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ABSTRACT 32 

With increased demand on freshwater resources for agriculture, it is imperative that more water-33 

use efficient crops are developed. Leaf stable carbon isotope composition, δ13C, is a proxy for 34 

transpiration efficiency and a possible tool for breeders, but the underlying mechanisms effecting 35 

δ13C in C4 plants are not known. It has been suggested that differences in specific leaf area, 36 

which potentially reflects variation in internal CO2 diffusion, can impact leaf δ13C. However, at 37 

this point the relationship has not been tested in maize. Furthermore, although it is known that 38 

water movement is important for elemental uptake, it is not clear how manipulation of 39 

transpiration for increased water-use efficiency may impact nutrient accumulation. Here we 40 

characterize the underlying genetic architecture of leaf δ13C and test its relationship to specific 41 

leaf area and the ionome in four biparental populations of maize. Five significant QTL for leaf 42 

δ13C were identified, including both novel QTL as well as some that were identified previously 43 

in maize kernels. One of the QTL regions contains an Erecta-like gene, the ortholog of which has 44 

been shown to regulate transpiration efficiency and leaf δ13C in Arabidopsis. Our data does not 45 

support a relationship between δ13C and specific leaf area, and of the 19 elements analyzed, only 46 

a weak correlation between molybdenum and δ13C was detected. Together these data begin to 47 

build a genetic understanding of leaf δ13C in maize and suggest the potential to improve plant 48 

water use without significantly influencing elemental homeostasis.  49 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.12.989509doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.989509


4 
 

INTRODUCTION 50 

The impacts of global population growth and climate change on natural resources indicate that 51 

the future of food security will depend on increasing both the productivity and sustainability of 52 

agriculture systems (National Academies of Sciences, Engineering, and Medicine, 2018). 53 

Improving crop water-use efficiency (WUE) would ameliorate the effects of the increasing 54 

frequency and severity of droughts (Scheffield and Wood 2008; Chapman et al. 2012, Leakey 55 

2019). Agronomic WUE can be defined as the amount of yield, whether grain or biomass, 56 

produced per the total amount of water utilized by the crop (Condon et al. 2004). Many factors 57 

can affect WUE including transpirational water loss through the stomatal pores on the leaf’s 58 

surface.  In C3 plants the amount of carbon available for assimilation is limited by stomatal and 59 

mesophyll conductances to CO2 (Flexas et al. 2016) and therefore correlated to the rate of 60 

transpiration. For example, yield was shown to be positively associated with cumulative 61 

transpiration in soybean (Purcel 2007), and higher net carbon assimilation was accompanied by 62 

higher transpiration in rice (Adachi et al. 2017). However, higher rates of biomass yield do not 63 

always correspond to higher transpiration rates in C4 plants due to the evolution of the carbon 64 

concentrating mechanism. The uncoupling of CO2 assimilation and transpiration has been 65 

demonstrated in field and greenhouse grown maize (Walker 1986, Kolbe et al. 2018a). Thus, 66 

there is the potential to increase transpiration efficiency, or carbon gain per amount of water 67 

transpired, without reducing productivity in C4 species (Leakey, 2019). A large amount of 68 

variation is present in the transpiration rates of C4 crop species, including sorghum (Hammer et 69 

al. 1997) and maize (Bunce 2010), suggesting that existing occurring alleles could be exploited 70 

for optimizing WUE. 71 

  72 

Although increasing transpiration efficiency provides a strategy to avoid the negative effects of 73 

water limitation on plant growth and development (Passioura 1996, Chaves et al. 2002, Jaleel et 74 

al. 2009), there is the possibility of pleiotropic side effects given the fundamental requirement 75 

for water movement in plants. A potential impact of reducing transpiration could be a 76 

corresponding reduction in the uptake and mobilization of water-soluble nutrients. As water is 77 

absorbed by roots, nutrients in solution come in contact with the root surface in a process known 78 

as mass flow (Barber et al. 1963). Most nutrients are acquired by mass flow, although 79 

phosphorus is a notable exception that contacts the root through diffusion (Barber et al. 1962). 80 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.12.989509doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.989509


5 
 

Reducing transpiration may also affect nutrient uptake facilitated by symbiosis with mycorrhizal 81 

fungi (Marschner and Dell 1994). Therefore, the manipulation of basic plant processes such as 82 

transpiration for improved WUE must also consider potential impacts on the availability of 83 

essential plant nutrients. Previous research has shown in the C4 plant sorghum that total leaf 84 

mineral content is positively correlated to transpiration efficiency (Masle et al. 1992). While 85 

meta-analyses of high CO2 grown plants with reduced transpiration have shown a drastic 86 

reduction in nutrient accumulation in C3 crops (McGrath and Lobell 2013), sorghum showed no 87 

difference and maize had similar levels of zinc, protein, and phytate, but a decrease in iron 88 

accumulation (Meyers et al. 2014). Although part of the reduction in nutrient content can be 89 

explained by dilution, due to increased growth at high CO2, this does not completely account for 90 

the observed reduction. An ionomics (high-throughput elemental profiling) approach has been 91 

used in maize to assess kernel nutrient content (Baxter et al. 2014). A similar ionomics approach 92 

in leaf tissue could be used to assess the effect of transpiration on nutrient uptake. 93 

 94 

The difficulty and labor-intensive nature of accurately quantifying the amount of water that an 95 

individual plant transpires has been a major limitation to breeding for transpiration efficiency. 96 

This has resulted in the selection for drought tolerance rather than applying a direct selection for 97 

water use. One alternative method is the use of leaf stable carbon isotopes as a proxy for 98 

transpiration efficiency. The stable carbon isotope composition, δ13C, reflects the amount of 13C 99 

present in plant tissue relative to a standard (Keeling 1979). Enzymes in the process of carbon 100 

fixation discriminate differently against the heavier 13C atoms in a process known as 101 

fractionation (Farquhar et al. 1982, O’Leary 1988). It has been widely shown that stable carbon 102 

isotopes can be used as a proxy trait for quantifying a plant’s transpiration efficiency in C3 plants 103 

(Farquhar et al. 1989a, Farquhar et al. 1989b, Condon et al. 1990, Virgona et al. 1990, Condon 104 

et al. 1993, Barbour et al. 2010) and in C4 plants (Henderson et al. 1998, von Cammerer et al. 105 

2014, Ellsworth et al. 2017, Twohey III et al. 2019, Ellsworth et al. 2020). Studies have also 106 

shown that δ13C can be influenced by environmental factors including light intensity and drought 107 

(reviewed in Cernusak et al. 2013). However, the genetic control of δ13C remains unknown in C4 108 

species. 109 

  110 
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Kolbe et al. showed that δ13C did not correlate with any of the photosynthetic enzymes 111 

previously posited to control for δ13C variation (2018b). Additionally, a transcriptome analysis 112 

was unable to identify a clear candidate gene (Kolbe et al. 2018b). Quantitative genetic 113 

approaches have the potential to reveal the genetic control of δ13C in C4 species because genomic 114 

locations are tested for associations with the trait of interest, without a priori knowledge of the 115 

mechanism underlying the variation. Maize is ideal for use in mapping studies due to its high 116 

level of recombination and low linkage disequilibrium (Yu and Buckler 2006). Mapping 117 

methods have been successfully used for decades to identify genes controlling complex traits in 118 

maize, with evolving approaches to tackle more difficult traits (Wallace et al. 2014). In addition, 119 

maize is both a model organism with available populations and genomic data, and one of the 120 

three most important global crops contributing to 30% of the total calories consumed by humans 121 

(Shiferaw et al. 2011). 122 

 123 

There have been several previous studies that used quantitative genetics to investigate δ13C in C3 124 

species (Teulat et al. 2002, Masle et al. 2005, Rebetzke et al. 2008, Xu et al. 2009). In 125 

Arabidopsis the gene ERECTA was identified in a QTL study for isotopic discrimination and was 126 

found to alter transpiration efficiency by altering stomatal density (Masle et al. 2005). Genetic 127 

mapping of leaf δ13C has also been performed in the C4 species Setaria viridis (Feldman et al. 128 

2018, Ellsworth et al. 2020) and kernel δ13C has been mapped in the C4 maize (Gresset et al. 129 

2014, Avramova et al. 2019). Although the QTL found for C4 species still require fine-mapping 130 

to identify the causative gene, no correlation was observed between kernel δ13C and leaf δ13C 131 

(Foley 2012). The lack of correlation may be the result of post-photosynthetic fractionation 132 

(Badeck et al. 2005), and therefore mapping QTL for δ13C in leaves may reveal additional loci 133 

not found using kernels. In this manuscript, we focus on leaf δ13C in maize and its association 134 

with leaf elemental composition. We also investigate variation in specific leaf area (SLA) and its 135 

potential relationship to leaf δ13C by CO2 diffusion. Characterization of the genetic architecture 136 

of leaf δ13C will provide a better context for understanding what drives δ13C, which will allow 137 

breeders to utilize this trait in crop improvement.  138 
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MATERIALS AND METHODS 139 

Plant Material  140 

All experiments were planted at the University of Illinois Crop Sciences Research Farm, Urbana 141 

IL and were subject to natural conditions without supplemental irrigation. NAM RIL families 142 

CML103, CML333, NC358, and Tx303 and NAM founder parents (McMullen et al. 2009) are 143 

publicly available through the Maize Genetic Cooperative Stock Center. The NAM RIL families 144 

were planted in the summer of 2015 using an augmented incomplete block design. For this 145 

experiment fifteen kernels were planted in each 3.7 meter row with 0.8 meter spacing between 146 

rows and 0.9 meter alleys. The families were randomized together, with each block consisting of 147 

20 lines and 2 checks (B73 and one of the other founder lines). Of the 880 plots, 10% were 148 

dedicated to checks with the common parent B73 appearing in 40 plots and each of the four 149 

founder lines appears in ten plots. All lines used for the GWAS experiment are publicly available 150 

through the USDA Germplasm Resources Information Network (GRIN). This experiment was 151 

planted on May 23rd 2016. Twenty kernels were planted in each 3.7 meter row with 0.8 meter 152 

spacing between rows and 0.9 meter alleys, and then thinned to 15 plants per row. A complete 153 

list of lines used can be found in Tables S1-S3. 154 

 155 

Tissue Sampling 156 

Samples for δ13C analysis from the NAM RIL populations were collected six weeks after 157 

planting as follows. A rectangular piece of tissue approximately 7.5 cm X 5 cm was taken from 158 

the center of the leaf blade of the uppermost fully expanded leaf from four plants in each plot. 159 

Samples were placed in a coin envelope and dried at 65oC for at least 7 days. After drying four 160 

hole punches (each 0.058532 cm2) were taken and placed in a 6 mm x 4 mm tin capsules (OEA 161 

Laboratories # C11350.500P) for analysis using a Delta PlusXP (Washington State University) 162 

isotope ratio mass spectrometer. Leaf samples to measure specific leaf area (SLA) were collected 163 

from four plants in each of the plots (preferentially but not necessarily the same plants as were 164 

collected for δ13C) using a 1.6 cm diameter cork borer. Leaf discs were dried at 65oC for at least 165 

7 days prior to weighing on an analytical balance (Model MS204S). Specific leaf area (SLA) was 166 

calculated as the area of a leaf disc divided by its dry weight. These same leaf discs were then 167 

used for ionomics analyses as described in Pauli et al. 2018. Leaf samples for δ13C analysis from 168 

the GWAS panel were collected from the uppermost fully expanded leaf seven weeks after 169 
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planting using the hole punch method and processed as described previously (Twohey III et al. 170 

2019). Due to the high level of diversity in this panel, some lines were flowering when samples 171 

were collected, which resulted in tissue being collected from the flag leaf. These samples were 172 

analyzed using a Costech instruments elemental combustion system and a Delta V Advantage 173 

isotope ratio mass spectrometer. 174 

 175 

Statistical Analysis 176 

All analyses were completed using custom scripts and statistical packages in R (R Core Team 177 

2017). 178 

 179 

Correlation analysis: Pearson correlations using phenotype mean values were calculated with 180 

corr.test() in R package ‘psych’ (Revelle 2018) using complete observations and Holm’s method 181 

(Holm 1979) to adjust p-values for multiple testing. The correlation matrix was visualized using 182 

pairs.panel() in the R package ‘psych’ (Revelle 2018). 183 

 184 

Stepwise regression QTL mapping: The analysis was completed using 185 

NAM_phasedImputed_1cM_AllZeaGBSv2.3 dataset. The file contains fully imputed and phased 186 

genotypes for most of the RILs in the NAM population (Zhao et al. 2006; Lipka et al. 2015). 187 

This HapMap format file was converted to numeric format where 0 is the B73 homozygote 188 

reference, 1 is a heterozygote, and 2 is the homozygote alternative parent. Phenotypic means 189 

were regressed onto genotype. Lowest p-values from the ANOVA values of the linear model 190 

were recorded (i.e. pvalues[i] = anova(lm(mypheno~geno[i,])). The previously identified marker 191 

was added to the model and re-run in a stepwise regression procedure. Significance thresholds 192 

were determined by 200 permutations and alpha was set at 0.05. All analysis was completed 193 

using custom scripts in R (R Core Team 2017). Results were then compared to composite 194 

interval QTL mapping completed in R package ‘r/QTL’ (Broman et al. 2003). 195 

 196 

Joint linkage mapping: The analysis was completed using HapMapv2 (Chia et al. 2012). The 197 

genotypic dataset consisted of 836 markers were scored on 624 RILs from four biparental 198 

families with B73 as a common parent. The marker subset represented markers that could be 199 

placed unambiguously on the physical map. Unambiguous markers are defined by those 200 
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anchored in CDS positions of genes that have held consistent over genome versions verified by 201 

MaizeGDB cross reference tables. Missing data were imputed as previously described in Tain et 202 

al. (2011). Joint linkage models were constructed using custom script in R (R Core Team 2017) 203 

by a stepwise regression procedure. In general, we used linkage to test every marker across all 204 

four families to find the most significant QTL. The model has a family term and a marker:family 205 

term. The family term accounts for differences in mean phenotype between families. Inclusion of 206 

the marker:family term means that for each QTL we are assigning a separate effect to each 207 

family. The family term was included in the model and each of the 836 possible marker-by-208 

family terms were assessed. Lowest p-values from the ANOVA values of the linear regression 209 

model were recorded (i.e. JL_pvalues[i] = anova(lm(my_pheno~family+geno[,i]:family)). All 210 

836 marker-by-family terms were tested. SNP effects were nested in families to reflect the 211 

potential for unique QTL allele effects within each family. The lowest resulting p-value was 212 

recorded for each permutation. Significance thresholds were determined using 1000 213 

permutations for each family independently and alpha was set at 0.05. 214 

 215 

Genome wide association study: A subset of 413 of 503 diverse lines from Hirsch et. al 2014 216 

that included the Wisconsin Diversity Set of Hansey et al 2011 was grown in 2016 and listed in 217 

Table S2. Hirsch et. al 2014 collected RNA from whole seedling tissue which was sequenced via 218 

IlluminaHiSeq and filtered to create a working set of 485,179 SNPs that is available at 219 

https://datadryad.org//resource/doi:10.5061/dryad.r73c5. The 413 lines were grown in 2016 and 220 

tissue was sampled when B73 was at the developmental stage V10. Isotopic analysis is described 221 

above. A genome wide association analysis was run using R package ‘GAPIT’ (Lipka et al. 222 

2012) on leaf δ13C. Removal of SNPs with a minor allele frequency of less than 0.05 resulted in 223 

a subset of 438,222 SNPs being used in this analysis. A MLM model was used with model 224 

selection set to true to find the optimum number of principal components to account for 225 

population structure (Lipka et. al 2012). Significance threshold were calculated using the 226 

Bonferroni correction of familywise error rate. An alternative significance test was calculated 227 

using the Benjamini-Hochberg procedure for controlling the false discovery rate (Benjamini & 228 

Hochberg 1995). 229 

 230 

 231 
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Data Availability 232 

Genotypic datasets were downloaded from Panzea CyVerse iPlant Data Storage Commons 233 

(http://datacommons.cyverse.org/browse/iplant/home/shared/panzea). All phenotypic datasets 234 

were quality controlled for complete technical replicates, outliers, and availability of genotypic 235 

data. A list of all genotypes used in each analysis is provided in Tables S1-S4 and have been 236 

uploaded to figshare. Briefly, the δ13C analysis was completed with 640 RILs; including 156 237 

CML103 RILs, 160 CML333 RILs, 159 NC358 RILs, and 165 Tx303 RILs (Table S1). The 238 

element analysis was completed using a total of 704 RILs; including 175 CML103 RILs, 181 239 

CML333 RILs, 175 NC358 RILs, and 173 Tx303 RILs (Table S1). The SLA analysis used a 240 

total of 683 RILs; including 172 CML103 RILs, 176 CML333 RILs, 168 NC358 RILs, and 167 241 

Tx303 RILs (Table S1). The Joint linkage analysis was completed using a total of 624 RILs; 242 

including 154 CML103 RILs, 159 CML333 RILs, 151 NC358 RILs, and 160 Tx303 RILs (Table 243 

S2). Table S3 lists the 413 lines used in the GWAS of leaf δ13C. Table S4 includes the QTL 244 

coordinates identified in the elemental QTL analyses. Figure S1 shows the distribution of leaf 245 

δ13C for each of the NAM RIL families. Figure S2 presents the correlation matrix for the 246 

elemental analysis, and Figure S3 shows the chromosomes where significant QTL were 247 

identified for each element. Figure S4 is the LOD plot from the GWAS mapping of leaf δ13C. 248 

 249 

RESULTS 250 

Single family QTL mapping 251 

Previous studies investigating leaf δ13C in maize indicated that the NAM founder lines CML103, 252 

CML333, and Tx303 consistently contrast B73 with respect to leaf δ13C (Kolbe et al. 2018b; 253 

Twohey III et al. 2019). The founder line NC358 had a moderate leaf δ13C value (Kolbe et al. 254 

2018b; Twohey III et al. 2019) and was also included in this study. The RIL families generated 255 

from these four founder lines were grown for linkage analysis. Consistent with previous studies, 256 

both the CML103 and CML333 parent lines had a significantly less negative leaf δ13C than B73 257 

(p <0.05), when grown as replicated controls among the RILs. However, the Tx303 and NC358 258 

parental lines were not found to be significantly different from B73. Transgressive segregation 259 

was observed in all four RIL families (Fig. S1). 260 

 261 
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Stepwise regression analyses found significant QTL for leaf δ13C in the NAM RIL families 262 

CML103, CML333, and Tx303 but not in NC358 (Fig. 1A). Interestingly, none of these QTL 263 

were shared between RIL families in this analysis. The CML103 RIL family had two significant 264 

QTL, one on chromosome 5 at 211.7 Mb and another on chromosome 7 at 142.4 Mb. Combined 265 

these two QTL accounted for 21.36% of the total phenotypic variance (Table 1). The RIL family 266 

CML333 had one significant QTL on chromosome 3 at 183.9 Mb, which accounted for 8.37% of 267 

the total phenotypic variation explained (Table 1). Finally, the Tx303 RIL family had a 268 

significant QTL on chromosome 2 at 13.5 Mb explaining 9.48% of phenotypic variation (Table 269 

1). No significant QTL for leaf δ13C were identified in the NC358 RIL family. 270 

 271 

Specific leaf area was used as a proxy trait to test for a relationship between leaf thickness and 272 

leaf δ13C. No significant correlation was observed between SLA and leaf δ13C (p = 0.304). In 273 

addition to testing for a correlation with leaf δ13C, QTL mapping was performed for SLA to 274 

identify any possible overlaps with genomic regions identified for leaf δ13C. Mapping of SLA in 275 

the four RIL families identified two significant QTL. In the CML103 RIL family, a QTL was 276 

identified on chromosome 5 at 86.1 Mb and in the Tx303 RIL family a QTL on chromosome 9 at 277 

107.8 Mb. Neither of the SLA QTL identified overlapped with QTL for leaf δ13C (Fig. 1B). 278 

 279 

To test a potential link between transpiration and nutrient uptake, an elemental analysis was 280 

performed on leaf samples from each of the four RIL families. Samples were analyzed for 19 281 

different elements using an IPC-MS. A full correlation matrix shows that some elements are 282 

highly correlated with each other (Fig. S2), but no strong correlations (r > +/- 0.7) were 283 

identified with δ13C. However, there was a weak but significant correlation (p = 6.745E-05, r = 284 

0.18) between leaf δ13C and Mo (Fig. 2). Subsequent QTL mapping of the 19 element 285 

concentrations identified 28 QTL across 12 different elements (Fig. 3, Fig. S3). Significant QTL 286 

were found for B, Mg, P, S, K, Fe, Mn, Co, Cu, Rb, Sr, and Mo (Table S4). None of the 287 

elemental QTL overlapped with those found for leaf δ13C or SLA. However, in some cases 288 

multiple elements had common QTL, such as Mg and Mn on chromosome 10 in the CML103 289 

RIL family and Co and Cu on chromosome 3 in the NC358 RIL family. Additionally, common 290 

QTL for an element were found across families, as in the case of Mg in the NC358 and Tx303 291 

RIL families. 292 
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 293 

Joint linkage QTL mapping 294 

A joint linkage analysis was performed for leaf δ13C to test whether any additional QTL would 295 

be identified by combining the four RIL families into a single analysis. The joint linkage analysis 296 

identified the same significant QTL for leaf δ13C on chromosomes 2, 3, and 5 (Table 2) as in the 297 

single family stepwise regression analysis. Although the QTL on chromosome 7 was not found 298 

using the joint linkage approach, an additional significant QTL was identified on chromosome 1. 299 

Given that no significant QTL for leaf δ13C were identified in the NC358 RIL family, we tested 300 

whether removing this family from the joint linkage analysis would change the outcome. When 301 

the joint linkage analysis was rerun excluding family NC358, the same four QTL were 302 

reidentified with decreased p-values, and the total phenotypic variation explained (R2 value) 303 

increased in later steps of the model. However, no new QTL were identified with this approach. 304 

 305 

Genome wide association study 306 

Once significant QTL intervals were identified for leaf δ13C using a biparental mapping strategy 307 

(Fig. 1), we performed a genome wide association study to try and narrow down the intervals to 308 

specific genic regions. The Wisconsin Diversity Panel was chosen because it represents a large 309 

portion of variation found within maize and has a robust publicly available 485,179 SNP set. A 310 

subset of 413 of the possible lines were chosen due to seed availability, and were grown in a 311 

single randomized block. No significant SNP associations with leaf δ13C were identified (Fig. 312 

S4). 313 

 314 

DISCUSSION 315 

Leaf δ13C has a moderately high heritability in maize (Twohey III et al. 2019), which facilitates 316 

the use of quantitative genetics approaches to pinpoint the genomic locations controlling this 317 

trait. Here we characterized the genetic control of δ13C in maize using leaf tissue collected at 318 

vegetative stage V9-V10 to reflect the photosynthetic pool during active growth. We were able 319 

to identify several significant QTL for leaf δ13C across three NAM RIL families using stepwise 320 

regression. Using these populations we were also successful in identifying QTL for SLA and 12 321 
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different elements. Contrary to our hypothesis, no significant correlation was observed between 322 

leaf δ13C and SLA or elemental composition. 323 

 324 

We strategically picked NAM RIL families based on the founder parents that had the largest 325 

differences in their δ13C for single family and joint linkage analyses. However, we also included 326 

a parent which was not extremely different from B73. Interestingly, we were unable to identify 327 

significant QTL in the NC358 RIL family despite transgressive segregation. We interpret this 328 

result as an indication the NC358 contains only small effect QTL that were not detected in this 329 

study. Alternatively, NC358 leaf δ13C may be more sensitive to the growing environment with a 330 

smaller genetic component. Twohey III et al. noted that while several maize lines were stable 331 

when tested in greenhouse and field environments, there were other lines that had highly variable 332 

isotopic signatures (2019). A large amount of environmental influence over this trait in some 333 

backgrounds would obscure the genetic contribution and our ability to detect significant QTL. 334 

 335 

When we compared the regions identified here with regions previously mapped in S. viridis no 336 

obvious overlap was observed (Ellsworth et al., 2020). However, of the QTL identified for 337 

kernel δ13C in maize (Gresset et al. 2014, Avramova et al 2019), our QTL for leaf δ13C 338 

overlapped those on chromosomes 1, 3, and 7. This result demonstrates that some QTL for δ13C 339 

are shared between tissues, and that these QTL are identified across several populations and 340 

environments. Therefore, while metabolic processes have the possibility of influencing the δ13C 341 

as products are mobilized from source to sink tissues, our data would suggest that the initial 342 

source signature is maintained to a large degree in the kernel. 343 

 344 

Although the QTL analyses presented here do not provide gene-level resolution, we were able to 345 

look for candidate genes within the intervals. The chromosome 5 QTL includes an Erecta-like 346 

gene (er1, GRMZM2G463904, 211.8 Mb). Unfortunately, stomatal density data were not 347 

collected on these populations, which would further support the role of er1 in variation of leaf 348 

δ13C. This would be an interesting area of future research given that this gene was found to effect 349 

δ13C in Arabidopsis by changing stomatal density (Masle et al. 2005). We also looked for genes 350 

that have been previously shown to directly influence transpiration efficiency in maize (reviewed 351 

in Leakey 2019). However, none of these were found to be located in our QTL intervals. 352 
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 353 

The linkage analyses using biparental mapping populations identified several significant QTL, 354 

but none of the single family QTL were independently identified in more than one family (Fig. 355 

1). This result indicates that leaf δ13C can be controlled by different factors depending on the 356 

genetic background. Furthermore, if in fact leaf δ13C is controlled by many small effect QTL, 357 

this may explain why the GWAS did not identify any significant SNP associations with leaf 358 

δ13C. Identifying rare alleles with small to moderate effect size is a known weakness of the 359 

GWAS method (Bazakos et al. 2017). A better understanding of the mechanisms influencing leaf 360 

δ13C would allow future analyses to move beyond single marker tests and instead look at SNPs 361 

in genes representing a particular pathway or process that could be collectively significant. This 362 

approach was successfully used to study maize lipid biosynthesis (Li et al. 2019). 363 

 364 

The diffusion of CO2 into mesophyll cells is a potential source of variation in leaf δ13C, which 365 

could be linked to stomatal density or leaf thickness. Previous work in maize has shown that 366 

stomatal density is not correlated with leaf δ13C in a small diversity panel of maize (Foley 2012). 367 

SLA has not been linked to δ13C in maize, but in rice δ13C and SLA have shared QTL (This et al. 368 

2010). In this study we were able to test SLA and δ13C in four RIL families, and no correlation 369 

was observed. Likewise, a comparison of the QTL analyses showed no overlapping regions for 370 

SLA and those mapped for leaf δ13C. This result suggests two possibilities. First, it is possible 371 

that differences in SLA observed in these populations are not due to leaf thickness, but rather 372 

composition. Identifying the causative genes underlying the QTL would give insight into the 373 

mechanism. A second possibility is that leaf anatomical traits other than leaf thickness influence 374 

leaf δ13C. A variety of anatomical traits could affect δ13C and would not be captured by 375 

measurement of SLA. 376 

 377 

With our data we were able to indirectly test the relationship between nutrient uptake and 378 

transpiration. If reducing transpiration limits nutrient uptake, transpiration efficiency as a trait for 379 

increasing WUE would have limited application. The nineteen elements tested here were 380 

previously reported to have narrow-sense heritabilities ranging from 0.11 to 0.66 (Baxter 2014). 381 

The only element found to be significantly correlated to leaf δ13C was Molybdenum. 382 

Molybdenum is required for several vital biological processes related to nitrogen and water 383 
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(Baxter 2008). Because molybdenum is a required cofactor for ABA synthesis, maize plants 384 

overexpressing molybdenum cofactor sulfurase gene have increased drought tolerance (Lu et al. 385 

2013). However, in our study we observed a positive correlation between leaf δ13C and 386 

molybdenum, which is contrary to expectation given that an increase in δ13C signifies a decrease 387 

in WUE. Overall, it is encouraging that the majority of elements sampled were not associated 388 

with δ13C. This suggests that breeding for leaf δ13C as a means to reduce transpiration would be 389 

unlikely to result in plants with nutrient uptake deficiencies. 390 

 391 

Although the main focus of this study was to investigate leaf δ13C and its relationship to SLA 392 

and nutrient accumulation, the QTL mapping of the analyzed elements was an interesting 393 

biproduct. Mapping the leaf ionome of the four RIL families resulted in many significant QTL, 394 

including some overlapping intervals for different elements. Multi element QTLs are common, 395 

and are thought to be due to loci affecting processes such as the acidification of the rhizosphere 396 

or altering the permeability of the casparian strip (Baxter 2015). Interestingly there was not much 397 

overlap between the ionomic QTL identified here and a previous study on kernels (Table 4 398 

Baxter et al. 2014). The only overlapping QTL was for Rb85 on chromosome 3. There are 399 

several possible causes for the limited overlap between these methods. The ionome is strongly 400 

influenced by geneotype by environment interactions, with many of the QTL identified in 401 

previous studies being location specific (Asaro et al. 2016). Additionally, there could be 402 

differences between the leaf and grain ionome is due to differential mobilization of nutrients 403 

from vegetative tissues into kernels during grain fill. 404 

 405 
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Tables 413 

 414 

Table 1: δ13C Single Family Stepwise Regression QTL 

Step Marker Family Chr. 
Position 

(Mb) 
p-value 

TPVE* 

(%) 

Effect 

Size 

1LOD Interval 

(Mb) 

1 824 CML103 5 211.7 7.03E-06 12.32 0.1286 211.5 - 212.9 

2 1032 CML103 7 142.4 7.52E-05 21.36 -0.1064 141.2 - 149.7 

1 470 CML333 3 183.9 2.07E-04 8.37 0.1137 178.6 - 195.7 

1 251 Tx303 2 13.5 6.04E-05 9.48 -0.1457 13.5 - 15.2 

* Total Percent of Variation Explained 

 415 

 416 

Table 2: δ13C Joint Linkage Mapping QTL 417 

All Four Families 

Step QTL Family Chr. Position 

(Mb) 

p-value TPVE* 

(%) 

Effect 

Size 

1LOD Interval 

(Mb) 

1 m0200 Tx303 2 13.8 2.82E-06 7.9 -0.144 12.6 - 15.8 

2 m0677 CML103 5 211.2 1.98E-04 11.8 0.123 211.2 - 212.7 

3 m0385 CML103 3 182.1 1.44E-04 15.24 0.115 180.0 - 195.3 

4 m0132 Tx303 1 263.2 4.41E-05 18.19 -0.126 257.1 - 263.6 

 

Excluding NC358 

Step QTL Family Chr. Position 

(Mb) 

p-value TPVE* 

(%) 

Effect 

Size 

1LOD Interval 

(Mb) 

1 m0200 Tx303 2 13.8 5.70E-06 7.47 -0.144 12.6 - 15.9 

2 m0677 CML103 5 211.2 2.86E-04 12.31 0.123 211.2 - 212.7 

3 m0385 CML103 3 182.1 1.60E-04 16.45 0.115 180.0 - 195.3 

4 m0132 Tx303 1 263.2 5.97E-05 20.05 -0.121 253.0 - 263.6 

  418 
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Figure Captions 419 

Figure 1 δ13C and SLA Single Family Stepwise Regression QTL Mapping. δ13C QTL (A) 420 

were identified in NAM RIL families CML103 (black), CML333 (orange), and Tx303 (grey) but 421 

not in NC358 (blue). Specific leaf area (SLA) QTL (B) were identified in NAM RIL families 422 

CML103 (black) and Tx303 (grey). Significance thresholds (dashed horizontal line) were 423 

determined by 200 permutations and an alpha of 0.05. 424 

 425 

Figure 2 Pearson’s r Correlations. Correlations of mean phenotypic values using complete 426 

observations and Holm’s method to adjust p-values for multiple testing. The heat map shows no 427 

strong correlations between δ13C mean values and element mean values. δ13C and Mo have a 428 

significant p-value (p = 6.745E-05, r = 0.18). 429 

 430 

Figure 3 Element Single Family Stepwise Regression QTL Mapping. QTL mapping 431 

identified 28 QTL across 12 different elements. Significant QTL (alpha = 0.05) for each element 432 

are plotted. QTL location is shown across the 10 maize chromosomes (cM) on the x-axis. Dashes 433 

indicate a significant QTL, with the NAM RIL family in which the QTL was found designated 434 

by color; CML103 (black), CML333 (orange), Tx303 (grey), NC358 (blue). All dashes are the 435 

same length for visibility. 436 

 437 

Supplemental Figure 1 NAM RIL Transgressive Segregation. NAM RIL families CML103 438 

(A), CML333 (B), NC358 (C), and Tx303 (D) were sorted by δ13C and plotted. Parental lines are 439 

shown in red. 440 

 441 

Supplemental Figure 2 Element and δ13C Full Correlation Matrix. A full correlation matrix 442 

of element and δ13C mean values is show. The diagonal displays histograms of each dataset. 443 

Pearson’s r is shown in the upper panel. Scatter plots and best fit line are shown in the lower 444 

panel. 445 

 446 

Supplemental Figure 3 Element QTL Mapping by Chromosome. Significant element QTL 447 

are shown by maize chromosomes 1 through 10 on the x-axis (in cM). Each NAM RIL family is 448 

represented by a symbol; CML103 (○), CML333 (x), NC358 (□), and Tx303 (Δ). Each element 449 
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is designated by color. Significance thresholds (dashed horizontal line) were determined using 450 

200 permutations, alpha=0.05 for each QTL independently. 451 

 452 

Supplemental Figure 4 Genome Wide Association Study for δ13C. Manhattan plot showing 453 

significance of SNPs derived from a mixed linear model using the Bayesian information criterion 454 

to select the optimal number of principal components. The significance threshold represents the 455 

Bonferroni correction of familywise error rate.  456 
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Figure 1:

Figure 1 δ13C and SLA Single Family Stepwise Regression QTL Mapping. δ13C QTL (A) 

were identified in NAM RIL families CML103 (black), CML333 (orange), and Tx303 (grey) 

but not in NC358 (blue). Specific leaf area (SLA) QTL (B) were identified in NAM RIL 

families CML103 (black) and Tx303 (grey). Significance thresholds (dashed horizontal line) 

were determined by 200 permutations and an alpha of 0.05.
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Figure 2:

Figure 2 Pearson’s r Correlations. Correlations of mean phenotypic values using complete 

observations and Holm’s method to adjust p-values for multiple testing. The heat map shows 

no strong correlations between δ13C mean values and element mean values. δ13C and Mo have 

a significant p-value (p = 6.745E-05, r = 0.18).
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Figure 3:

Figure 3 Element Single Family Stepwise Regression QTL Mapping. QTL mapping 

identified 28 QTL across 12 different elements. Significant QTL (alpha = 0.05) for each 

element are plotted. QTL location is shown across the 10 maize chromosomes (cM) on the x-

axis. Dashes indicate a significant QTL, with the NAM RIL family in which the QTL was 

found designated by color; CML103 (black), CML333 (orange), Tx303 (grey), NC358 (blue). 

All dashes are the same length for visibility.
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Figure S1:

Supplemental Figure 1 NAM RIL Transgressive Segregation. NAM RIL families CML103 

(A), CML333 (B), NC358 (C), and Tx303 (D) were sorted by δ13C and plotted. Parental lines 

are shown in red.

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.12.989509doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.989509


Figure S2:

Supplemental Figure 2 Element and δ13C Full Correlation Matrix. A full correlation 

matrix of element and δ13C mean values is show. The diagonal displays histograms of each 

dataset. Pearson’s r is shown in the upper panel. Scatter plots and best fit line are shown in the 

lower panel.
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Figure S3:

Supplemental Figure 3 Element QTL Mapping by Chromosome. Significant element QTL 

are shown by maize chromosomes 1 through 10 on the x-axis (in cM). Each NAM RIL family 

is represented by a symbol; CML103 (○), CML333 (x), NC358 (□), and Tx303 (Δ). Each 

element is designated by color. Significance thresholds (dashed horizontal line) were 

determined using 200 permutations, alpha=0.05 for each QTL independently.
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Figure S4:

Supplemental Figure 3 Element QTL Mapping by Chromosome. Significant element QTL 

are shown by maize chromosomes 1 through 10 on the x-axis (in cM). Each NAM RIL family 

is represented by a symbol; CML103 (○), CML333 (x), NC358 (□), and Tx303 (Δ). Each 

element is designated by color. Significance thresholds (dashed horizontal line) were 

determined using 200 permutations, alpha=0.05 for each QTL independently.
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