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Wireless Powered Mobile Edge Computing:
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Abstract—Mobile-edge computing (MEC) and wireless power
transfer are technologies that can assist in the implementation
of next generation wireless networks, which will deploy a large
number of computational and energy limited devices. In this
letter, we consider a point-to-point MEC system, where the
device harvests energy from the access point’s (AP’s) transmitted
signal to power the offloading and/or the local computation of
a task. By taking into account the non-linearities of energy
harvesting, we provide analytical expressions for the probability
of successful computation and for the average number of success-
fully computed bits. Our results show that a hybrid scheme of
partial offloading and local computation is not always efficient. In
particular, the decision to offload and/or compute locally, depends
on the system’s parameters such as the distance to the AP and
the number of bits that need to be computed.

Index Terms—Mobile edge computing, wireless power transfer,
non-linear energy harvesting.

I. INTRODUCTION

Emerging technologies for the development of smart homes,
smart cities, intelligent transportation systems, etc., are ex-
pected to support a massive number of wireless devices (e.g.,
mobile phones, sensors), which will continuously exchange
information. Moreover, applications such as interactive online
gaming, autonomous driving and virtual reality, require real-
time computational processing. This becomes a critical issue
for wireless devices, given their limitations in both compu-
tational and energy resources. To overcome this constraint,
mobile edge computing (MEC) [1] and wireless power transfer
(WPT) [2] have been proposed to support the computational
and energy aspect, respectively, of such devices.

Recently, the advantages of MEC have been investigated
in different communication scenarios, e.g. [3]–[5]. In [3], the
authors consider MEC with non-orthogonal multiple access
(NOMA) for both downlink and uplink. It is shown that
NOMA can reduce the latency and energy consumption of
MEC offloading. The work in [4], studies a scenario where
a single device can offload its tasks to multiple edge servers.
The proposed optimization framework minimizes the device’s
energy consumption as well as the execution latency of the
tasks. An asynchronous MEC offloading scenario is considered
in [5], where the optimal resource-management policy for the
task partitioning (offloading/local computation) and the time
division for the transmissions is studied.

The coexistence of MEC with WPT has also been previously
studied in the literature, e.g. [6]–[11]. In [6], an energy-

C. Psomas and I. Krikidis are with the Department of Electrical and Com-
puter Engineering, University of Cyprus, Nicosia, Cyprus (e-mail: {psomas,
krikidis}@ucy.ac.cy). This work was co-funded by the European Regional
Development Fund and the Republic of Cyprus through the Research and
Innovation Foundation, under the projects INFRASTRUCTURES/1216/0017
(IRIDA) and POST-DOC/0916/0256 (IMPULSE). This work has also received
funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (Grant agreement
No. 819819).

efficient cooperative resource allocation policy is proposed for
a wireless powered MEC system with two users; it is shown
that the proposed scheme provides significant gains over
systems without cooperation. MEC and WPT with cooperative
communications is also studied in [7], with the aim of mini-
mizing the access point’s (AP’s) transmit power. The work in
[8], considers MEC and WPT in cognitive radio networks and
focuses on maximizing the energy-efficiency of the devices.
Energy-efficient wireless powered MEC is also studied in [9],
by jointly considering the energy consumption at both the
energy transmitter and the user. A wireless powered multi-
user MEC system is considered in [10], where each device
either computes its task locally or offloads it entirely. The
authors focus on maximizing the sum computation rate for all
the network’s devices. Similarly, the work in [11] maximizes
the computation efficiency through the joint optimization of
the energy harvesting time, the local computing frequency as
well as the offloading time and transmit power.

In this letter, we study a point-to-point MEC system, where
the device’s offloading and/or local computation are wirelessly
powered by an AP. In contrast to the aforementioned works,
we present a mathematical framework to characterize the
probability of successful computation as well as the expected
number of successfully computed bits. This framework takes
into account a non-linear energy harvesting model based on
the diode’s physics [12] and provides analytical closed-form
expressions. Our results demonstrate that a hybrid partial
offloading/local computation scheme is efficient but, under
specific scenarios, a binary decision, i.e. full offloading or local
computation, is preferable. The deterministic fading case is
also considered and it is demonstrated that fading can benefit
wireless powered offloading/local computation.

II. SYSTEM MODEL

1) Topology: Consider a wireless-powered communication
network consisting of an AP and a device, where the AP acts as
both a power beacon and a MEC server. The device is located
at a distance r from the AP and both are equipped with a
single antenna. The AP transmits with fixed power P and the
device harvests energy from the AP’s transmitted signal using
a rectifying circuit. A harvest-then-use protocol is adopted [7],
where all the harvested energy is used to offload the data to
the MEC server and/or compute data locally. Time is slotted
and a time slot duration is equal to one time unit. The network
employs a time-division duplex operation and so during a time
slot, the device is first in harvesting mode (downlink) for a
duration te < 1 and then in offloading mode (uplink) for a
duration td = 1 − te. Note that the energy harvesting and
the local computation can be done simultaneously since the
energy harvester and the computing units are independent [10].
Moreover, it is assumed that the time for computation at the
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Fig. 1. The considered point-to-point MEC system.

MEC server and for delivery of the results from the AP can
be neglected [7], [11]. Fig. 1 depicts the considered setup.

2) Channel Model: Both downlink and uplink are assumed
to suffer from both small-scale block fading and large-scale
path-loss effects. We consider Rayleigh block fading and so
the channel coefficients are complex Gaussian distributed with
zero mean and unit variance. We denote by h ∼ CN (0, 1) and
g ∼ CN (0, 1), the channel coefficients for the downlink and
uplink, respectively. All links exhibit additive white Gaussian
noise (AWGN) with variance σ2. The path-loss model assumes
that the received power is proportional to r−α, where α > 2
is the path-loss exponent. The AP’s un-modulated transmitted
signal is s(t) =

√
2P<{exp(2πfct)}, where E[s2(t)] = P

and fc denotes the carrier frequency. Thus, the received signal
at the device is

y(t) =
√

2Pr−α|h|< {exp(2πfct+ θ(t)))} , (1)

where |h| is a Rayleigh random variable with unit parameter.
3) Energy Transfer: During the energy transfer phase, the

device harvests radio frequency (RF) energy from the AP’s
transmitted signal for a duration te. The received signal is
converted to direct-current (DC) using a rectifier, which is a
basic circuit, usually consisting of a diode (e.g., a Schottky
diode) and a passive low pass filter (LPF) [2]. The diode’s
output current from the received signal y(t) can be written as
I(t) = Is

∑∞
j=1 (y(t)/νVT )

j
/j!, where Is denotes the reverse

saturation current of the diode, ν is an ideality factor which is a
function of the operating conditions and physical contractions,
and VT is the thermal voltage. By taking the expectation of
I(t), approximates the DC component of the current at the
rectifier’s output [12]. Therefore, by keeping the second and
fourth order term, the total harvested energy ε is a non-linear
function of I(t), written as [12]

ε = te
(
γ2E[y(t)2] + γ4E[y(t)4]

)
= te

(
γ2Pr

−α|h|2 +
3

2
γ4P

2r−2α|h|4
)
, (2)

where γi are constants determined by the circuit’s parameters
Is, ν and VT .

4) Task Computation: The device decides whether to of-
fload and/or compute locally a task of ` bits. In other words,
it can either offload all of the ` bits, locally execute part of
the ` bits and offload the rest (partial offloading), or compute
locally the entire task.

a) Offloading: Assume that a portion of the harvested
energy εo ≤ ε, is dedicated to power the offloading to the
MEC server. Then, the number of offloaded bits `o ≤ ` is

`o = tdB log

(
1 +

εo
td

|g|2

rασ2

)
, (3)

where B is the available bandwidth and εo/td is the device’s
transmit power. On the other hand, assuming that `o bits are
required to be offloaded, the energy required is

εo = td

(
2
`o
tdB − 1

) σ2rα

|g|2
. (4)

b) Local computation: Let ψ be the number of cycles
required by the central processing unit (CPU) to compute one-
bit of data. Then, the energy consumption εc required to locally
compute `c ≤ ` bits is [5]

εc = ξψ3`3c , (5)

where ξ is the effective CPU capacitance coefficient [5].
Hence, if εc ≤ ε is the energy dedicated for local computation,
we have that

`c =

(
εc
ξψ3

) 1
3

, (6)

is the achieved number of locally computed bits.

III. WIRELESS POWERED MEC

In this section, we derive the success probability, i.e. the
probability of successfully offloading and/or locally comput-
ing the allocated task, as well as the average number of
successfully computed bits. We first provide the probability
distribution of the harvested energy, which will be useful for
the derivation of the aforementioned metrics.

Lemma 1. Let H = θ1|h|2+θ2|h|4, where h ∼ CN (0, 1) and
θ1, θ2 are positive constants. Then, the cumulative distribution
function (CDF) FH(x) of H is given by

FH(x) = 1− exp

(
1

2θ2

(
θ1 −

√
θ21 + 4θ2x

))
, (7)

and the probability density function (PDF) fH(x) of H is

fH(x) =
1√

θ21 + 4θ2x
exp

(
1

2θ2

(
θ1−

√
θ21+4θ2x

))
, (8)

respectively.

Proof: See Appendix A.
Even though the above result refers to the case of Rayleigh

fading, the extension to other fading models is straightforward
by considering the corresponding probability distributions.

In what follows, we assume that the task can be split into
`o = µ` bits for offloading to the MEC server and `c = (1−
µ)` bits to compute locally, where 0 ≤ µ ≤ 1. In Theorem 1,
we derive the success probability Ps(µ, te), given by

Ps(µ, te) = P(ε > εo + εc), (9)

where εo and εc are given by (4) and (5), respectively. In
other words, it is the probability that the device has harvested
enough energy to offload and locally compute the required
bits.
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Theorem 1. The probability of successfully offloading `o = µ`
bits and locally computing `c = (1− µ)` bits, 0 ≤ µ ≤ 1, is

Ps(µ, te) =

∫ ∞
0

exp

(
rαγ2
3γ4P

(
1−

√
1+

6γ4
teγ22

(
φo
g

+φc

)))
× exp(−g)dg, (10)

where φo =
(

2
`o
tdB − 1

)
tdσ

2rα and φc = `3cξψ
3.

Proof: See Appendix B.
From Theorem 1, we can see the trade-off between WPT

and offloading/local computation. On the one hand, the device
can utilize the harvested energy to offload the data to a MEC
server with high computational resources rather than doing it
locally. On the other hand, offloading is affected by the doubly
near-far problem, as expected, whereas the energy harvested
can be used to fully operate local computation. Note that the
expression for the success probability of offloading the entire
task is given by setting µ = 1, which results in φc = 0.
Similarly, for µ = 0 and te = 1, we end up with the success
probability of locally computing the entire task.

To maximize the success probability, the harvesting duration
te and the task split µ need to be optimized. In other words,
we need to

max
te,µ

Ps(µ, te), subject to 0 ≤ te ≤ 1, 0 ≤ µ ≤ 1, (11)

for given task of size ` bits. The optimal values of µ∗ and t∗e
can easily be derived numerically.

In order to simplify the expression in Theorem 1, we provide
a lower bound on the success probability. Based on the Taylor
series expansion, we have that

√
1 + x ≤ 1+x/2. By applying

this to (10) and with the help of [13, 3.324-1], we get

Ps(µ, te) ≥ 2 exp

(
− φcr

α

teγ2P

)√
φorα

teγ2P
K1

(
2

√
φorα

teγ2P

)
,

(12)

where K1(·) is the modified Bessel function of the second
kind. Note that equality is achieved for small values of φc
and φo. Also, it is interesting to remark that the above bound
is independent of the rectenna’s parameter γ4.

Next, in Proposition 1 we derive the average number of
successfully computed bits, given a certain allocation of the
harvested energy to each process. Specifically, we assume that
εo = τε is dedicated for offloading and the rest, i.e. εc =
(1− τ)ε, for local computation, 0 ≤ τ ≤ 1.

Proposition 1. The average number of offloaded and locally
computed bits, given that εo = τε and εc = (1− τ)ε is

¯̀(τ, te) =
tdB

ln 2

∫ ∞
0

exp

(
tdr

ασ2

τteh

)
E1

(
tdr

ασ2

τteh

)
fH(h)dh

+

(
(1− τ)te
ξψ3

) 1
3
∫ ∞
0

h
1
3 fH(h)dh, (13)

where fH(h) is given in Lemma 1 with θ1 = γ2Pr
−α and

θ2 = 3
2γ4P

2r−2α.

Proof: See Appendix C.

From Proposition 1, we can obtain the expression for full
offloading by setting τ = 1 and for full local computation by
setting τ = 0. Similarly to above, in order to maximize the
expected number of computed bits, the optimal values of t∗e
and τ∗ can be found by solving

max
te,τ

¯̀(τ, te), subject to 0 ≤ te ≤ 1, 0 ≤ τ ≤ 1. (14)

As above, t∗e and τ∗ can be evaluated numerically.
We now consider the case of deterministic fading. Based

on [12], non-deterministic fading can be beneficial to WPT.
In what follows, we show that non-deterministic fading can
benefit wireless powered offloading and local computation
under specific scenarios. In the next proposition, we derive
the maximum distance rmax, such that ε > εo + εc, for the
deterministic case.

Proposition 2. The maximum distance rmax up to which
the device can offload `o bits and locally compute `c bits
successfully, with deterministic fading, is

rmax =
(
u+

(
v −

√
v2 + (w − u2)3

) 1
3

+
(
v +

√
v2 + (w − u2)3

) 1
3
) 1
α

, (15)

where u = −b/3a, v = u3 + (bc − 3ad)/6a2, w = c/3a,
a ,

(
2
`o
tdB − 1

)
tdσ

2, b , `3cξψ
3, c , −teγ2P and d ,

− 3
2 teγ4P

2.

Proof: See Appendix D.
Due to the binary nature of the deterministic case, r ≤

rmax implies that Ps(µ, te) = 1, otherwise Ps(µ, te) = 0.
In the numerical results section below, we show that non-
deterministic fading provides non-zero success probability for
r > rmax. However, to further support our claim, we prove
this analytically for the specific case of local computation. In
this case, the maximum distance for the deterministic fading
scenario is

rαmax =
P

2`3ξψ3

(
γ2 +

√
γ22 + 6γ4`3cξψ

3

)
, (16)

which follows from (27) with a = 0 (solution to quadratic
equation). From Theorem 1, the success probability of local
computation is

Ps(0, 1) = exp

(
rαγ2
3γ4P

(
1−

√
1 +

6γ4
γ22

`3cξψ
3

))
. (17)

Assume that we have a success probability equal to some δ ∈
[0, 1]. Then, by solving for rα, we get

rα =
3γ4P ln δ

γ2

(
1−

√
1 +

6γ4
γ22

`3cξψ
3

)−1
. (18)

It suffices to show that there exists an r such that rα >
rαmax. After simple algebraic operations, we have that rα >
rαmax =⇒ δ < exp(−1) = 0.3679. This means that, with
non-deterministic fading, the device can locally compute its
task at distances greater that rmax, with a success probability
less that exp(−1).



4

2 4 6 8 10 12 14 16 18 20
10

-1

10
0

Fig. 2. Success probability versus distance r; B = 1 MHz. Lines and markers
depict theoretical and simulation results, respectively.

IV. NUMERICAL RESULTS

In this section, we evaluate our considered system model
and verify our mathematical analysis with computer simula-
tions. We have used the following parameters, unless otherwise
stated: α = 3, γ2 = 0.0034, γ4 = 0.3829, ξ = 10−28, ψ = 103

cycles/bit, P = 0 dB, and σ2 = −50 dBm. In all figures, the
mathematical analysis (lines) matches the simulation results
(markers), which validates our theoretical approach.

Fig. 2 depicts the success probability in terms of the
distance r for B = 1 MHz. As expected, the performance
is critically affected by the distance r to the AP, since it
decreases the amount of harvested energy at the device. For
` = 10 kbits, local computation outperforms both partial
and full offloading schemes, especially for large values of
r. Indeed, the success probability for full offloading drops
faster due to the doubly near-far problem. Moreover, it is clear
that the success probability with optimal µ∗ and t∗e (based
on (11)), corresponds to the local computation scheme; in
other words, local computation is optimal for small tasks. On
the other hand, for a larger task size (` = 50 kbits), local
computation provides the worse performance and offloading is
more preferable. Fig. 2 also shows the maximum distance rmax
in a deterministic fading scenario (Proposition 2). The markers
placed on the curves indicate that up to that point, all ` bits
can be successfully computed. It is obvious that, when there is
fading, successful computation can still be achieved even for
distances larger that rmax, albeit with some probability. Note
that, for the local computation case with ` = 50 kbits, the
marker is placed at exp(−1), which validates our analytical
results. Fig. 3 illustrates the same scenarios but with B = 0.1
MHz. Similar observations with Fig. 2 hold. However, due to
the fact that the bandwidth is smaller, the success probability
of full and partial offloading is much lower. Finally, Fig. 3
shows the lower bound expression given by (12); it is clear
that the bound becomes tighter at smaller values of r and `,
which validates our statements.

Fig. 4 shows the expected number of bits that can be
successfully computed versus the distance r. For B = 1 MHz
(top sub-figure), partial offloading overtakes full offloading

2 4 6 8 10 12 14 16 18 20
10

-1

10
0

Fig. 3. Success probability versus distance r; B = 0.1 MHz. Lines and
markers depict theoretical and simulation results, respectively.

at 10 m (te = 0.25) and 17 m (te = 0.75). As the device
moves away from the AP, it needs more energy to offload
the data, so it is preferable to locally compute a portion of
the allocated task. For B = 0.1 MHz (bottom sub-figure),
partial offloading outperforms both full offloading cases at
shorter distances. As observed in Figs. 2 and 3, less bandwidth
implies that fewer number of bits can be offloaded and thus
local computation starts to become more preferable. Finally,
the optimal performance derived from (14), selects full or
partial offloading for short distances and switches to local
computation at larger distances.

V. CONCLUSION

In this paper, we investigated a point-to-point MEC system,
where the device’s offloading and/or local computation are
powered solely by WPT. We considered a non-linear energy
harvesting model and provided analytical closed-form expres-
sions, which characterized the success probability and the
average number of successfully computed bits. Our results
showed that a combination scheme of partial offloading and
local computation is not always efficient and the decision of
whether to offload and/or compute locally, critically depends
on the system’s parameters.

APPENDIX

A. Proof of Lemma 1
The CDF FH(x) of H is written as FH(x) = P(H <

x) = P(θ1|h|2 + θ2|h|4 < x). Then, by solving the quadratic
inequality θ1|h|2 + θ2|h|4 − x < 0, we have

|h|2 < −θ1 ±
√
θ21 + 4θ2x

2θ2
. (19)

Since |h|2 is positive,

P(θ1|h|2 + θ2|h|4 < x) = P

(
|h|2 < −θ1 +

√
θ21 + 4θ2x

2θ2

)
,

(20)

and the CDF follows from the fact that |h|2 is an exponential
random variable. Then, the PDF is derived by the derivative
of the CDF.
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Fig. 4. Expected number of computed bits ¯̀ in terms of distance r; Lines
and markers depict theoretical and simulation results, respectively.

B. Proof of Theorem 1

By substituting (2) in (9), we have

Ps(µ, te) = P
(
γ2|h|2+

3

2

γ4P

rα
|h|4 > rα

teP
(εo + εc)

)
, (21)

where εo and εc are given by (4) and (5), respectively. Then,
using the CDF from Lemma 1, we have

Ps(µ, te)

= E|g|2

[
exp

(
rα

3γ4P

(
γ2−

√
γ22 +

6γ4
te

(
φo
|g|2

+φc

)))]
,

(22)

where φo and φc are defined in Theorem 1. As |g|2 is
exponentially distributed, the theorem is proven by using the
PDF f|g|2(g) = exp(−g) and by simplifying the expression
with some algebraic manipulations.

C. Proof of Proposition 1

The total number of bits ` offloaded and locally computed
is ` = `o+`c, with εo = τε and εc = (1−τ)ε. The expectation
of ` is then ¯̀(τ, te) = E[`] = E[`o] + E[`c]. Hence,

E[`o] = tdBE|g|2,ε
[
log

(
1 +

τε

td

|g|2

rασ2

)]
(23)

= tdBEε
[∫ ∞

0

log

(
1 +

τε

td

v

rασ2

)
exp(−v)dv

]
(24)

=
tdB

ln 2
Eε
[
exp

(
tdr

ασ2

τε

)
E1

(
tdr

ασ2

τε

)]
, (25)

which follows from log(x) = ln(x)/ ln(2) and by employing
[13, 4.337-2]; E1(x) =

∫∞
x

exp(−t)t−1dt is the exponential
integral [13]. Thus, by replacing ε with (2) and by using the
PDF in Lemma 1, the result follows. Similarly,

E[`c] = E

[(
εc
ξψ3

) 1
3

]
=

(
1

ξψ3

) 1
3

E
[
ε

1
3
c

]
, (26)

where εc = (1− τ)ε and ε is given by (2). By using the PDF
in Lemma 1, we get the final expression.

D. Proof of Proposition 2
To successfully compute the specific task we need ε > εo+

εc. Therefore,

te

(
γ2P

rα
+

3

2

γ4P
2

r2α

)
>
(

2
`o
tdB − 1

)
tdσ

2rα + `3cξψ
3

=⇒
(

2
`o
tdB − 1

)
tdσ

2︸ ︷︷ ︸
,a

r3α + `3cξψ
3︸ ︷︷ ︸

,b

r2α−teγ2P︸ ︷︷ ︸
,c

rα

−3

2
teγ4P

2︸ ︷︷ ︸
,d

< 0, (27)

which is a cubic inequality with respect to rα. For the sake of
simplicity, we define the coefficients as above. By using the
substitution rα = ρ − b/3a, (27) is reduced to the depressed
cubic

ρ3 + ρ

(
c− c2

3a

)
+

2b3

27a2
− bc

3a
+ d < 0, (28)

and thus using del Ferro’s method [14], the only real positive
solution to the above cubic is

ρ <
(
v −

√
v2 + (w − u2)3

) 1
3

+
(
v +

√
v2 + (w − u2)3

) 1
3

,

(29)

where u = −b/3a, v = u3 + (bc− 3ad)/6a2 and w = c/3a.
By substituting back for r, the result follows.
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