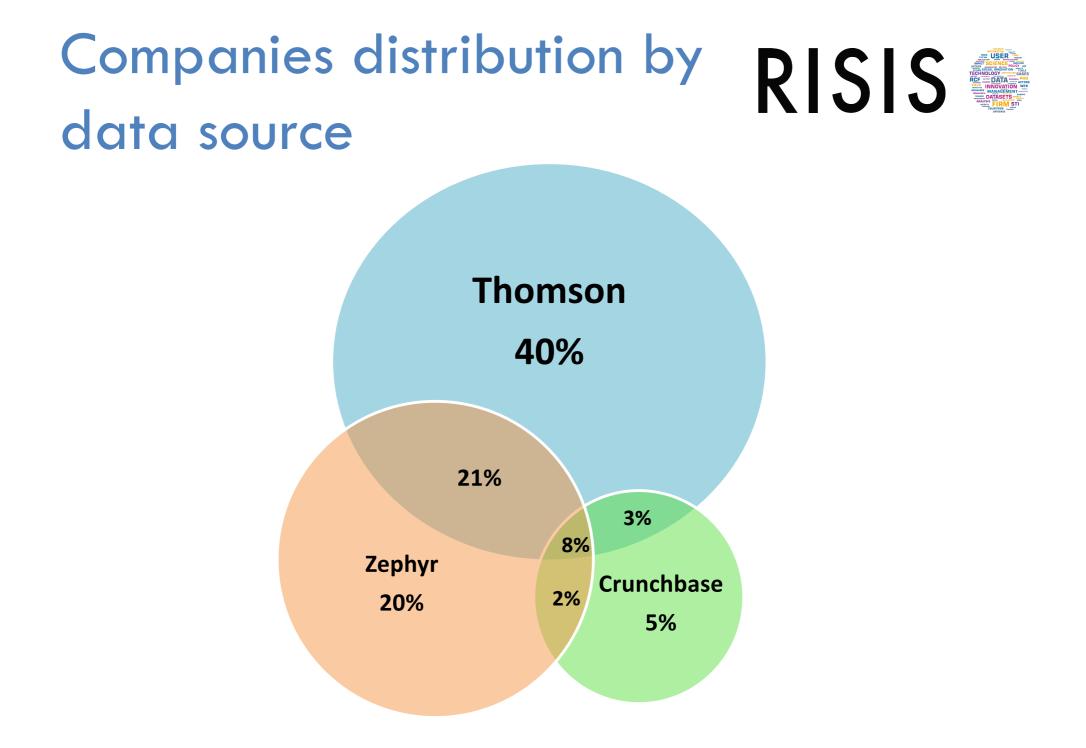
Company-level data Accounting data

- Income statement (e.g Turnover, EBITDA, Net profit)
- Balance sheet (e.g. Total assets, Shareholder funds, Debt)
- Number of employees

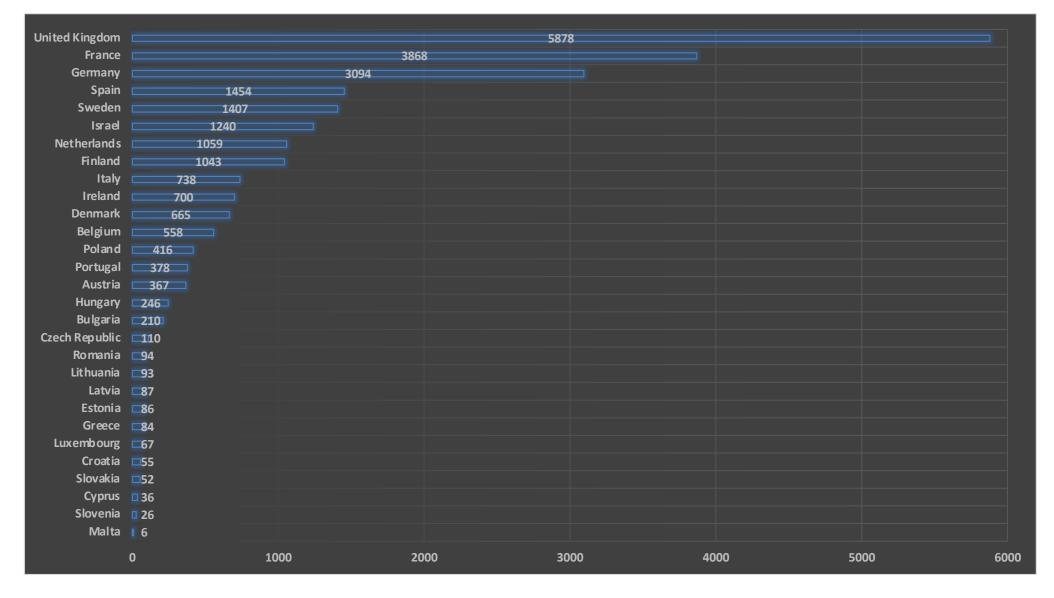
Investor-level data

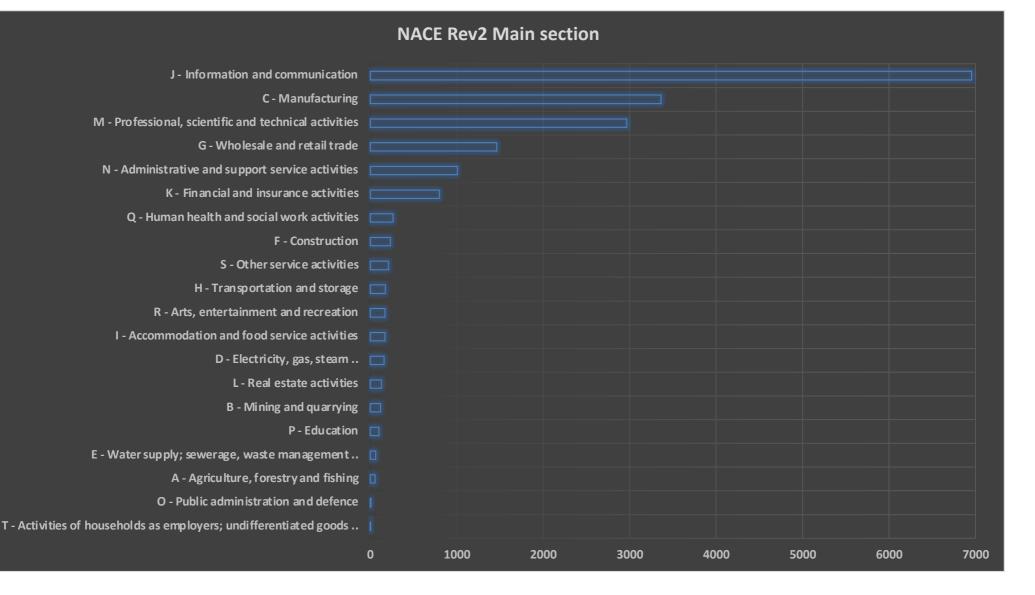
- Investor ID (Investor ID code, Investor Name)
- Address (e.g. Nation, City, Zip Code, NUTs, FUAs, Lat, Long)
- Type of investor (Independent VC, Corporate VC, Bank-affiliated VC, Governmental VC; BA; Crowdfunding; Other)
- Year of incorporation of VC management company
- Industry classification (e.g. NACE Rev. 2 codes, NACE main section)

Investment-level data Deal-specific information

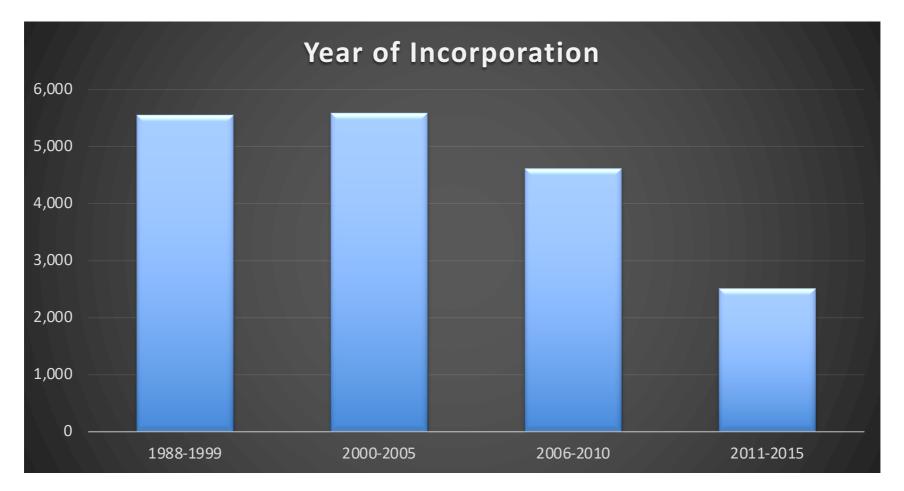

- Date of the investment
- Round number
- Identity of investors involved in the deal
- Total amount invested in the round

	CompanyID	RoundNumber	InvestorID	InvestorType	d_Undiscol~r	
1	VIC01	1	VICOInvestor02026	IVC		
2	VIC010	1	VICOInvestor01211	IVC	•	
3	VIC010	2	VICOInvestor01211	IVC	•	
4	VIC010	3			1	
5	VIC010	4	VICOInvestor01394	BVC	•	
6	VIC010	4	VICOInvestor01211	IVC	•	
7	VIC0100	1	VICOInvestor06246	IVC	•	
8	VIC01000	1			1	
9	VIC01000	1	VICOInvestor08215	IVC	-	
10	VIC010000	1	VICOInvestor08131	IVC	•	
11	VIC010001	1	VICOInvestor01565	IVC	•	
12	VIC010002	1	VICOInvestor01279	IVC	-	
13	VIC010002	2	VICOInvestor01279	IVC	•	
14	VIC010002	3			1	
15	VIC010002	4	VICOInvestor01279	IVC	-	
16	VIC010003	1	VICOInvestor08448	BVC	•	
17	VIC010004	1	VICOInvestor03328	IVC	•	
18	VIC010004	2	VICOInvestor07545	IVC	•	
19	VIC010004	2			1	
20	VIC010004	3	VICOInvestor07545	IVC	•	
21	VIC010004	3	VICOInvestor03657	IVC	•	
22	VIC010004	3	VICOInvestor03328	IVC	•	
23	VIC010004	3	VICOInvestor03640	BVC	•	
24	VIC010005	1	VICOInvestor00731	IVC	•	
25	VIC010007	1	VICOInvestor00699	IVC	•	

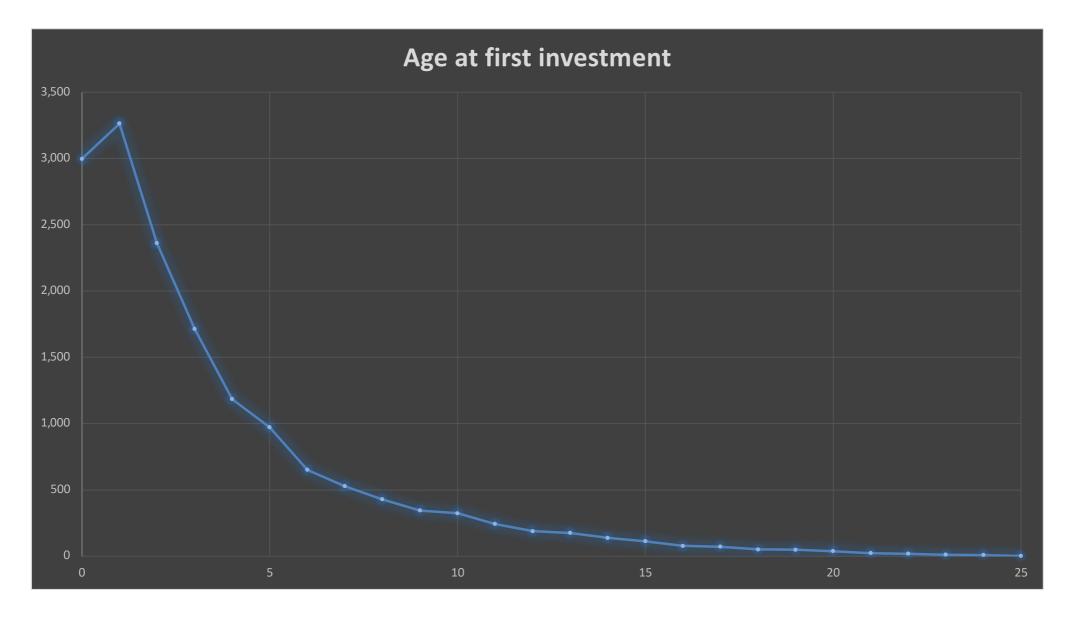

Data sources


- Data are gathered from **3 source databases**:
 - Thomson Eikon
 - BvD Zephyr
 - Crunchbase
- We defined a unique list of companies to be included in VICO by merging information on companies that were recorded in the 3 source databases
 - Companies'/investors' names were disambiguated through fuzzy matching and manual checks
- Additional accounting information was collected from **BvD Orbis database**
 - Accounting data are available for 18,165 companies (75% of the sample) from 2005 to 2019

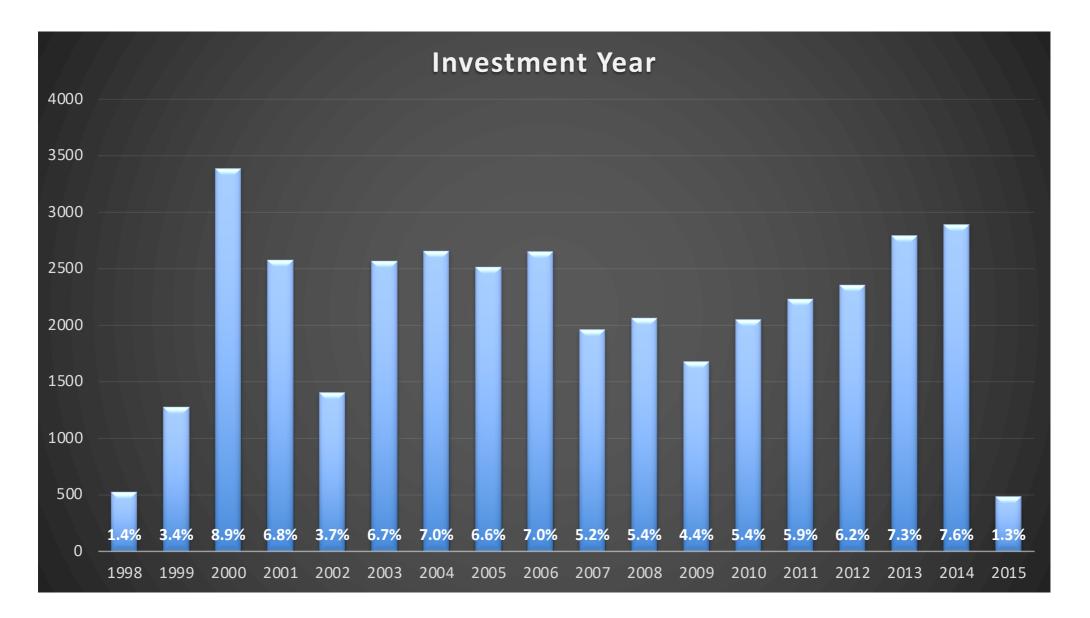
Company distribution by RISIS Country

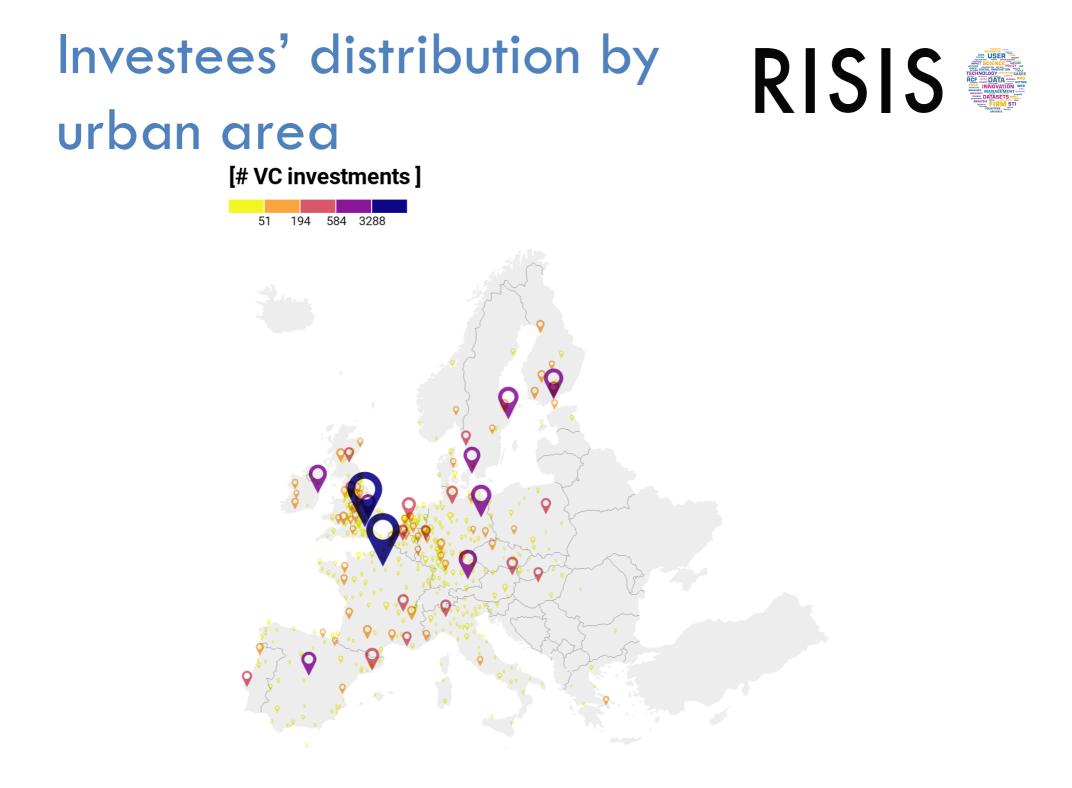


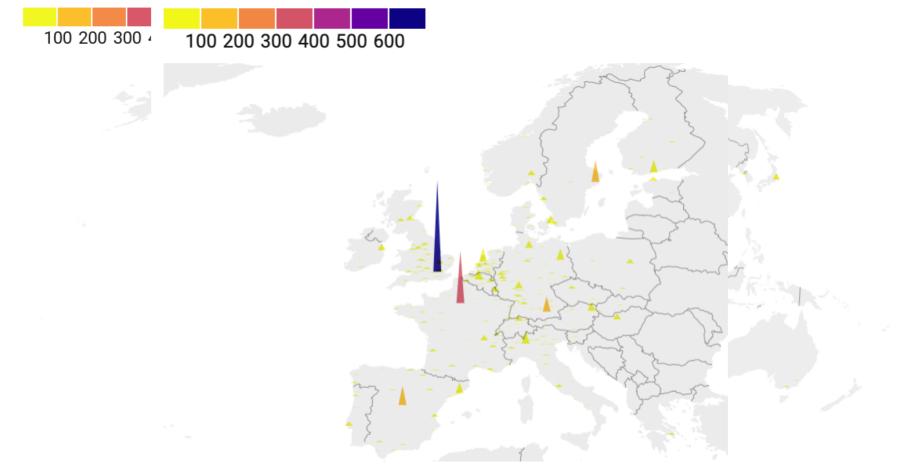
Company distribution by industry

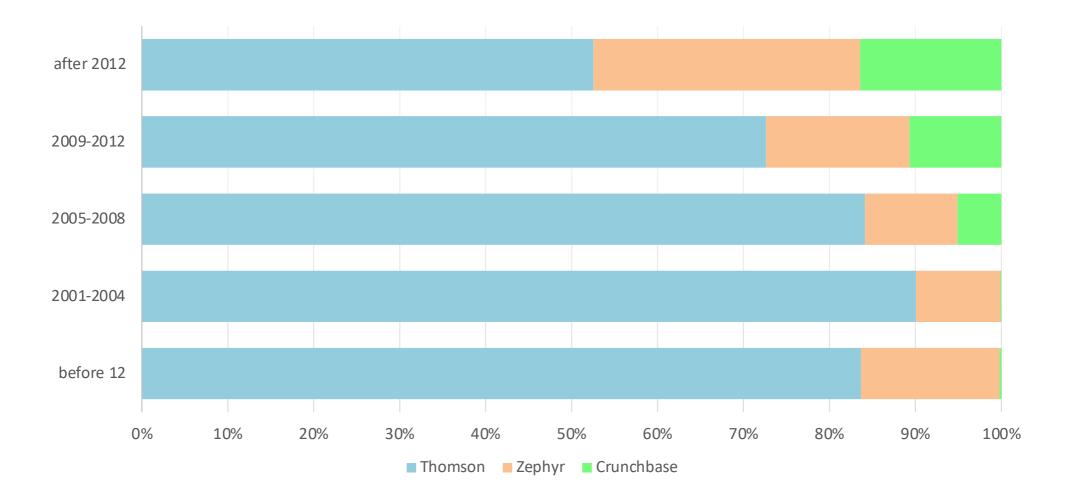

RISIS

Company distribution by age


RISIS


Company distribution by age at RISIS the time of first investment




Investors distribution by urban area

[# VC inv [# VC investors]



Created with Datawrapper

Investments by investment RISIS vear and data source

Investments by company's RISIS

Thomson Zephyr Crunchbase

 To get access to the VICO dataset you can register to the RISIS Portal at this link and present a project proposal:

https://rcf.risis2.eu/datasets

Panel Data in STATA

Aim of analysis

- The aim of our analysis is to study the performance of VC-backed companies after receiving VC investment
- We employ the VICO panel dataset
- Which performance are we interested in?
 - Turnover/sales growth
 - Employees growth
 - Total assets growth

Sample from VICO

- We will use a sample of data extracted from VICO:
 - Companies receiving first VC investment within 10 years since incorporation
 - With available accounting information
 - Matched with a control sample of non-VC backed companies
- To build the control sample 1-to-1 Propensity Score Matching was applied on a set of a priori firm's characteristics:
 - Country, region
 - Industry
 - Age at the time of first VC investment
 - Turnover at the time of first VC investment
- 2,850 VC backed + 2,850 non-VC backed firms

Sample from VICO

			VC	
I	Total	1	0	Country
i	1,785	915	870	France
medium-lo	811	393	418	United Kingdom
R&D and Engi	640	314	326	Germany
-	618	312	306	Spain
high-tech manu	494	248	246	Sweden
Medical/Health,	421	229	192	Finland
	252	117	135	Italy
Biotec	93	46	47	Bulgaria
	84	41	43	Portugal
	70	33	37	Hungary
	65	31	34	Poland
	63	32	31	Belgium
	47	22	25	Latvia
	43	20	23	Estonia
VC_h	29	11	18	Romania
ve_n	26	11	15	Austria
	26	13	13	Denmark
	26	13	13	Ireland
	25	11	14	Netherlands
	22	12	10	Czech Republic
	16	7	9	Lithuania
	12	5	7	Croatia
	12	6	6	Slovakia
	8	3	5	Luxembourg
	4	2	2	Greece
	4	1	3	Malta
	4	2	2	Slovenia
	5,700	2,850	2,850	Total

	I	VC		
Total	Industry	0	1	Total
1,785	internet	986	1,002	1,988
811	medium-low tech	889	895	1,784
640	R&D and Engineering	344	357	701
618 494	high-tech manufactu	269	246	515
494	Medical/Health/Life	145	142	287
252	media	123	117	240
93	Biotechnology	94	91	185
84		_		
70	Total	2,850	2,850	5,700
65	locat	2,000	2,000	2,7.00
63				
47				
43				
29	VC hub top	VC		

VC_hub_top	VC		
20F	0	1	Total
0	1,343	1,322	2,665
1	1,507	1,528	3,035
Total	2,850	2,850	5,700

Sample from VICO

ttest age, by(VC)

Two-sample	t	test	with	equal	variances
iwo bumpee			W T C II	cquuc	variation

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0 1	2,850 2,842	1.369825 1.380014	.0499348 .047641	2.665788 2.539764	1.271913 1.2866	1.467737 1.473429
combined	5,692	1.374912	.0345071	2.603403	1.307265	1.442559
diff		0101895	.0690203		1454956	.1251165
diff = Ho: diff =	= mean(0) = 0	- mean(1)		degrees	t of freedom	
	iff < 0) = 0.4413	Pr(Ha: diff != T > t) =	-		iff > 0 :) = 0.5587

Econometric specification RISIS

 $\text{Ln Growth}_{i,t} = a_0 + a_1 \text{Ln Size}_{i,t-1} + a_2 \text{Ln Age}_{i,t} + \mathbf{a_3} \mathbf{VC}_{i,t-1} + \mathbf{C}_i + \mathbf{S}_i + \mathbf{T}_i + \alpha_i + u_{it}$

Growth_{i,t} is either sales, employees, assets growth

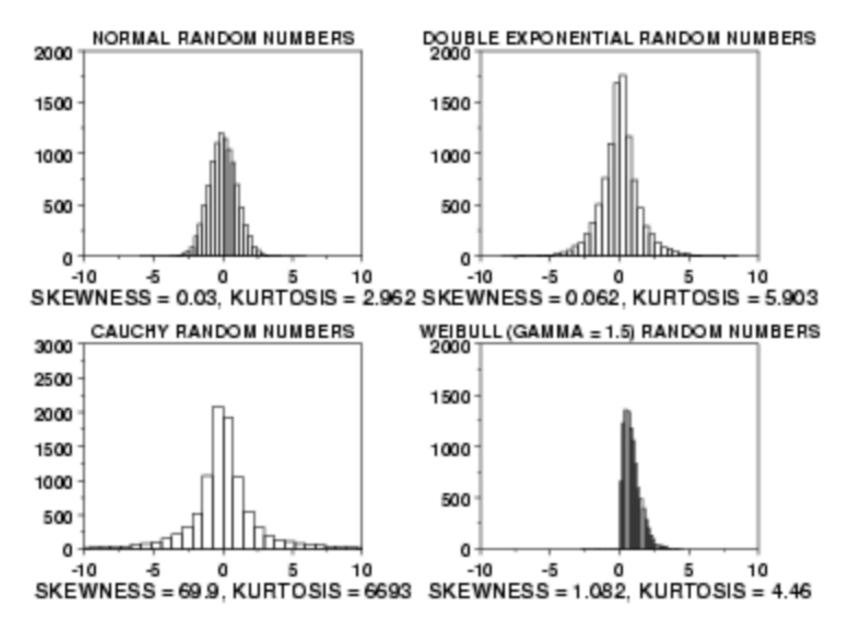
 $Size_{i,t-1}$ is either sales, employees, assets in the prior period

$VC_{i,t-1}$ is a dummy variable that switch permanently from 0 to 1 in the year of receipt of the first round of VC

C_i are country dummies

 \boldsymbol{S}_i are industry dummies

- T_i are year dummies
- α_i is the unobserved entity-specific time-constant error term
- u_{it} is the idiosyncratic error term


Panel data

- We focus on three techniques to analyze panel data
 - (Pooled OLS)
 - Fixed effects
 - Random effects
 - Instrumental variables regression
- Before starting with any analysis, it is important to explore the data!

sum, hist

Treatment of outliers

- Trimming means discarding values at the tails of the distribution.
 That is, a percentage of the lowest and (an equal percentage of) the highest values of a variable are removed from the data
- Winsorizing: the values at the tails of the distribution are not removed, but are recoded to less extreme values
 - winsor varname, gen(newvar) h(#)
 - winsor varname, gen(newvar) p(#)
- Retain the outliers

[1.1]
$$\overline{x}_{..} = \frac{1}{NT} \left(\sum_{i=1}^{N} \sum_{t=1}^{T} x_{it} \right)$$
 (media *overall*);

[1.2]
$$\overline{x}_{i} = \frac{1}{N} \left[\sum_{i=1}^{N} \left(\frac{1}{T} \sum_{t=1}^{T} x_{it} \right) \right]$$
 (media *between*);

[1.3]
$$\overline{x}_{t} = \frac{1}{T} \left[\sum_{t=1}^{T} \left(\frac{1}{N} \sum_{i=1}^{N} x_{it} \right) \right]$$
 (media within);

[1.4]
$$\sqrt{\frac{1}{NT-1}\sum_{i=1}^{N}\sum_{t=1}^{T}(x_{it}-\overline{x}_{..})^2}$$
 (deviatione standard *overall*);

[1.5]
$$\sqrt{\frac{1}{N-1}\sum_{i=1}^{N} (x_{i} - \overline{x}_{i})^2}$$
 (deviatione standard *between*);

[1.6]
$$\sqrt{\frac{1}{T-1}\sum_{t=1}^{T} (x_{t} - \overline{x}_{t})^2}$$
 (deviatione standard *within*).

xtsum

xtsum – example

id	score	\bar{X}	s
1	70	70	0
1	70	10	0
2	70	80	14.14214
2	90		
3 3	90 30	60	42.42641
3	30		
Mean	70	70	18.85618

. xtsum score

Variabl	e	Mean	Std. Dev.	Min	Max	Observ	vations
score	overall between within	70	21.9089 10 20	30 60 40	90 80 100∞	N = n = T =	6 3 2

xtsum – example

i	x_{it}	$ar{x}_i$	$x_{it} - ar{x}_i$	$x_{it} - \bar{x}_i + \bar{\bar{x}}$
1	70	70	0	70
1	70	70	0	70
2	70	80	-10	60.
2	90	80	10	80
3	90	60	30	100
3	30	00	-30	40
Mean	70	70	0	70

. xtsum score

Variabl	e	Mean	Std. Dev.	Min	Max	Observ	vations
score	overall between within	70	21.9089 10 20	30 60 40	90 80 100⊠	N = n = T =	6 3 2

9 December 2020

Fixed Effect (FE) model

• Standard equation for FE model is as follows:

$$Y_{it} = \beta_1 X_{it} + \underbrace{\alpha_i + u_{it}}_{\varepsilon_{it}}$$

• Where:

- Y_{it} is the dependent variable
- X_{it} is the independent variable
- β_1 is the coefficient for the independent variable
- α_i is the unobserved entity-specific time-constant error term. It can be correlated with X_{it}
- u_{it} is the idiosyncratic error term that varies across individuals and time. It is assumed to be uncorrelated with X_{it}

Fixed Effect (FE) model RISIS

- Ideally, if we could include in the econometric specification a dummy variable for each entity the unobserved entity-specific heterogeneity would be controlled for with a simple OLS regression
- The equation for the FE model would become (Least Squares Dummy Variables LSDV - estimator):

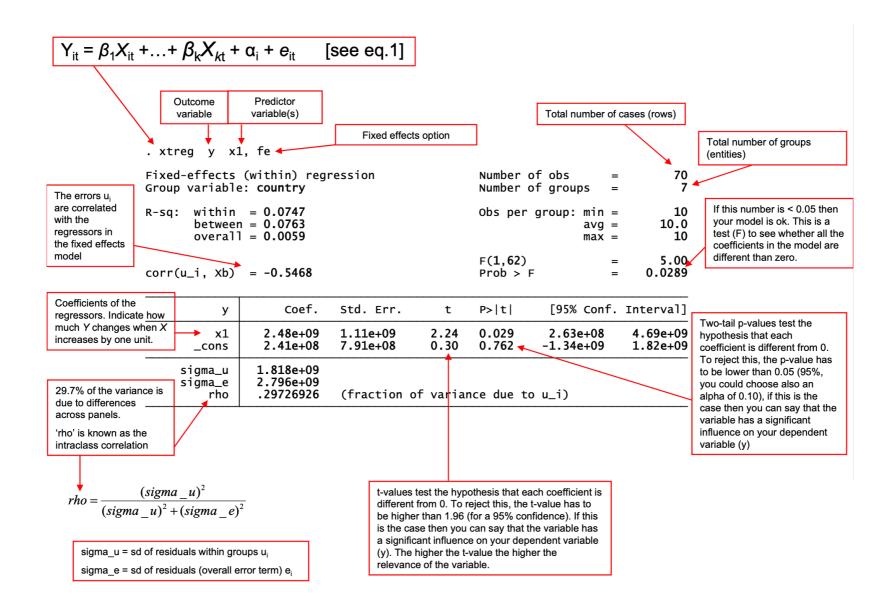
$$Y_{it} = \beta_1 X_{it} + \alpha_1 + \alpha_2 D_2 + \dots + \alpha_N D_N + u_{it}$$

 However, when T is small and N is large this model cannot be estimated

Fixed Effect (FE) model

- Model to be estimated: $Y_{it} = \beta_1 X_{it} + \alpha_i + u_{it}$
- Entity specific means over t:

$$Y_{it} = \beta_1 X_{it} + \alpha_i + u_{it}$$
$$\overline{Y}_i = \beta_1 \overline{X}_i + \alpha_i + \overline{u}_{it}$$


RISIS

• Within transformation ('demeaning' the data):

$$Y_{it} - \overline{Y}_i = \beta_1 (X_{it} - \overline{X}_i) + (u_{it} - \overline{u}_{it})$$

• This way **FE models control for all time invariant differences between the entities (by eliminating** α_i), so the estimated coefficients are not biased because of unobserved time-invariant heterogeneity (*xtreg, fe in* STATA)

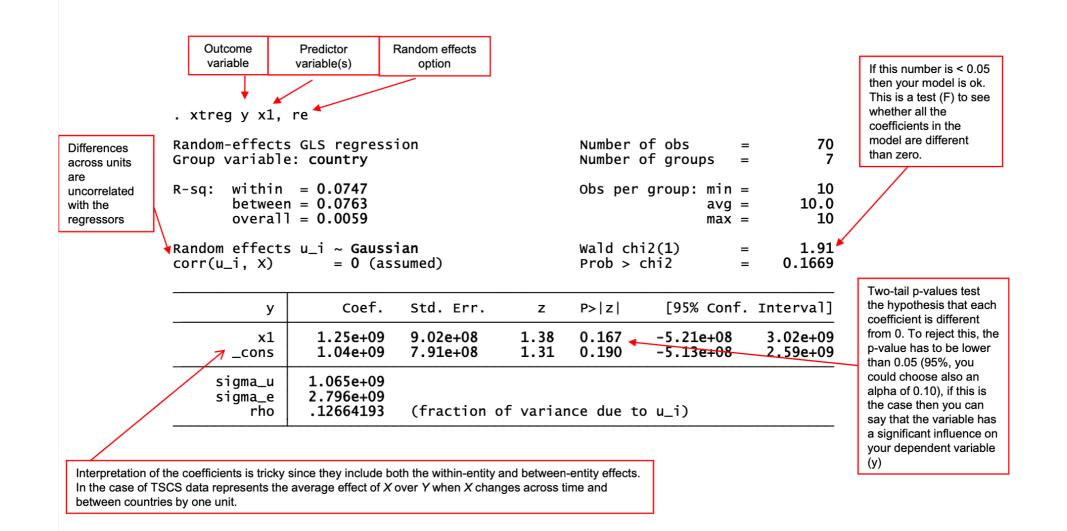
Random Effect (RE) model RISIS

• Standard equation for RE model is as follows:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \underbrace{\alpha_i + u_{it}}_{\varepsilon_{it}}$$

- Where:
 - Y_{it} is the dependent variable
 - X_{it} is the independent variable
 - eta_1 is the coefficient for the independent variable
 - eta_0 is the intercept
 - \mathcal{E}_{it} is the error term, disaggregated in the two components α_i and u_{it}
- Key assumption: α_i are i.i.d. random-effects not correlated to X_{it}

Random Effect (RE) model RISIS


• Standard equation for RE model is as follows:

$$Y_{it} = \beta_0 + \beta_1 X_{it} + \underbrace{\alpha_i + u_{it}}_{\varepsilon_{it}}$$

- $E(\varepsilon_{it}) = 0$
- $Var(\varepsilon_{it}) = Var(\alpha_i) + Var(u_{it})$, (sum of within and between component variances)
- If $Var(\alpha_i) = 0$ then $Var(\varepsilon_{it}) = Var(u_{it})$, and there is no difference between the pooled regression model and the RE model

→ Breusch-Pagan test

Random effects – STATA output

RISIS

Statistical tests sum-up

FE vs. OLS	RE vs. OLS	Your Model
$\mathbf{H}_0 = \mu_1 = \mu_2 = \dots = \mu$	$\mathbf{H}_0 = \mathbf{Var}(\mu_i) = 0$	
F or Wald Test	Breusch-Pagan Test	
H ₀ not rejected	H ₀ not rejected	Pooled OLS
\Rightarrow No FE	\Rightarrow No RE	
H ₀ rejected	H ₀ not rejected	FE Model
\Rightarrow FE	\Rightarrow No RE	
H ₀ not rejected	H ₀ rejected	RE Model
\Rightarrow No FE	\Rightarrow RE	
H ₀ rejected	H ₀ rejected	Choose one based
\Rightarrow FE	\Rightarrow RE	on Hausman test.