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1 Introduction 

Healthcare institutions, such as general practitioner offices, hospitals, and laboratories, collect 
large amount of health data about individuals. Health data reuse has enormous potential for 
improvement of healthcare quality1 but raises legitimate privacy concerns from different 
stakeholder perspectives. 
 
The main goal of the ASCLEPIOS project is to design and develop an e-health framework that 
will allow patients to store and share their health data in a secure and privacy-preserving way. 
The WP2 “Operations on Encrypted Health Data and Privacy-Preserving Health Data-Driven 
Analytics” focuses on the appropriate mechanisms for processing, storing, and sharing data in a 
secure and privacy-preserving way. In addition, WP2 provides a design of the component allowing 
authorized stakeholders to perform analytics without breaching users’ privacy.  
 
The deliverable is composed of two parts. The first part describes the results of Task 2.5 “Personal 
Health Data Descriptive Analytics at cross-cloud service provider (CSP) level” where we have 
developed a tool called Emnet that executes statistics on data distributed across multiple data 
custodians within a CSP or across multiple CSPs while protecting the privacy of healthcare 
institutions and patients. The tool is developed based on the security and privacy requirements of 
the ASCLEPIOS project. 
  
The second part of the deliverable reports the result of Task 2.6 “Data Owners’ Privacy Analytics”, 
which contains a set of analytic functions that allow data owners and data controllers to assess 
the efficacy of the defined access control policies and learn potential improvements for protecting 
privacy-sensitive data in the medical records stored on the cloud. The metrics provided by these 
analytic functions are based on logs collected during data processing, including querying, 
encryption and decryption methods used, processing times, access requests, grants, denials and 
the profile of a person who processed the data. These provide the data processing transparency 
and auditability required by the general data protection regulation (GDPR).                                        
  

                                  

                      

           

                                                 
1 Budrionis A, Bellika JG. The learning healthcare system: where are we now? A systematic review. J Biomed Inform. 
2016.  
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2 Personal Health Data Descriptive Analytics at cross-CSP 

level 

2.1 Introduction 

Health data reuse, which refers to the use of data for purposes other than those for which the 
data were initially collected, has enormous potential for improvement of healthcare quality1. 
However, it raises legitimate privacy concerns from different stakeholders. The reuse of health 
data is guided by a variety of controls from both legal and ethical perspectives, such as privacy 
rights, data protection regulations, and duties of confidentiality2. But legal measures, such as the 
GDPR, pose challenges for the effective reuse of health data3,4. Data reuse techniques must 
protect the security and privacy of the people and organizations these data represent5. 
 
The common approach for privacy-preserving processing of data distributed across multiple data 
sources is a centralized collection of data where each data source de-identifies its data before 
disclosure. De-identification requires a balance between data utility and privacy where strong 
privacy protection necessitates significant alterations to the data that considerably reduces the 
data utility6. 
 
Privacy-preserving distributed statistical computation (PPDSC), also known as privacy-preserving 
distributed data mining (PPDDM), is an emerging approach for processing data distributed across 
multiple data sources and protecting privacy7,8,9,10. PPDSC considers the problem of running 
statistical algorithms on confidential data divided across two or more different data sources 
without allowing any party to view the private data of another data source. This method reveals 

                                                 
2 The Nuffield Council on Bioethics (NCOB). The collection, linking and use of data in biomedical research and health 
care: ethical issues. The Nuffield Council on Bioethics (NCOB); 2015.  
3 Kobayashi S, Kane TB, Paton C. The privacy and security implications of open data in healthcare. Yearb Med Inform. 
2018.  
4 Malin B, Goodman K, Section SE for the IYS. Between Access and Privacy: Challenges in Sharing Health Data. Yearb 
Med Inform. 2018.  
5 Holmes J, Soualmia L, Séroussi B. A 21st century embarrassment of riches: the balance between health data access, 
usage, and sharing. Yearb Med Inform. 2018. 
6 Dankar FK, El Emam K, Neisa A, Roffey T. Estimating the re-identification risk of clinical data sets. BMC Med Inform 
Decis Mak. 2012;12:66. 
7 Aldeen YAAS, Salleh M, Razzaque MA. A comprehensive review on privacy preserving data mining. SpringerPlus. 
2015. 
8 Aggarwal CC, Yu PS. A general survey of privacy-preserving data mining models and algorithms. Privacy-preserving 
data mining. New York: Springer; 2008. 
9 Kantarcioglu M. A survey of privacy-preserving methods across horizontally partitioned data. Privacy-preserving data 
mining. New York: Springer; 2008. 
10 Vaidya J. A survey of privacy-preserving methods across vertically partitioned data. Privacy-preserving data mining. 
New York: Springer; 2008. 
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statistics generated from the combined data for a group of data sources, which does not reveal 
sensitive information about the input. 
 
PPDSC is a special case of a long-studied problem in cryptography called secure multiparty 
computation (SMC). The field of SMC deals with the question of how to securely compute a 
functionality on the combined data for a group of data sources without revealing anything apart 
from the output. However, it does not consider the question of how much information about the 
input is revealed by that output11. 
 
Task 2.5 aims to design a solution for running statistical analysis on data distributed across 
multiple data sources such as healthcare institutions while protecting the privacy of all 
stakeholders, such as patients, healthcare professionals and healthcare institutions. The 
developed solution should also scale to a large number of data sources and records to be used 
in practice. 
 
This section describes the architectural design of a PPDSC tool that supports descriptive statistics 
on data horizontally partitioned among three or more data sources. We also provide a review of 
relevant literature that guided our design choice.  

2.2 Background 

SMC protocols should remain secure even when an adversarial entity controls some subset of 
the involved parties and wishes to attack the protocol execution. The parties under the control of 
the adversary are called corrupted and follow the adversary’s instructions. SMC protocols are 
designed with a security model defined with a set of parameters such as (a) cryptographic 
assumptions, (b) acceptable adversarial behavior, (c) maximum number of corrupted parties, (d) 
computational bound for an adversary, and (e) when and how the adversary corrupts participating 
parties11. The next subsections describe the necessary background for the PPDSC tool presented 
in this document.  

2.2.1 Adversarial models 

There are three common types of adversarial behaviours11. 
 
The semi-honest adversarial model assumes that even if corrupted parties follow a computation 
protocol specification, the adversary may try to use the internal state of the corrupted parties, 
including the messages exchanged during the protocol execution, to learn private information of 
other uncompromised parties. 
 
The malicious adversarial model considers that corrupted parties arbitrarily deviate from the 
specifications of a protocol to learn private information of uncompromised parties. Malicious 
adversarial model uses cryptographic techniques to ensure parties follow the protocol steps. 

                                                 
11 Lindell Y, Pinkas B. Secure multiparty computation for privacy-preserving data mining. J Priv Confidentiality. 2009. 
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The covert adversarial model considers that an adversary may also arbitrarily deviate from the 
protocol specifications, but it does not want to be caught cheating. In this adversarial model, 
cryptographic techniques are used to ensure that uncompromised parties can detect adversarial 
behavior with some probability. 
 
Protocols that are considered secure against semi-honest adversaries provide better efficiency 
and scalability by reducing the privacy guarantee. The semi-honest adversarial model is suitable 
for the settings in which parties are trusted to follow a computation protocol specification but must 
run a secure protocol because of legal restrictions for data sharing. This model is also useful to 
prevent accidental leakage. The security guarantee of semi-honest adversarial model also 
ensures that an adversary that gained access to a party’s database after the execution of a secure 
protocol cannot learn private information about legitimate parties11. Therefore, a semi-honest 
adversarial model provides a sufficient privacy guarantee in our context while enabling efficient 
and scalable computation. 

2.2.2 Computation models 

In SMC protocols, a group of parties jointly executes a set of algorithms on the input data of two 

or more data sources. The most common computation models are the following12,13: 

 
● Naïve computation model: data sources jointly execute a set of algorithms on their data. 
● Third-party aided computation model: one or more third parties aid data sources to 

achieve more efficient computation. Protocols make assumptions on the trustworthiness 
of the third parties, such as the third parties have semi-honest adversarial behavior and 
do not collude with data sources.  

● Outsourced computation model: data sources share their private data with one or more 
third parties where the third parties can execute statistics without learning anything about 
individual records. Data sources share their data using secret sharing schemes (SSS)14,15 
and homomorphic encryption (HE)16,17. 

 
Naïve and third-party aided computation models maintain access control of data sources where 
they can decide who can access a specific dataset, when the dataset can be accessed, what 
analysis can be performed on the dataset, and so on. However, the third-party aided computation 
model enables more efficient computation. In contrast, data owners do not have control on their 

                                                 
12 Bohensky MA, Jolley D, Sundararajan V, Evans S, Pilcher DV, Scott I, et al.  Data Linkage: A powerful research tool 
with potential problems. BMC Health Serv Res 2010; 10:346. 
13 Solove DJ. A taxonomy of privacy. Univ Pa Law Rev 2006:477–564 
14 Bogdanov D, Niitsoo M, Toft T, Willemson J. High-performance secure multi-party computation for data mining 
applications. Int J Inf Secur 2012. 
15 Beimel A. Secret-sharing schemes: a survey. In: Chee YM, Guo Z, Shao F, Tang Y, Wang H, Xing C, editors. 
Coding Cryptol., Berlin, Germany: Springer; 2011. 
16 Paillier P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. Adv. Cryptol. — 
EUROCRYPT ’99, Berlin, Germany: Springer; 1999. 
17 Gentry C. A fully homomorphic encryption scheme. PhD thesis. Stanford University, 2009. 
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data once data is revealed to third parties with the outsourced computation model. Therefore, we 
considered third-party aided computation model for the PPDSC tool designed in this deliverable. 

2.2.3 Distributed data partitioning 

There are three data partitioning models that characterize data distributed across data sources. 
The models differ based on what attributes are collected and data subjects associated with the 
data sources. 
 
Horizontal partitioning model characterizes distributed data where data sources collect the same 
attributes for different sets of individuals. An example of horizontally partitioned data is data 
distributed across microbiology laboratories. In this deliverable, we assume that data sources 
collect records of distinct set of patients. 
 
In the vertical partitioning model, data sources collect different attributes for the same set of 
individuals. For example, a hospital and a primary care institution may collect different attributes 
for the same set of patients. 
 
Hybrid partitioning model is a combination of vertically and horizontally partitioned data.  

2.3 Secure summation protocols 

Many statistical problems can be decomposed into sub-functions, such as summation, 
multiplication, scalar product, and comparison, at various stages18,19. Therefore, secure protocols 
for these sub-functions can be used to build a wide variety of statistical problems while protecting 
privacy. The composition theorem shows that computing a function by composing secure sub-
protocols is secure20. The efficiency and scalability of the sub-protocols will have a significant 
effect on the overall performance. The PPDSC tool designed in this deliverable is based on 
decomposing statistical problems into sub-functions of summation forms and uses secure 
summation protocols as a building block. 
 
Secure summation protocols compute the summation of private values 𝒗𝒊 ∈ [𝟎, 𝒎) distributed 

across 𝑵 data sources without revealing private values apart from the aggregated result 𝒔 =
∑ 𝒗𝒊

𝑵
𝒊=𝟏 . Existing protocols vary on the building blocks they use, such as secret sharing21,22, 

                                                 
18 Kantarcioglu M. A survey of privacy-preserving methods across horizontally partitioned data. Privacy-preserving data 
mining, New York, NY, USA: Springer; 2008. 
19 Clifton C, Kantarcioglu M, Vaidya J, Lin X, Zhu MY. Tools for privacy preserving distributed data mining. ACM 
SIGKDD Explor News; 2002. 
20 Canetti R. Universally composable security: a new paradigm for cryptographic protocols. Proc. 42nd IEEE Symp. 
Found. Comput. Sci., IEEE; 2001, p. 136–45. 
21 Bogdanov D, Niitsoo M, Toft T, Willemson J. High-performance secure multi-party computation for data mining 
applications. Int J Inf Secur 2012. 
22 Beimel A. Secret-sharing schemes: a survey. In: Chee YM, Guo Z, Shao F, Tang Y, Wang H, Xing C, editors. 
Coding Cryptol., Berlin, Germany: Springer; 2011. 
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homomorphic encryption23,24, and randomization of private values. The following subsections 
review secure summation protocols that are secure against semi-honest adversaries and based 
on naïve and third-party aided computation models since these computation models enable data 
owners to maintain access control of their data, which is the objective of the ASCLEPIOS project. 

2.3.1 Secret sharing-based secure summation protocol 

A simple secure summation protocol is based on the naïve computation model and a linear secret 
sharing scheme. Let us consider the algorithm 𝑺𝒉𝒂𝒓𝒆(𝒗𝒊) (it is also represented as ⟦𝒗𝒊⟧) that 

takes a secret value 𝒗𝒊 and splits into 𝑵 shares (𝒗𝟏
𝒊 , 𝒗𝟐

𝒊 , … , 𝒗𝑵
𝒊 ), and 𝑹𝒆𝒄(𝒗𝟏

𝒊 , 𝒗𝟐
𝒊 , … , 𝒗𝑵

𝒊 ) that 

recreates a secret value from some or all the shares. The protocol has the following steps: 
 

1. Data source 𝐷𝑖 runs 𝑆ℎ𝑎𝑟𝑒(𝑣𝑖) = (𝑣1
𝑖 , 𝑣2

𝑖 , … , 𝑣𝑁
𝑖 ) algorithm, where 1 ≤ 𝑖 ≤ 𝑁 

2. 𝐷𝑖 keeps one share 𝑣𝑖
𝑖 and sends 𝑣𝑗

𝑖 to 𝐷𝑗, where 𝑗 ∈ [1, 𝑁] and 𝑖 ≠ 𝑗  

3. 𝐷𝑖 locally computes the summation of shares 𝑠𝑖 = 𝑣𝑖
1 + 𝑣𝑖

2 + ⋯ + 𝑣𝑖
𝑁 

 
Then, values 𝒔𝟏, 𝒔𝟐, … , 𝒔𝑵 that are distributed across the data sources represent a secret share of 

the sum, 𝒔 = ∑ 𝒗𝒊
𝑵
𝒊=𝟏 . The share values are then collected, and the summation result is 

constructed by running 𝑹𝒆𝒄(𝒔𝟏, 𝒔𝟐, … , 𝒔𝑵). 
 

The protocol has a quadratic communication complexity 𝑶(𝑵𝟐). However, if 𝑵 − 𝟏 data sources 

collude, they can find a private value of data source 𝑫𝒊. 

2.3.2 Homomorphic encryption-based secure summation protocol 

The secure summation protocol proposed in Paillier cryptosystem25 is designed based on the 
naïve computation model and additive HE23. The protocol has the following steps:  
 
1. The input parties form a ring topology, 𝐷1 → 𝐷2 → ⋯ → 𝐷𝑁  → 𝐷1 

2. 𝐷1 creates an additive HE public and private key pair and sends the public key to all data 
sources  

3. 𝐷1 encrypts its input 𝑣1, 𝐸𝑝𝑘+(𝑣1), and sends the result to 𝐷2  

4. Data source 𝐷𝑖 performs the following tasks, where 𝑖 ∈ [2, 𝑁 − 1] 

a. Receives 𝐸𝑝𝑘+(∑ 𝑣𝑙
𝑖−1
𝑙=1 ) from 𝐷𝑖−1 

b. Adds 𝐸𝑝𝑘+(𝑣𝑖) to 𝐸𝑝𝑘+(∑ 𝑣𝑙
𝑖−1
𝑙=1 ) and sends the result to 𝐷𝑖+1 

5. 𝐷𝑁 adds 𝐸𝑝𝑘+(𝑣𝑁) to 𝐸𝑝𝑘+(∑ 𝑣𝑙
𝑁
𝑙=1 ) and sends the result to 𝐷1 

6. 𝐷1 decrypts 𝐸𝑝𝑘+(∑ 𝑣𝑙
𝑁
𝑙=1 ) using the private key to get the actual summation result, ∑ 𝑣𝑙

𝑁
𝑙=1  

                                                 
23 Paillier P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. Adv. Cryptol. — 
EUROCRYPT ’99, Berlin, Germany: Springer; 1999. 
24 Gentry C. A fully homomorphic encryption scheme. PhD thesis. Stanford University, 2009. 
25 Kantarcioglu M. A survey of privacy-preserving methods across horizontally partitioned data. Privacy-preserving 
data mining. New York, NY, USA: Springer; 2008. 
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The protocol has a linear communication complexity 𝑶(𝑵). The protocol remains secure if 𝑫𝟏 is 

honest. If 𝑫𝟏 and 𝑫𝟑 collude, they can find a private value of data source 𝑫𝟐. 

2.3.3 Non-cryptographic secure summation protocols 

The secure sum protocol proposed in26,27 is based on a non-cryptographic technique, obscuring 
secret values with a random number, and the naïve computation model. The protocol has the 
following steps:  
 
1. The input parties form a ring topology, 𝐷1 → 𝐷2 → ⋯ → 𝐷𝑁  → 𝐷1 

2. 𝐷1 generates a random value 𝑅 ∈ [0, 𝑚)  

3. 𝐷1 adds 𝑅 to its secret value 𝑣1 and sends 𝑠1 = (𝑅 + 𝑣1) mod 𝑚 to 𝐷2 

4. Input party 𝐷𝑖 performs the following tasks, where 𝑖 ∈ [2, 𝑁 − 1] 

a. Receives 𝑠𝑖−1 = (𝑅 + ∑ 𝑠𝑙
𝑖−1
𝑙=1 ) mod 𝑚 from 𝐷𝑖−1 

b. Computes the following and sends the result to 𝐷𝑖+1 

𝑠𝑖 = (𝑠𝑖−1 + 𝑣𝑖) mod 𝑚 = (𝑅 + ∑ 𝑠𝑙
𝑖−1
𝑙=1 ) mod 𝑚 

5. 𝐷𝑁 computes 𝑠𝑁 = (𝑠𝑁−1 + 𝑣𝑁) mod 𝑚 and sends the result to 𝐷1 

6. 𝐷1 computes the sum as follows and broadcasts the result to all input parties 

 𝑠 = (𝑠𝑁 − 𝑅) mod 𝑚 = (𝑅 + ∑ 𝑠𝑙
𝑁
𝑙=1 ) − 𝑅) mod 𝑚 

 
The non-cryptographic based protocol has linear communication complexity 𝑶(𝑵). This secure 

summation protocol does not protect the secret value of 𝑫𝒊, if 𝑫𝒊−𝟏 and 𝑫𝒊+𝟏 collude. Karr et al.28 
proposed an extension to the protocol that makes collusion difficult through constructing a ring 
topology at runtime and hiding it from the input parties. However, the protocol doubles the 
communication overhead.  
 
There is another extension29 to the non-cryptographic based protocol. It is based on the idea of 
onion routing where 𝑫𝟏 creates messages encapsulated in layers of encryption, and each input 

party 𝑫𝒊 peels away a single layer and identifies the previous input party 𝑫𝒊−𝟏 and the next input 

party 𝑫𝒊+𝟏. A digital signature is used to check whether the message originated from 𝑫𝟏. 

Identifying the previous input party 𝑫𝒊−𝟏 enables 𝑫𝒊 to verify that the message has come from the 

input party intended by 𝑫𝟏. Therefore, the data sources, except 𝑫𝟏, learn partial knowledge about 
the ring topology which makes collusion difficult.  
 

                                                 
26 Clifton C, Kantarcioglu M, Vaidya J, Lin X, Zhu MY. Tools for privacy preserving distributed data mining. ACM 
SIGKDD Explor News 2002. 
27 Karr AF, Lin X, Sanil AP, Reiter JP. Secure regression on distributed databases. J Comput Graph Stat 2005 
28 Karr AF, Fulp WJ, Vera F, Young SS, Lin X, Reiter JP. Secure, Privacy-Preserving Analysis of Distributed 
Databases. Technometrics 2007. 
29 Andersen A, Yigzaw KY, Karlsen R. Privacy preserving health data processing. IEEE 16th Int. Conf. E-Health 
Netw. Appl. Serv. Heal., IEEE; 2014. 
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The protocol has a linear communication complexity 𝑶(𝑵). However, compared to the original 
protocol, it introduces additional computation overhead of data encryption and decryption. The 
protocol remains secure if 𝑫𝟏 is honest. If 𝑫𝟏 and 𝑫𝟑 collude, they can find a private value of data 
source 𝑫𝟐; if 𝑫𝟏 colludes with 𝑫𝒊 and 𝑫𝒊+𝟐, they can learn private value of 𝑫𝒊+𝟏.  
 
Secured Intermediate iNformation Exchange (SINE)30 is also an extension to the non-
cryptographic based protocol. The protocol uses the aid of a semi-trusted third party, denoted as 
coordinator. A coordinator sends a random number 𝑹𝒄 to the first node. The first node adds its 
own random number to this value and passes the result to the second node. The second node 
adds its random number to the input and sends the result to the third node. Finally, the coordinator 
subtracts its own random number from the sum value received from the last data source (which 
is 𝑹𝒄  +  𝑹𝟏  +  𝑹𝟐  +  ⋯ +  𝑹𝑵) to find the summation of the random numbers of all data sources. 
In addition, each data source sends the summation of its private value and its random number 
𝑹𝒊 +  𝑺𝒊 to the coordinator. To find the summation of private values of all data sources, the 
coordinator calculates the sums of random numbers and private values received from each data 
sources and subtracts the sum of random numbers of all data sources. 
  
The protocol has a linear communication complexity 𝑶(𝑵). The protocol remains secure for 
computation between three of more data sources if the coordinator is uncompromised. If the 
coordinator colludes with 𝑫𝟐, they can find a private value of data sources 𝑫𝟏; if the coordinator 

colludes with 𝑫𝒊 and 𝑫𝒊+𝟐, they can learn private value of 𝑫𝒊+𝟏. However, it is easier to keep the 
coordinator secure from an outside adversary. 
 
The selection of a secure summation protocol involves a trade-off between security guarantee 
and computation efficiency. The reviewed protocols have a linear communication complexity 
𝑶(𝑵), except the secret-sharing based protocol that has a quadratic communication complexity 

𝑶(𝑵𝟐). The additive HE (Paillier cryptosystem) adds more computation overhead than the non-
cryptographic based protocol. The SINE and onion routing-based protocols provide better privacy 
guarantee than the original non-cryptographic based protocol. However, the symmetric 
cryptosystem used for the onion routing-based protocol introduces additional computation 
overhead.  
 
We have chosen the SINE protocol for the PPDSC tool because it makes a good tread-off 
between privacy guarantee and computation overhead. Note that the PPDSC tool is based on 
decomposing statistical problems into sub-functions where a sub-function is computed using a 
secure summation protocol. The PPDSC involves a coordinator that orchestrates the execution 
of a statistical problem based on the execution of its sub-functions. Therefore, a secure 
summation protocol based on third-party aided computation model, in which the third party 
receives the result, was required.  

                                                 
30 Wang S, Jiang X, Wu Y, Cui L, Cheng S, Ohno-Machado L. EXpectation Propagation LOgistic REgRession 
(EXPLORER): Distributed Privacy-Preserving Online Model Learning. J Biomed Inform 2013. 
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2.3.4 k-secure summation protocol 

The 𝒌-secure summation protocol is proposed for scaling existing secure summation protocols 
based on dividing data sources into groups, privacy peers, and the privacy peers in parallel 

execute multiple instances of a secure summation protocol31. Figure 1 shows an overview of the 
protocol’s execution31. The protocol has the following steps: 
 
1. The coordinator partitions the data custodians into groups of 𝑘 data custodians. Each group 

of data custodians is denoted as a privacy peer (𝑃𝑃𝑗). 

2. Data sources in each privacy peer 𝑃𝑃𝑗 jointly run a secure summation protocol to compute 

the summation of their private values 𝑣𝑖, {∑ 𝑣𝑖}𝑃𝑃𝑗
.  

3. Each privacy peer 𝑃𝑃𝑗 sends the summation result {∑ 𝑣𝑖}𝑃𝑃𝑗
 to the coordinator.  

4. The coordinator locally sums the values {∑ 𝑣𝑖}𝑃𝑃𝑗
 received from all privacy peers, 𝑠 = ∑ 𝑣𝑖

𝑁
𝑖=1 . 

 

Figure 1: An overview of the k-secure summation protocol. 

The protocol allows a data source to decide the minimum value of 𝑘 where it considers that 

revealing {∑ 𝑣𝑖}𝑃𝑃𝑗
, which is the result on the combined datasets of ≥ 𝑘 data custodians, has an 

acceptable privacy risk.  Therefore, if the underlying summation protocol is secure, the 𝑘-secure 
summation protocol is secure. 

                                                 
31 Yigzaw KY. Towards Practical Privacy-Preserving Distributed Statistical Computation of Health Data. UiT The 
Arctic University of Norway. PhD thesis. 2016. 
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2.4 Related works 

There are several frameworks for PPDSC. The frameworks differ by the following characteristics: 
 

(1) the statistical problems that are supported, 
(2) the number of data sources,  
(3) how data is partitioned between the data sources,  
(4) computation and security models,  
(5) building blocks, and  
(6) efficiency and scalability. 

 
Existing frameworks for PPDSC include Sharemind32, SEPIA33, and VIFF34. These frameworks 
are based on outsourced computation model. Sharemind and SEPIA are based on outsourcing 
computations to three third parties, whereas the VIFF is based on outsourcing to three or more 
third parties. The data sources use secret sharing to distribute their private data to a set of third 
parties, and the third parties execute statistical queries based on composing secure sub-protocols 
that compute on secret shared data. The frameworks use basic secure sub-protocols such as 
addition, multiplication, and comparisons. 

2.5 Security requirements and assumptions 

We assume horizontally partitioned data distributed across multiple healthcare institutions. We 
assume that information about patients, clinicians, and healthcare institutions cannot be disclosed 
outside the organization that originally recorded the data. Aggregated information about a 
clinician, such as performance indicators, is also private information. However, statistics 
generated from the combined data on a group of healthcare institutions are not considered 
sensitive information and, thus, can be disclosed. Aggregated statistics includes statistics 
generated for a group of clinicians from multiple healthcare institutions. Only aggregated statistics 
generated from at least 𝑘 number of health institutions can be revealed, where 𝑘 is defined by the 
privacy requirements of health institutions. 
 
We assume that outside adversaries may compromise a subset of healthcare institutions by 
breaking into the network or compromising employees. Parties under the control of an adversary 
are called corrupted parties. We relied on a standard security assumption called the semi-honest 
(honest-but-curious) adversarial model. 
 

                                                 
32 Bogdanov D, Laur S, Willemson J. Sharemind - A Framework for Fast Privacy-Preserving Computations. In: Jajodia 
S, Lopez J, editors. Proc. 13th Eur. Symp. Res. Comput. Secur. Comput. Secur., Berlin, Germany: Springer-Verlag; 
2008, p. 192–206. 
33 Burkhart M, Strasser M, Many D, Dimitropoulos X. SEPIA: Privacy-preserving Aggregation of Multi-domain Network 
Events and Statistics.  Proc. 19th USENIX Conf. Secur., Berkeley, CA, USA: USENIX Association; 2010, p. 15–15. 
34 Damgård I, Geisler M, Krøigaard M, Nielsen J. Asynchronous multiparty computation: Theory and implementation. 
Public Key Cryptogr 2009:160–179. 
 



                             D2.4 Data Owners’ and Personal Health Data Privacy-Preserving Analytics 

 

 Work Package 2          Page 23 of 73 

 

We considered a third-party aided computation model where the third party, denoted as the 
coordinator, satisfies the honest-but-curious adversarial model. The coordinator aids 
computations without learning private information. 

2.6 Architectural design 

Figure 2 shows the architectural design of Emnet, the privacy-preserving distributed statistical 
computation tool for computing on distributed health data. The tool contains software components 
running at the coordinator and healthcare institutions. The following subsections describe the 
software components and how the different components work together. 

 

Figure 2: The architectural design of a privacy-preserving distributed statistical computation tool 
for computing on distributed health data. 

2.6.1 Secure communication 

Secure communication between Emnet workers and Emnet coordinator are supported through a 
message-oriented middleware. The middleware contains a message broker, Apache Kafka35, and 
communication modules running on Emnet workers and Emnet coordinator. Kafka is a pull-based, 

                                                 
35 Apache Kafka documentation page https://kafka.apache.org/documentation/ 

 

https://kafka.apache.org/documentation/
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open-source stream-processing platform organizing messages into feeds called topics where 
clients subscribe and fetch messages from topics. A message sender publishes a message to a 
Kafka topic and the recipient consumes the message from the topic. 
 
Apache Kafka comes with a lot of security features out of the box including secure communication 
between message sender/recipient and Kafka. But anyone who can access Kafka can read the 
message. However, Emnet requires secure end-to-end communication. To achieve this 
requirement, the sender must encrypt the messages before pushing them over the wire into 
Kafka, and the recipient needs to decrypt them upon retrieval. To that end, we used a combination 
of asymmetric (RSA) and symmetric (AES) encryption schemes. Symmetric encryption is 
preferable for its efficiency. However, it requires that both the sender and receiver use the same 
key to encrypt or decrypt. Therefore, asymmetric encryption is used for a secure key exchange. 
Asymmetric encryption uses a separate key for encryption and decryption where the encryption 
key is public, and the decryption key is private. Therefore, anyone can encrypt a message and 
only the receiver is able to decrypt it. 
 

 

Table 4 shows a protocol for secure end-to-end encryption between two entities A and B. A key 
with two subscripts, KA,B, is a symmetric key shared by A and B. A key with one subscript, KA, is 
the public key of the corresponding entity. A private key is represented as the inverse of the public 
key. 𝐸𝐴𝐸𝑆 and 𝐸𝑅𝑆𝐴 are encryptions with AES and RSA, respectively, and 𝐷𝐴𝐸𝑆 and  𝐷𝑅𝑆𝐴 are 
decryptions. 
 
A message sender creates a random symmetric key and encrypts a message with a symmetric 

encryption algorithm; then encrypts the symmetric key with the public asymmetric key of the 
message consumer. Once the key is asymmetrically encrypted, the message sender sends it to 
Kafka together with the encrypted message. The recipient gets the encrypted key, decrypts it with 

its private key, and uses the key to decrypt the message (see  
Table 4). 
 

Message sender A Message receiver B 

1. KA,B: generate_symmetric_key()   

2. encrypt_message: 𝐸𝐴𝐸𝑆(message, KA,B)  

3. encrypt_key: 𝐸𝑅𝑆𝐴(KA,B, KB)  

4. sign_encrypted_message: Sign(𝐸𝐴𝐸𝑆(message, KA,B), 𝐾𝐴
−1)  

5. send_message: 𝐸𝐴𝐸𝑆(message, KA,B)||  𝐸𝑅𝑆𝐴(KA,B, 

KB)||Sign(𝐸𝐴𝐸𝑆(message, KA,B), 𝐾𝐴
−1) 

 

 6. verify_signature:Verify(Sign(𝐸𝐴𝐸𝑆(message, 

KA,B), 𝐾𝐴
−1), 𝐾𝐴,  𝐸𝐴𝐸𝑆(message, KA,B)) 
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 7. decrypt_symmetric_key: 𝐷𝑅𝑆𝐴(𝐸𝑅𝑆𝐴(KA,B, 

KB), 𝐾𝐵
−1) 

 8. decrypt_message: 𝐷𝐴𝐸𝑆(𝐸𝐴𝐸𝑆(message, KA,B), 
KA,B) 

 
Table 4: A secure end-to-end encryption protocol. 

2.6.2 Common data model 

We assume that participating healthcare institutions may store their data using different data 
formats and standards. Therefore, to be able to run standardized programs, the data of each 
healthcare institution must be transformed into a common data model, a data structure that 
standardizes data across healthcare institutions. Emnet uses an existing common data model 
defined in36. 

2.6.3 Emnet data analytics 

Emnet data analytics provides a restful web service interface to accept queries (dataset definition 
and statistics) from a local Emnet worker and return query results. A data analytics study 
computes on a subset of data collected by a data source. Therefore, Emnet allows defining the 
dataset for a data analytics project. Emnet data analytics accepts a data definition query identified 
with a project id and stores the query in the health database. Statistics query contains a project 
id that identifies the project dataset on which the query should be executed. Table 5 describes the 
endpoints provided by the Emnet data analytics web service interface. 
 

URL Parameters Output description 

POST /emnet/dataset/ <dataset definition> Returns the query status (if 
the query is successful). 

POST /emnet/statistics/ <statistics query> Returns statistics result. 

Table 5: Emnet data analytics service interface endpoints. 

2.6.4 Emnet worker 

Emnet worker receives queries (dataset definition and statistics) from Emnet coordinator and 
locally executes a query using Emnet data analytics services. Then, it jointly executes a secure 

                                                 
36 Bellika JG, Henriksen T, Hurley J, Marco-Ruiz L, Yigzaw KY, Hailemichael MA. Requirements to the data reuse 
application programming interface for electronic health record systems. Norwegian Centre for E-health Research; 
2017. Available at: https://ehealthresearch.no/rapporter/requirements-to-the-data-reuse-application-programming-
interface-for-ehr 

  

https://ehealthresearch.no/rapporter/requirements-to-the-data-reuse-application-programming-interface-for-ehr
https://ehealthresearch.no/rapporter/requirements-to-the-data-reuse-application-programming-interface-for-ehr
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summation protocol on the local results of a statistics query with other Emnet workers and 
coordinator. It also sends the status of a query to the Emnet coordinator. 

2.6.5 Emnet coordinator 

Emnet coordinator provides a restful web service interface to accept queries (dataset definition 
and statistics) from users. Emnet is planned for computing a large amount of data distributed 
across multiple healthcare institutions, therefore, it may require a long time to complete a 
computation. However, HTTP connections have a timeout because every open connection 
allocates a certain amount of memory at the server and the client. In addition, the longer the 
server takes to respond to the client, the higher the chances that the client may lose connection 
before the server has completed processing the result. 
 
Therefore, the web service interface includes two endpoints for submitting dataset definition and 
statistics queries that return a response telling the client where to find the results. The client may 
poll the resource to GET its current progress and will eventually receive the result once the query 
has completed. A query result is stored in the statistics database. Since the output has its own 
URI, it is possible to GET it multiple times. Table 6 describes the endpoints provided by the Emnet 
coordinator web service interface. 
 

URL Parameters Output description 

POST /emnet/dataset/ <dataset definition> Returns the project id. 

POST /emnet/statistics/ <statistics query> Returns the query id. 

GET /emnet/dataset/ {project_id} Returns the query status. 

GET /emnet/statistics/ {query_id} Returns the query status or 
statistics result. 

Table 6: Emnet coordinator web service interface endpoints. 

Emnet also allows users to configure the execution of queries on a specific time, which is stored 
in the statistics database. A query configuration contains a query definition and when the query 
should be executed.  
 
Emnet coordinator also implements functionalities required to jointly execute secure summation 
protocols with Emnet workers, which are required for statistical computations. The currently 
implemented secure summation protocols are SINE and 𝑘-secure summation protocols. 
 
Emnet coordinator broadcasts a query to Emnet workers and collects the status of a query from 
Emnet workers. The coordinator only requires the status of a dataset definition query. Section 2.7 
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provides detail on how statistical queries are executed. Sequence diagrams of Emnet for 
executing dataset definition and statistics queries are available in the  
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Annex. I: Sequence diagrams of Emnet.  

2.7 Statistical computations 

Emnet supports the computation of different statistics on data horizontally partitioned among 
healthcare institutions. Emnet is based on decomposing statistical problems into sub-functions of 
summation form that is evidenced by previous studiesError! Bookmark not defined.,Error! Bookmark not defined.. 
The following subsections describe how descriptive statistics such as count, variance, covariance, 
ratio, mean, standard deviation, percentile, min, max, and Pearson’s r are decomposed into sub-
computations of summation forms. 
 
Let us consider 𝑁 healthcare institutions that collect values of variables 𝑥𝑖 and 𝑦𝑖 for their patients 

and that the total number of patients is 𝑛. The description of the following subsections assumes 

that 𝑥 and 𝑦 are primary variables, and 𝑥𝑖 and 𝑦𝑖 are values of patient 𝑖 for these variables, 
respectively.  However, the techniques also support computations on derived variables.  

2.7.1 Summation 

The summation of private values 𝑥𝑖 of all patients across the healthcare institutions, 𝑠𝑢𝑚(𝑥)  =
∑ 𝑥𝑖

𝑛
𝑖=1 , can be computed in two steps (1) each participating healthcare institution 𝐷𝑗 locally 

computes the sum of the private values 𝑥𝑖 of its patients, and (2) a secure summation protocol is 
executed to aggregate the local results. 

2.7.2 Count 

Count statistics, for example the total number of eligible patients across the healthcare 
institutions, is computed in two steps (1) each participating healthcare institution 𝐷𝑗 locally counts 

the number of patients in their institution, 𝑐𝑜𝑢𝑛𝑡𝑗, and (2) a secure summation protocol is executed 

to aggregate the local results. 

𝑐𝑜𝑢𝑛𝑡 =  ∑ 𝑐𝑜𝑢𝑛𝑡𝑗

𝑁

𝑗=1

 

2.7.3 Ratio 

Ratio statistics, 𝑟𝑎𝑡𝑖𝑜, can be decomposed into 𝑓(𝑥) and 𝑓(𝑦). If 𝑓(𝑥) and 𝑓(𝑦) are in summation 
forms, they can be computed as described above. 

𝑟𝑎𝑡𝑖𝑜 =
𝑓(𝑥)

𝑓(𝑦)
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2.7.4 Mean 

Mean statistics, 𝑚𝑒𝑎𝑛 (𝑥), is a specialized form of ratio statistics where 𝑓(𝑥) is 𝑠𝑢𝑚 (𝑥) and 𝑓(𝑦) 

is 𝑐𝑜𝑢𝑛𝑡 which are both in summation forms. 

𝑚𝑒𝑎𝑛 (𝑥) =
𝑠𝑢𝑚 (𝑥)

𝑐𝑜𝑢𝑛𝑡
 

2.7.5 Variance 

Variance statistics (                     (Equation 1), 𝑣𝑎𝑟 (𝑥), can be decomposed into count, summation 
and mean statistics. The computation of count and mean statistics are straight forward as 
described above. Once the mean statistics is computed, each healthcare institution locally 

computes a derived variable (𝑥𝑖 − 𝑚𝑒𝑎𝑛 (𝑥))2 based on 𝑥𝑖 and 𝑚𝑒𝑎𝑛(𝑥). Then, the summation of 
the derived variable is computed as described above. 
 

𝑣𝑎𝑟 (𝑥)  =
1

𝑐𝑜𝑢𝑛𝑡 
∑(𝑥𝑖 − 𝑚𝑒𝑎𝑛 (𝑥))2

𝑛

𝑖=1

 
 

                     (Equation 1) 

 
Once a variance is calculated, standard deviation, 𝑠𝑑𝑣(𝑥), can be calculated by taking the square 
root of the variance. 

𝑠𝑑𝑣 (𝑥)  = √𝑣𝑎𝑟 (𝑥) 

2.7.6 Covariance 

Covariance (                      (Equation 2), 𝑐𝑜𝑣𝑎𝑟 (𝑥, 𝑦), can be decomposed into count, summation 

and mean statistics. The computation of count and mean of  𝑥 and 𝑦 are straight forward as 
described above. Once the mean statistics is computed, each healthcare institution locally 
computes two derived variables such as (1) (𝑥𝑖 − 𝑚𝑒𝑎𝑛 (𝑥)) based on 𝑥𝑖 and 𝑚𝑒𝑎𝑛(𝑥) and (2) 

(𝑦𝑖 − 𝑚𝑒𝑎𝑛 (𝑦)) based on 𝑦𝑖 and 𝑚𝑒𝑎𝑛(𝑦). Then, summations of the derived variables are 
computed as described above. 
 

𝑐𝑜𝑣𝑎𝑟 (𝑥, 𝑦)  =
1

𝑐𝑜𝑢𝑛𝑡 
∑(𝑥𝑖 − 𝑚𝑒𝑎𝑛 (𝑥))(𝑦𝑖 − 𝑚𝑒𝑎𝑛 (𝑦))

𝑛

𝑖=1

 
 

                      (Equation 2) 

2.7.7 Pearson’s r 

 (Equation 3 shows the Pearson’s r statistics. Error! Reference source not found. shows how 
Pearson’s r can be decomposed into covariance 𝑐𝑜𝑣𝑎𝑟 (𝑥, 𝑦) and variance statistics such as 

𝑣𝑎𝑟 (𝑥) and 𝑣𝑎𝑟 (𝑦). 
 

𝑟 (𝑥, 𝑦)  =
∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛 (𝑥))(𝑦𝑖 − 𝑚𝑒𝑎𝑛 (𝑦))𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛 (𝑥))2𝑛
𝑖=1 ∑ (𝑦 − 𝑚𝑒𝑎𝑛 (𝑦))2𝑛

𝑖=1

 
 

 (Equation 3) 
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𝑟 (𝑥, 𝑦)  =

∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛 (𝑥))(𝑦𝑖 − 𝑚𝑒𝑎𝑛 (𝑦))𝑛
𝑖=1

𝑐𝑜𝑢𝑛𝑡

√∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛 (𝑥))2𝑛
𝑖=1 ∑ (𝑦 − 𝑚𝑒𝑎𝑛 (𝑦))2𝑛

𝑖=1

𝑐𝑜𝑢𝑛𝑡

 

 
 

  

  

𝑟 (𝑥, 𝑦) =

∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛 (𝑥))(𝑦𝑖 − 𝑚𝑒𝑎𝑛 (𝑦))𝑛
𝑖=1

𝑐𝑜𝑢𝑛𝑡

√∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛 (𝑥))
2𝑛

𝑖=1 ∑ (𝑦 − 𝑚𝑒𝑎𝑛 (𝑦))
2𝑛

𝑖=1

𝑐𝑜𝑢𝑛𝑡 ∗ 𝑐𝑜𝑢𝑛𝑡

 

 

  

  

𝑟 (𝑥, 𝑦)  =  
𝑐𝑜𝑣𝑎𝑟 (𝑥, 𝑦)

√𝑣𝑎𝑟 (𝑥)𝑣𝑎𝑟 (𝑦)
 

     (Equation 4)    

2.7.8 Percentile 

Percentile 𝑝 is a measure used in statistics indicating the 𝑚th value below which 𝑝𝑡ℎ percentage 

of values among values distributed across healthcare institutions, where 𝑚 = (
𝑝

100
) ×  𝑛. For 

example, the 25th percentile among 200 values is the 50th value. Therefore, the problem of 
computing percentile is translated into computing the mth-ranked element. 
 
Unlike the statistics described above, the problem of finding an mth-ranked element involves 
multiple iterations. There has been an existing secure protocol for computing mth-ranked 
element37. We developed a new mth-ranked element protocol that converge with a significantly 
small number of iterations than the existing protocol37. 
 
The basic steps of the protocol are described in Table 7. However, the protocol’s optimization and 
its proofs will be published in a peer reviewed scientific publication. 
 
 
 
 
 
 
 
 
 

                                                 
37 Aggarwal G, Mishra N, Pinkas B. Secure computation of the kth-ranked element. In: Advances in Cryptology - 
EUROCRYPT 2004. Lecture Notes in Computer Science. Springer, Berlin, Heidelberg; 2004:40-55. 
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Input: Each healthcare institution 𝐷𝑗,  1 ≤ 𝑗 ≤ 𝑁, has a set of values ℛ𝑗 of 𝑛𝑗  elements. The parameters of the protocol are 

initialized as 𝑥lower = 𝑎 and  𝑥upper = 𝑏. The parameter 𝑛lower is the number of elements smaller than 𝑥lower and 𝑛upper is 

the number of elements less than or equal to 𝑥upper. Iteration count 𝑖 is initialized with 0. 

 
Output: the mth-ranked element. 

1. The coordinator sets the iteration number 𝑖 =  𝑖 +  1 

2. For each healthcare institution 𝐷𝑗: 

If there are elements of ℛ𝑗 that are in the range (𝑥lower, 𝑥upper] 

(a) compute the median of the elements of ℛ𝑗 in the range (𝑥lower, 𝑥upper], 𝑚𝑗
𝑖 

(b) set 𝑐𝑗
𝑖 to 1 

Else if there is no element of ℛ𝑗 are in the range (𝑥lower, 𝑥upper] 

(a) set 𝑐𝑗
𝑖 and 𝑚𝑗

𝑖 to 0 

3. The healthcare institutions and coordinator jointly execute a secure summation protocol for computing:  

(a) 𝑚𝑖 = ∑ 𝑚𝑗
𝑖𝑁

𝑗=1  

(b) 𝑐𝑖 = ∑ 𝑐𝑗
𝑖𝑁

𝑗=1  

4. The coordinator locally computes the pivot 𝑃 = 𝑚𝑖

𝑐𝑖⁄  and broadcast 𝑃 to all healthcare institutions 

5. Each healthcare institution 𝐷𝑗  locally computes the number of elements in ℛ𝑗 that are less than or equal to 𝑃, 

denoted 𝑙𝑗
𝑖 

6. The healthcare institutions and coordinator jointly execute a secure summation protocol for computing 𝑙𝑖 = ∑ 𝑙𝑗
𝑖𝑁

𝑗=1  

7. The coordinator:  

(a) outputs “the pivot 𝑃” if 𝑙𝑖 = nupper (This means the pivot P is the mth-ranked element) 

(b) if (𝑙𝑖 ≥ 𝑚), sets xupper = 𝑃 and nupper = 𝑙𝑖, broadcasts xupper to all Each healthcare institutions, and goes to 

step 1 

(c) if (𝑙𝑖 < 𝑚) sets xlower = 𝑃 and nlower = 𝑙𝑖, broadcasts xlower to all Each healthcare institutions, and goes to 
step 1 

 

Table 7: The secure mth-ranked element protocol. 

Table 8 presents the protocol’s steps for computation of the 3rd-ranked element among values 

distributed across three healthcare institutions. 

 𝑫𝟏 𝑫𝟐 𝑫𝟑 Coordinator 

Inputs ℛ1 = {1,3} 

 (𝑥lower, 𝑥upper] = (-10,10] 

ℛ2 = {4,6} 

(𝑥lower, 𝑥upper] = (-10,10] 

ℛ3 = {3,4,6} 

(𝑥lower, 𝑥upper] = (-10,10] 

𝑚 = 3 

(𝑥lower, 𝑥upper] = (-10,10] 

[𝑛lower, 𝑛upper] = [0,7] 

Iteration 𝑖 =  1    
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Step 3 𝑚1
1 = 2, 𝑐1

1 = 1 𝑚2
1 = 5, 𝑐2

1 = 1 𝑚3
1 = 4, 𝑐3

1 = 1  

Step 4    𝑚1 = 2 + 5 + 4 = 11 

    𝑐1 = 1 + 1 + 1 = 3 

    𝑃 = 11
3⁄ = 3.667 

 𝑃 = 3.667 𝑃 = 3.667 𝑃 = 3.667  

Step 5 𝑙1
1 = 2 𝑙2

1 = 0 𝑙3
1 = 1  

Step 6    𝑙1 = 2 + 0 + 1 = 3 

    𝑙1 ≥ 𝑚, 𝑥upper = 3.667, 𝑛upper = 3 

 𝑥upper = 3.667 𝑥upper = 3.667 𝑥upper = 3.667  

Iteration 𝑖 =  2    

Step 3 𝑚1
2 = 2, 𝑐1

2 = 1 𝑚2
2 = 0, 𝑐2

2 = 0 𝑚3
2 = 3, 𝑐3

2 = 1  

Step 4    𝑚2 = 2 + 0 + 3 = 5 

    𝑐 = 1 + 0 + 1 = 2 

    𝑃 = 5
2⁄ = 2.5 

 𝑃 = 2.5 𝑃 = 2.5 𝑃 = 2.5  

Step 5 𝑙1
2 = 1 𝑙2

2 = 0 𝑙3
2 = 0  

    𝑙2 = 1 + 0 + 0 = 1 

Step 6    𝑙2 < 𝑚, 𝑥lower = 2.5, 𝑛lower = 1 

 𝑥𝑙𝑜𝑤𝑒𝑟 = 2.5 𝑥𝑙𝑜𝑤𝑒𝑟 = 2.5 𝑥𝑙𝑜𝑤𝑒𝑟 = 2.5  

Iteration 𝑖 =  3    

Step 3 𝑚1
3 = 3, 𝑐1

3 = 1 𝑚2
3 = 0, 𝑐2

3 = 0 𝑚3
3 = 3, 𝑐3

3 = 1  

Step 4    𝑚3 = 3 + 0 + 3 = 6 

    𝑐3 = 1 + 0 + 1 = 2 

    𝑃 = 6
2⁄ = 3 

 𝑃 = 3 𝑃 = 3  𝑃 = 3  

Step 5 𝑙1
3 = 2 𝑙2

3 = 0 𝑙3
3 = 1  

Step 6    𝑙3 = 2 + 0 + 1 = 3 

    𝑙3 = 𝑛upper = 3, the 𝑚𝑡ℎ-ranked element 

is 𝑃 = 3 

 

Table 8: Example execution of the secure 𝟑𝒓𝒅-ranked element protocol among three healthcare 
institutions. 

2.7.9 Min 

Min value of values distributed across healthcare institutions can be computed with the mth-ranked 
element protocol for 𝑚 =  1. 

2.7.10 Max 

Max value of values distributed across healthcare institutions can be computed with the mth-
ranked element protocol for 𝑚 =  n. 
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2.8 Disclosure control 

Emnet ensures that statistics are computed on the combined data for a group of data sources 
without revealing anything apart from the output (Section 2.9). However, statistics results might 
lead to inferential disclosure given prior knowledge and repeated queries. For example, the result 
of a query counting the number of cancer patients age greater than 110 years may reveal the 
diagnosis of a patient given a background knowledge of the oldest person in the community. 

Statistical disclosure limitation techniques have been developed to protect inferential disclosure. 
These techniques are classified into query restriction where one or more queries are denied from 
a sequence of queries and perturbation where query results are perturbed in such a way that 
privacy is protected38. However, these techniques were developed for a centrally collected data. 
Further research is needed for developing disclosure control techniques for distributed data in the 
context of Emnet. 

2.9 Security analysis 

Emnet uses exiting secure summation protocols such as the SINE30 and the k-secure 
summation31 protocols. Their security is briefly discussed in Section 2.3. The composition theorem 
shows that computing a function by composing secure sub-protocols is secure20. Therefore, if a 
summation protocol is proved to be secure, then the computation of statistical problems such as 
count, variance, covariance, ratio, mean, standard deviation, Pearson’s r, percentile, min, and 
max, which are summation-based, is secure.  

2.10 Implementation 

Figure 2 shows the architectural design of Emnet. The Emnet data analytics service was 
implemented in Python, and its REST API was implemented using the Django Rest Framework39. 
The Emnet data analytics service computes against health data stored in a MySQL database 
using an existing common data model36. The Emnet worker and Emnet coordinator were 
implemented in Java using actor-based model, an abstraction that makes it easier to write 
concurrent, parallel, and distributed systems, provided by Akka framework40. We used Apache 

Kafka as a message broker35. In Annex. I: Sequence diagrams of Emnet, it is 

demonstrated how different actors jointly execute dataset definition and statistics queries. Emnet 
coordinator uses Spring Boot framework41 for the implementation of the REST API and Quartz 
library42 for schedule execution of queries. 

                                                 
38 Adam NR, Worthmann JC. Security-control Methods for Statistical Databases: A Comparative Study. ACM Comput 

Surv 1989; 21:515–556. 
39 Django REST framework https://www.django-rest-framework.org  
40 Akka framework https://akka.io/    
41 Spring Boot https://spring.io/projects/spring-boot  
42 Quartz job scheduling library http://www.quartz-scheduler.org/  

https://www.django-rest-framework.org/
https://akka.io/
https://spring.io/projects/spring-boot
http://www.quartz-scheduler.org/
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3 Data Owners’ Privacy Analytics 

Electronic Medical Records have been developed to integrate patient data and help healthcare 
professionals to make the best decisions43. Despite the benefits achieved with all the data 
collected, shared and available during healthcare practice, several challenges are faced by the 
healthcare organizations, namely, ensuring patient privacy and the right use of patient data44. 
Since 1995/96, the concern on personal data protection has been stated on laws such as the 
“Data Protection Act”45 and “Health Insurance Portability and Accountability Act”46. Nonetheless, 
in May 2018, the GDPR47 came to reinforce the processes of personal data protection. Under the 
GDPR, healthcare organizations have the obligation of demonstrating accountability for the 
fulfilment of the regulation requirements, which relies on their ability to demonstrate that 
appropriate procedural security measures are being applied and, most importantly, that they are 
compliant with the GDPR48. Moreover, the GDPR includes article 12 “Transparent information, 
communication and modalities for the exercise of the rights of the data subject”49, which is 
dedicated to data processing transparency for the patients, who are the data subjects of an EMR.  
 
Task 2.6 “Data Owners’ Privacy Analytics” is dedicated to addressing such transparency 
demands. Privacy analytics refers to providing information to the patients about the operations on 
their data, and to verify whether the data processing was legitimate. A patient's data processing 
event generates system and application logging information about how, by whom, and under what 
circumstances the event happened. For applications built using the ASCLEPIOS framework, this 
information is directly related to access control policies and how they are enforced. The policy 
enforcement component in ASCLEPIOS records logs of all attempted and authorized data access 
operations, and these logs are further used to implement privacy analytics functions that enable 
transparency towards the data subject and his/her representatives. A new module is proposed 
here to perform these analytics functions in the ASCLEPIOS framework, consolidating the work 
carried out in the context of Task 2.6.  
 
The task aims to research and define mechanisms for privacy analytics in the scope of 
applications built using the ASCLEPIOS framework. This essentially consists of logging and 
disclosing information about the patient data access operations (5W1H) to the patient or to the 

                                                 
43 R. J. Cruz-Correia, P. M. Vieira-Marques, A. M. Ferreira, F. C. Almeida, J. C. Wyatt, And A. M. Costa-Pereira, 
“Reviewing The Integration Of Patient Data: How Systems Are Evolving In Practice To Meet Patient Needs,” Bmc 
Med. Inform. Decis. Mak., 2007. 
44 A. Ferreira, R. Cruz-Correia, L. Antunes, D. Chadwick, “Access Control: How Can It Improve Patients Healthcare?” 
Stud. Heal. Technol. Inform., Vol. 127, Pp. 65–76, 2007. 
45 “Data Protection Act”, Official Journal L281.P.0031-0050,1995. 
46 U. States, “Health Insurance Portability and Accountability Act Of 1996. Public Law 104-191” Us Statut. Vol.110, 
Pp.1936 –2103, 1996. 
47 The General Data Protection Regulations (GDPR) are European Union regulations and can be found here: 
European Parliament and Council of European Union (2016) Regulation (EU) 2016/679.  
48 Correia, Liliana Sá, Ricardo Cruz Correia, and Pedro Pereira Rodrigues. "Illegitimate HIS access by healthcare 
professionals: scenarios, use cases and audit trail-based detection model." Procedia Computer Science 164 (2019): 
629-636. 
49  Art. 12 GDPR “Transparent information, communication and modalities for the exercise of the rights of the data 
subject” https://gdpr-info.eu/art-12-gdpr/  

https://gdpr-info.eu/art-12-gdpr/
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DPO. In ASCLEPIOS, these operations consist of data access requests that are performed 
through Attribute-Based Access Control (ABAC) and Attribute-Based Encryption (ABE) schemes.  
Therefore, in this task, the following main activities were carried out: 
 

● understand the components and communication flow for attribute-based access control 
considering data access requests, 

● identify the points for logging information about these requests, 
● define the information to be logged and the entity responsible for their storage and access 

control, 
● define mechanisms to provide privacy analytics functions to patients and DPOs, and offer 

these through a new ASCLEPIOS module, 
● considering the ASCLEPIOS framework was not available yet at the time of writing, 

develop a prototype implementation of the new module to demonstrate the proposed 
mechanisms. 

 
The results of these activities are documented in the next sections. 
 
The main goal of the ASCLEPIOS Privacy Analytics Module (APAM) is to provide tools to enable 
checking if data processing is taking place as intended and authorized. The module addresses 
the perspectives of two main stakeholders: the patient (data subject of the EMR) and the data 
protection officer (DPO) of the healthcare organization (data controller of the EMR). APAM 
includes functions to retrieve and present data access history, as well as functions to detect 
abnormal or illegitimate operations. Furthermore, APAM offers functions to discover exceptions 
that indicate erroneous or illegitimate access, as well as to assist in identifying the policies that 
permitted this access, such that these can be revised to prevent future illegitimate data 
processing. APAM offers a set of analytics functions that can be used by healthcare organizations 
to comply with the GDPR and to check the efficiency and effectiveness of the access control 
policies. Moreover, APAM offers interfaces based on the audit logs to reveal insights for the 
patient about the usage of his/her data in a user-friendly fashion through an interactive interface. 
 
This section describes the results of work carried out in Task 2.6. We first present the background 
information about the task and its motivation for GDPR compliance and Transparency enhancing 
tools in Section 5.1. In Section 5.2, we summarize the data flow for access control in ASCLEPIOS 
and discuss the opportunities for logging the data processing events. In Section 5.3, we define 
the audit logs, where they are stored and who can process them. In Section 5.4, we present the 
architecture and components of APAM and describe its prototype implementation with some 
demonstration of its use. In Section 5.5, we discuss the current results and future work.  

3.1 Background 

Here we cover various background aspects regarding privacy analytics: stakeholders, privacy 
auditability requirements, requirements raised for the ASCLEPIOS framework, and the GDPR 
transparency requirements.  
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3.1.1 Stakeholders 

The goal of Task 2.6 is "to define and serve a set of analytics to “data owners”, and to allow them 
to easily and visually understand how third parties (and which ones) manage their data". However, 
ownership over the electronic medical records is still an open debate between the patients and 
the healthcare providers.  According to the GDPR, there are four fundamental roles regarding 
personal data processing: (1) the data controller, (2) the data protection officer, (3) the data 
subject, and (4) the data processor. Below we discuss how these roles are exercised in a typical 
healthcare situation. 
 
(1) The data controller is the healthcare organization. Together with one or more organizations, it 
jointly determines “why” and “how” personal data should be processed. Healthcare organizations 
are classified as joint controllers and must enter an arrangement setting out their respective 
responsibilities for complying with the GDPR rules designed specifically for healthcare data 
processing. Moreover, the data controller determines who shall be responsible for compliance 
with data protection rules and how data subjects can exercise their rights in practice; in other 
words, to allocate responsibility50. 
 
(2) The data protection officer (DPO) is responsible for monitoring the compliance of the data 
controller to the GDPR. The DPO monitors all the core activities of the controller or the processor. 
This systematic and regular monitoring takes place at large scale due to the virtue of the nature, 
scope, and purposes of the data processing activity. The DPO requires expert knowledge and 
adequate access to logs about the personal data processed by the controller or the processor. 
Such data protection officers, whether they are an employee of the controller, should be able to 
perform their duties and tasks independently51. 
 
(3) The data subject, or the patient of the EMR, is an identifiable natural person who can be 
identified, directly or indirectly, by reference to a name, an identification number, location data, an 
online identifier or to one or more factors specific to the physical, physiological, genetic, mental, 
economic, cultural or social identity of that natural person52.  
 
(4) The data processor processes personal data only on behalf of the data controller. The 
processing of personal data in the healthcare case should also be regarded to be lawful when it 
is necessary to protect an interest essential for the life of the data subject or of another natural 
person. Processing is also necessary for compliance with a legal obligation to which the controller 
is subject, for the performance of a task carried out in the public interest or the exercise of official 
authority vested in the controller, and also when the data subject has given consent for the 
processing of his or her personal data for one or more specific purposes53. “Processing” means 

                                                 
50 GDPR Art. 29 data protection working party https://ec.europa.eu/justice/article-29/documentation/opinion-
recommendation/files/2010/wp169_en.pdf  
51 GDPR Recital 97 “Data Protection Officer” https://gdpr-info.eu/recitals/no-97/  
52 Art. 4 GDPR “Definitions” https://gdpr-info.eu/art-4-gdpr/  
53 Art. 6 GDPR “Lawfulness of processing” https://gdpr-info.eu/art-6-gdpr/  

 

https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2010/wp169_en.pdf
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2010/wp169_en.pdf
https://gdpr-info.eu/recitals/no-97/
https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/art-6-gdpr/
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any operation or set of operations performed on (sets of) personal data, whether by automated 
means, such as create, read, update, and delete (CRUD)54. 

3.1.2 Privacy auditability requirements 

The auditability requirements were collected and identified through a combination of interviews 
conclusions from the Deliverable D1.1 “Technical, Security, Healthcare and Data Privacy 
Requirements” and analyzing both legal requirements from the GDPR and standards (ISO 18308 
and ISO 27001). This collection of requirements guided the modelling of APAM and the 
ASCLEPIOS framework towards complying with the GDPR. 
 
H-AUD1. A cloud-based e-health framework SHALL maintain an audit trail of personal data 
processing.  
 
H-AUD2. A cloud-based e-health framework SHALL specifically identify access that has 
overridden policies (e.g., in a medical emergency situation). 
 
H-AUD3. A cloud-based e-health framework SHALL protect the integrity of the audit trail. 
 
H-AUD4. A cloud-based e-health framework SHALL enable authorized access to the audit trail. 
 
H-AUD5. A cloud-based e-health framework SHALL ensure the audit trail maintains records of 
disclosures of the audit trail itself." 

3.1.3 Transparency and trust 

Article 12 of the GDPR “Transparent information, communication and modalities for the exercise 
of the rights of the data subject”55 is dedicated to transparency for the data subject, which in the 
scope of ASCLEPIOS is the patient. The GDPR recitals transcript below explains the principle of 
the transparency, procedures for the exercise of the right of the data subjects and information 
obligations.  
 

• GDPR Recital 58 “The Principle of Transparency”56: “The principle of transparency 
requires that any information addressed to the public or the data subject be concise, easily 
accessible and easy to understand, and in clear and plain language and, additionally, 
where appropriate, visualization be used. Such information could be provided in electronic 
form, for example, when addressed to the public, through a website. This is of particular 
relevance in situations where the proliferation of actors and the technological complexity 
practice making it difficult for the data subject to know and understand whether, by whom 
and for what purpose personal data relating to him or her are being collected, such as in 

                                                 
54 Art. 4 GDPR “Definitions” https://gdpr-info.eu/art-4-gdpr/             
55 Art. 12 GDPR “Transparent information, communication and modalities for the exercise of the rights of the data 
subject” https://gdpr-info.eu/art-12-gdpr/  
56 GDPR Recital 58 “The Principle of Transparency” https://gdpr-info.eu/recitals/no-58/  

https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/art-12-gdpr/
https://gdpr-info.eu/recitals/no-58/
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the case of online advertising. Given that children merit specific protection, any information 
and communication, where processing is addressed to a child, should be in such a clear 
and plain language that the child can easily understand." 

● GDPR Recital 59 “Procedures for the Exercise of the Rights of the Data Subjects”57: 
"Modalities should be provided for facilitating the exercise of the data subject's rights under 
this Regulation, including mechanisms to request and, if applicable, obtain, free of charge, 
in particular, access to and rectification or erasure of personal data and the exercise of 
the right to object. The controller should also provide means for requests to be made 
electronically, especially where personal data are processed by electronic means. The 
controller should be obliged to respond to requests from the data subject without undue 
delay and at the latest within one month and to give reasons where the controller does not 
intend to comply with any such requests". 

● GDPR Recital 60 “Information Obligation”58: "The principles of fair and transparent 
processing require that the data subject be informed of the existence of the processing 
operation and its purposes. The controller should provide the data subject with any further 
information necessary to ensure fair and transparent processing, considering the specific 
circumstances and context in which the personal data are processed. Furthermore, the 
data subject should be informed of the existence of profiling and the consequences of 
such profiling. Where the personal data are collected from the data subject, the data 
subject should also be informed whether he or she is obliged to provide the personal data 
and of the consequences, where he or she does not provide such data. That information 
may be provided in combination with standardized icons to give in an easily visible, 
intelligible, and clearly legible manner, a meaningful overview of the intended processing. 
Where the icons are presented electronically, they should be machine-readable." 

 
In addition to the GDPR requirements about transparency, the requirements for the data access 
logs contents to fulfil the transparency requirements of data processing have been expressed 
according to the 5W1H principle model59,60 (what, when, where, by whom, why and how). These 
are explained in  
Table 9, which summarizes various recommendations found in the literature61.  
 
 
 
 
 

                                                 
57 GDPR Recital 59 “Procedures for the Exercise of the Rights of the Data Subjects” https://gdpr-info.eu/recitals/no-59/  
58 GDPR Recital 60 “Information Obligation” https://gdpr-info.eu/recitals/no-60/  
59 G. Yang, L. Cai, A. Yu and D. Meng, "A General and Expandable Insider Threat Detection System Using Baseline 
Anomaly Detection and Scenario-Driven Alarm Filters," 2018 17th IEEE International Conference On Trust, Security 
And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And 
Engineering (TrustCom/BigDataSE), New York, NY, 2018, pp. 763-773, doi: 
10.1109/TrustCom/BigDataSE.2018.00110   
60 Son, Jiseong et al. ‘Dynamic Access Control Model for Privacy-Preserving Personalized Healthcare in Cloud 
Environment’. 1 Jan. 2016: S123 – S129 
61 Abbas A, Khan SU. A review on the state-of-the-art privacy-preserving approaches in the e-health clouds. IEEE J 
Biomed Health Inform. 2014;18(4):1431-1441. doi:10.1109/JBHI.2014.2300846  

https://gdpr-info.eu/recitals/no-59/
https://gdpr-info.eu/recitals/no-60/
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What data was processed? The activity objects and the optional attributes; The 
logs must have the data subject identifier and the 
data source/entity. 

When did data processing happen? The event time or period. 

Where did data processing happen? The event location, such as device, IP, and 
department. 

Who processed the data? The processor, such as username, group ID and 
role. 

Why was the data processed? Logged events must be attributable to identified 
users for provenance purposes. The processor 
should provide the purpose of the request. It could 
be implied on the request form, or it needs to be 
submitted by the processor.  

How was the data processed? The activity type including the domain type and 
operation, such as CRUD.  

 
Table 9: 5W1H principle model applied to healthcare data processing for transparency purpose. 

 
In the literature, Explanation-for-trust62 is a term used for mechanisms to display how the data 
processing works and is secured, by revealing details of the measures used to guarantee 
compliance to the privacy requirements. Transparency-Enhancing Technologies (TETs)63 are 
mechanisms that provide information, or explanations, that can help to fulfil transparency 
requirements. TETs make the underlying processes more transparent and enable data subjects 
to understand better the implications that arise due to their decision to disclose personal data. 
Multiple approaches are using TET following preventive, detective, and corrective approaches.  
 
In the scope of this task, we consider two main stakeholders: patients and DPO. Below we 
summarize preventive, and detective approaches for increasing transparency for these 
stakeholders. 

Preventive approach  

Patients (or their legal representatives) need upfront information about what is being done with 
their data, and why this is done. From the patient perspective, this can be a concise statement 
that persons without a technical or legal background should be able to understand. In addition to 
this statement, a link to an online resource where more detailed information can be obtained. A 

                                                 
62 Pieters, W. Explanation and trust: what to tell the user in security and AI? Ethics Inf Technol 13, 53–64 (2011). 
https://doi.org/10.1007/s10676-010-9253-3  
63 Zimmermann, C. (2015). A categorization of Transparency-Enhancing Technologies. preprint arXiv:1507.04914. 

https://doi.org/10.1007/s10676-010-9253-3
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description of the process used to grant or deny access to medical records can also be presented 
to patients, as well as information about the security measures and the continued monitoring of 
possible confidentiality breaches. 
 
A DPO relies on the assessment of user action and interaction to monitor and prevent a potential 
privacy breach64. This can be done through (automatic) means to identify outlier behaviour 
followed by a review of access policies and the provisioning of attributes. This requires full access 
to data access activity logs. No clear malicious intent can be determined in the preventive 
approach. However, this process is fundamental to the detective approach discussed below.  

Detective approach  

Patients need basic statistics about how their data are being used following the 5W1H, as 
presented in  
Table 9. This enables the patient to detect whether access to the data conforms to expectation. 
For example, if his/her data is accessed from a healthcare center that the patient has not visited. 
This functionality can also be present in a user-friendly interface, where she/he checks if the 
access policies presented in the preventive approach are fulfilled. 
 
Detection of (potential) data breaches is an important task of a DPO. Using the DPOs expertise 
about legitimate access, the analysis of audit trail logs can be used to detect anomalous events, 
based on previously identified malicious events or outlier’s detection mechanisms. Such events 
can be investigated further and serve as input for future detection as well. 
 
Anomaly detection is the identification of rare observations that differ from the general distribution 
of a population. It is based on the premise that anomalous behaviour substantially deviates from 
normal behaviour65. The efficiency of detecting such behaviour when accessing sensitive data 
plays a crucial role in applying security methods. Conducting anomaly detection with support of 
machine learning tools can help further automation. Machine learning algorithms can be applied 
with or without supervision. Supervised anomaly detection requires a dataset with labelled data, 
both normal and anomalous samples66. As few to no labelled data are typically available, 
unsupervised learning methods are commonly used.  
 
Unsupervised anomaly detection, or outlier detection, requires no labelled data67. This type of 
method is not used to predict future behaviour, but to identify groupings and find rare events or 

                                                 
64 Boss, Scott R., et al. "If someone is watching, I'll do what I'm asked: mandatories, control, and information 
security." European Journal of Information Systems 18.2 (2009): 151-164. 
65 Alex Witkamp. Applying Unsupervised Learning on Hospital Audit Logs for Anomaly Detection. Master's thesis, 
University of Amsterdam, July 2020. 
66 Li Sun, Steven Versteeg, Serdar Boztas, and Asha Rao. Detecting anomalous user behaviour using an extended 
isolation forest algorithm: An enterprise case study. CoRR, abs/1609.06676, 2016. 
67 Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Statistical Learning. Springer 
New York, 2013. 
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anomalies based on the assumption that normal data instances are the most common. The 
approach can be extended through semi-supervised learning or novelty detection68.  

3.2 ASCLEPIOS access control data flow 

In this section, we present an overview of the ASCLEPIOS access control mechanisms for 
safeguarding the EMR systems, which are fully described Deliverable D3.2 “ASCLEPIOS Models 
Editor and Interpretation Mechanism”. We first summarize the most relevant concepts for the 
privacy analytics task, with a focus on the data and control flow that takes place for data access 
authorization. Secondly, we discuss a proposal for capturing logs in the ASCLEPIOS framework. 

3.2.1 Access Control Data Flow 

In ASCLEPIOS, data access control is based on two types: Attribute-based Access Control 
(ABAC) and Attribute-based Encryption (ABE). The ABAC mechanism protects data by restricting 
attempts/requests to process the EMR based on the attributes of the requestor as well as the data 
resource. The characteristics of requests, resources and access operations can dynamically 
involve contextual attributes. ABE is used along with SSE, to build a hybrid encryption scheme. 
First, a user generates a symmetric key for a Symmetric Searchable Encryption (SSE) scheme 
and encrypts her data locally before outsourcing them to the CSP to be stored in an encrypted 
database. Then, she encrypts the SSE key using ABE and binds a policy to the resulting 
ciphertext. The ciphertext is also uploaded to the CSP to be stored in the KeyTray enclave. Finally, 
if a user wishes to access the encrypted data, she first needs to request access to the encrypted 
key, which she will be able to decrypt if and only if her attributes satisfy the policy bound on the 
ciphertext of the symmetric key. 
 
The model in Figure 3 is a high-level representation of the data flows within the access control 
system on the ASCLEPIOS framework. It is based on two different layers of authorization control. 
First, the ABAC layer permits or denies access encrypted EMRs, governed by the policies defined 
through “ASCLEPIOS Models and PoLicies Editors” (AMPLE) which is described in Deliverable 
D3.2 “ASCLEPIOS Models Editor and Interpretation Mechanism”. Second, the ABE layer handles 
the encryption of the SSE key described on Deliverable D2.269. For each user and each access, 
the access control process depicted in Figure 3 is repeated. In this model, the User Interface 
represents an application that uses the ASCLEPIOS framework to implement secure access to 
the EMR.  
 
The access control process illustrated in Figure 3 goes as follows. First, a user authenticates 
through the communication user interface providing her credentials to the Registration Authority 
(RA). After being authenticated, the RA collects the user attributes from the attribute provisioner 
and sends them along with the authorization token and the user's ABE key to the user. For any 

                                                 
68 Xiaojin Zhu and Andrew B. Goldberg. Introduction to semi-supervised learning. Synthesis Lectures on Artificial 
Intelligence and Machine Learning, 3(1):1–130, January 2009. 
69 Ruben Groot Roessink, Arash Vahidi, Alexandros Bakas, Alexandr Zalitko, Antonis Michalas. Deliverable D2.2 
“Attribute-Based Encryption, Dynamic Credentials and Ciphertext Delegation and Integration in Medical Devices” 
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data processing request, the user attributes are passed on to the granular retrieval service that 
determines if access should be granted according to the defined policies. Upon gaining access 
permission from the ABAC policy enforcement, the user can start interacting with the system by 
sending CRUD requests to the granular retrieval. The data processing is allowed according to the 
users' access rights. After that, to be able to process the data, the user must decrypt the 
symmetric key using her ABE key, and then use the symmetric key to decrypt and encrypt data.  

 

Figure 3: Data flow diagram of ASCLEPIOS attribute-based access control mechanism. 

3.2.2 Logs capture 

The data flow model presented in Figure 3 was used for discussions to identify the best source 
and location to capture and store the audit logs. Within the current ASCLEPIOS setup, however, 
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no ASCLEPIOS services offer audit logs, mainly due to security concerns. Therefore, currently, 
the user interface is the only single point at which all information can be captured about how users 
access the EMR system.  
 
After interactions among the project partners, it was decided that the audit logs will be captured 
in the user interface and stored at the RA’s server because the RA already stores the user 
attributes and authenticates the users. Also, this also enables other components to consume them 
for monitoring and analytics. A potential component to use the audit logs from the RA is the 
“ASCLEPIOS Cybersecurity, Encryption and Access Analytics for Healthcare Providers” (CEAA) 
module presented in the Deliverable D2.3 “GDPR-compliant and Privacy-Preserving Analytics for 
Healthcare Providers”. The CEAA is responsible for delivering insights to system administrators 
about encryption and decryption activities, data access patterns, normal and abnormal 
behaviours, cyber threats, and security incidents. Note that CEAA does not cover analytics from 
the individual perspective of each patient but works based mainly on aggregated data expressing 
system usage. 
 
Figure 4 illustrates the current approach to capture and store audit logs about data processing 
events in the ASCLEPIOS framework. Note that responsibilities are split between the user 
interface and the RA. Upon logging in, a unique user ID is obtained from the user's attributes that 
qualify him/her for the ABAC engine. This ID is retrieved from the RA. Once the authenticated 
user receives the authorization token from the RA, she/he can start interacting with the system 
by sending CRUD requests to the police enforcement point, wherein the user requests access to 
an EMR. The information contained in the request is essential to characterize the data subject of 
the event, the requested data, the time and location of access, and the purpose of the access. 
The last part of the interaction that can be logged is the granting or denying of the CRUD request 
based on the ABAC engine and after based on the ABE key that was supplied.  
 

 
 

Figure 4: Proposal of interaction among the user interface and the Registration Authority, 
highlighting the moments for logging information regarding the process event. 

 
Note that the above is preliminary integration suggestions. In Work Package WP5 “Platform 
Integration and Finalization”, the connection and communication between the various 



                             D2.4 Data Owners’ and Personal Health Data Privacy-Preserving Analytics 

 

 Work Package 2          Page 45 of 73 

 

ASCLEPIOS components and the audit logs will be further analyzed and defined for future 
implementation. This might affect the way the logs are captured and their content. The APAM 
design and implementation documented below need to be revised when the integration aspects 
become clearer. 

3.3 Audit logs 

Audit logs are important to help data managers and DPOs to monitor data activities and detect 
potential security breaches. DPOs on healthcare organizations are interested in monitoring the 
audit logs to ensure that healthcare professionals follow all documented protocols and 
requirements. Audit logs also play an important role in transparency, as they form the resource 
that tracks information about the events related to the patient’s EMR and can be used to present 
to the patient what is being done with his/her data, when and how.  
 
In this section, we refer to the AuditEvent70 data model specified by FHIR71, which is a standard 
for exchanging healthcare information electronically. Then, we contextualize the audit event 
attributes presented on the standard, and the envisioned and expected attributes of the audit logs 
to be used in ASCLEPIOS, in particular by APAM, to support privacy analytics.  

3.3.1 FHIR AuditEvent model 

Our proposal is based on the FHIR standard for exchanging healthcare information electronically. 
The standard defines the data model for recording events that can be consumed for auditing, 
namely AuditEvent67 This model is intended for use by security and system administrators; 
security and privacy information managers, which in our case is the DPO, and for transparency 
toward the patient. All the actors involved in an auditable event should record an AuditEvent, for 
example, applications that access the medical record for consultation or modification. The FHIR 
AuditEvent structure offers fields such as event code, the action performed, purpose of use, the 
outcome that characterizes the event (fail, denial, or success), etc. 
 
Figure 5 shows the Unified Modeling Language (UML) diagram of FHIR AuditEvent67 and 
represents the structure of an AuditEvent entry. FHIR declares AuditEvent as a relational 
database with two main relationships: Agent and Entity. The Agent table contains the data 
processor attributes such as role, policies, name, location, the purpose of use, etc. And it can be 
extended with the Network information used by the agent to the event. The Entity table contains 
the attributes of the data processed, such as data type, data description, a query performed, etc. 
An Entity can be extended with the class Detail for extra attributes.  

                                                 
70 HL7 FHIR Audit Event https://www.hl7.org/fhir/auditevent.html  
71 HL7 FHIR https://www.hl7.org/fhir/  

https://www.hl7.org/fhir/auditevent.html
https://www.hl7.org/fhir/


                             D2.4 Data Owners’ and Personal Health Data Privacy-Preserving Analytics 

 

 Work Package 2          Page 46 of 73 

 

 

Figure 5: FHIR’s AuditEvent UML diagram 

3.3.2 Envisioned audit logs for ASCLEPIOS 

Here we describe the essential attributes that the audit logs must contain to achieve APAM’s 
objectives. FHIR’s AuditEvent67 specification defines most of them, and additional attributes can 
be extended in the model as a relationship. These two fundamental additional attributes are the 
healthcare professional Organization and Data Subject identification. These attributes will be used 
to implement access control to APAM services: the DPO must be able to process only the audit 
logs in which the Agent belongs to the DPO’s Organization. The same applies to the patient, who 
must be able to process only the audit logs in which she/he is the data subject. 
 

 

Table 10 presents the essential attributes. Note that this is a proposal that will be considered in 
WP5 during integration activities for ASCLEPIOS framework, and revised accordingly. 
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Attribute name Description 

Event type 
Provides a list of codable events. e.g. import/export, query, 
patient record, procedure record etc. 

Action 
Describes the actions which can be CRUD operations or an 
Execute action which represents the execution of some 
application's method or function. 

Time recorded 
Data-time or timestamp of when the event was saved in the audit 
log. FHIR also has an attribute named Period that represents the 
interval of time during which the action was performed. 

Period 
Start and end date-time or timestamp of the event. Can also be 
represented by a number. 

Outcome 
Describes the answer given to the event, e.g. permitted, denied, 
or failed.  

Outcome description 
FHIR enables describing the outcome result, and this should be 
used to explain if the outcome is related to the ABAC or the ABE.  

Purpose of use 
FHIR provides a list of possible codable purposes of events, e.g. 
Emergency treatment, Break the glass.  

Agent 

FHIR uses the term agent to represent the actor that performed 
the event and action, as well as the actor's attributes such as 
name, role, department, location, network address, etc. In our 
proposal, the agent is the data processor, who can be the 
healthcare professional or the patient  

Source 
FHIR defines the source as the system reporting in an event, 
which in our case is the healthcare application. 

Entity 
Object accessed or used and details about the data object, e.g., 
DICOM Image, Prescription, Medical Condition.  

Data subject 
FHIR does not specify the data subject of an event; however, we 
added the identifier of the data subject., which is the patient. The 
data subject can also be the agent of an event.  
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Organization 
We define healthcare organizations as a Type of the Agent and 
represent the Organization in a separate field. This enables 
access control for the DPOs to access the respective audit logs. 

 
Table 10: Envisioned audit logs attribute content. 

3.3.3 Envisioned privacy and analytics audit questions 

Below we show some examples of audit questions in Error! Reference source not found. that 

can be answered using the essential attributes from the audit logs listed in  

Table 10. These questions illustrate the type of questions about privacy analytics from the 
perspective of stakeholders, indicating functions to be supported by APAM. An exhaustive list of 
audit questions and metrics is out of scope here. Instead, we provide concrete insights into the 
information that needs to be extracted from the audit logs and the analytics tools necessary to 
process them. Note that many of the audit questions are in principle applicable by patients, 
regarding their own EMR, or a DPO, regarding the EMR of all or a group of patients in the 
Organization. The difference between the two is only the selected audit log entries where to apply 
the functions. Also note that, in practice, more complex filtering operations are expected, resulting 
in combinations of the presented questions. These questions served to inspire the APAM 
prototype implementation presented in Section 3.4. 
 
Table 11 demonstrates an example of privacy analytics audit questions and how the audit log 
attributes can be used to answer them. The envisioned analytics tools are represented in 
boldface.  
 

Stake- 
holder 

Audit question  Metrics and process to answer 

Patient or 
DPO 

How many and which 
organizations that requested 
access to the patient's EMR 
had access denied? 

Apply a filter to select Events with Outcome that 
was Denied or Failed. Group by Organization 
and count. Display name, counts and 
distribution of denied/failed events per 
organization (chart). 

Patient 
and DPO 

What is the most occurring 
purpose for the data access 
requests? 

Group the Events by the Purpose of use, and 
count. Display the Purpose of use with the 
highest count. 
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Patient 
and DPO 

Which and how many 
actions were done with the 
patient's EMR?  

Filter and group the Events by each CRUD 
Action and count. Display distribution of CRUD 
actions (chart) 

Patient 
and DPO 

Which professionals 
accessed the patient's EMR 
in this organization? Which 
roles do they have in the 
organization and to which 
departments they belong? 
What is the distribution? 

Filter Events for given Organization. Group by 
role and department of the Agents. Count and 
get the percentage for each role and 
department. Display distribution and counts 
(chart).  

Patient 
and DPO 

How long has lasted the 
access to the patient record? 
Provide min, max, and mean 
duration times. 

Retrieve Period for all Events and calculate 
Minimum, Average and Maximum duration. 
Display results. 

DPO 

How many access requests 
were performed from outside 
the organization? Provide 
region/city/country/contine
nt 

Filter Events where the Source location's 
information diverges from the Organization’s 
location. Count and calculate the percentage, 
display distributions. 

DPO 

Which professionals had the 
most access requests 
outcome as denied? Show 
the top 10. 

Filter Events by Outcome being failed or denied. 
Group by Agent identification (healthcare 
professional) and count. Display Agent 
identification for professionals with the ten 
largest counts. 

DPO 

Which data access events 
deviate from normal and 
should be verified? Show top 
100. 

Apply machine learning algorithms over the 
entire database and identify possible outliers. 
Sort them by the degree of deviation (e.g. 
suspicion level). Display information about the 
top 100 Events. 

 
Table 11: Example of privacy analytics audit questions. 

3.3.4 Audit logs access control 

Audit logs are related to sensitive EMR data sources, and they can disclose private information 
about the data subjects or the data processors (in this case, the patients and the healthcare 
professionals that accessed the information). For example, the knowledge that the patient’s EMR 
was accessed from the oncology department might reveal that the patient is suspected of having 
cancer. Also, logs can contain information that can be misused to derive security policies, for 
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example, through granted and denied requests. Even information that is disclosed in aggregated 
form might be revealing, for example, that no employees of a given department accessed a 
patient’s EMR, which could indicate a treatment mistake. Therefore, strict access control needs 
to be implemented to protect sensitive information both for patients and for healthcare 
professionals involved in the audit logs events. 
 
Audit logs serve a variety of tasks in an organization, from legal requirements to quality control 
and more technical security monitoring. It is possible that part of the log content can only be 
disclosed in the context of a certain task. Here we focus on the perspective of privacy analytics, 
which involves the perspectives of the DPO and the patient. 
 
At the organization level, the DPO can access and process every audit log event where the agent 
is one of the organization employees. At the patient level, the patient can access and process 
every audit log where she/he was the data subject. However, to protect the identity of the 
healthcare professional, the agent name must be anonymized using other identifications, such as 
the role, department, and organization. For example, the patient knows that a doctor from the 
oncology department of the Amsterdam UMC accessed her EMR, but she does not know the 
name of the doctor. 
 
Another important aspect is that nobody should be allowed to tamper or delete any event on the 
audit log. Moreover, every data processing of the audit logs must be traceable to guarantee the 
integrity and allow monitoring the access control policies to the audit logs in a system level. Those 
requirements are listed in the H-AUD3, H-AUD4 and H-AUD5 of the auditory requirements 
highlighted in the Subsection 5.1.2. We envision that ABAC should be used for the audit logs in 
ASCLEPIOS, but this will be defined in WP5. 

3.4 ASCLEPIOS Privacy and Analytics Module 

APAM is a toolkit for privacy analytics, acting as a TET and an analytics tool. The objective is to 
provide information about the processing events on the patients' EMR for two main stakeholders: 
the patient and the organization’s DPO.  
 
For the patient, APAM offers awareness and transparency about the policies implemented to 
safeguard the EMRs and metrics about all data processing activities on their EMRs. Moreover, 
APAM helps the organization’s DPO to understand the way in which the healthcare professionals 
(data processors), process the patients’ EMR, and to monitor if they follow the required security 
procedures. Through this monitoring, DPOs can detect misconduct and adapt access control 
policies.  
 
APAM offers tools to process the audit logs through user interfaces. It gives means for the patient 
and DPO to request metrics about the data processing on EMRs, and to analyze and visualize 
those metrics. Towards these goals, APAM has the following capabilities: 
 

● It offers calculation of metrics with predetermined functions,  
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● It enables specification of parameters for filtering the logs of interest, for example, patient, 
organization, or period,  

● It implements outlier detection methods that can highlight cases that should be 
investigated more closely, and in this manner guide the DPO to inspect possible deviations 
from adequate professional behaviour,  

● It provides visualization through charts commonly used to represent the metrics. 
 
In this section, we introduce the conceptual architecture of APAM and the constraints for the 
current implementation, which is not yet integrated with the ASCLEPIOS framework. Then, we 
present how we implemented the main components and the services of the current APAM 
prototype.  

3.4.1 Architecture 

The conceptual architecture of APAM assumes that the Registration Authority, which is the entity 
responsible for user authentication in the ASCLEPIOS framework, will store the audit logs. 
Moreover, the architecture was designed to enable applications to invoke APAM services and 
choose to present the responses of these services as part of the application interface or to use 
the APAM visualization interface through the web browser directly. 
 
Figure 6 presents the architecture of APAM in the ASCLEPIOS framework, also showing the main 
components it is connected to, namely the Registration Authority and the application User 
interface. The components running inside APAM rely on a shared data source, i.e. the audit logs 
held by the Registration Authority. APAM offers two ways to integrate with any application: the 
REST API and a web-based visualization interface. The REST API allows the healthcare 
application to interact with APAM by sending requests and using the responses for computing 
customized metrics and charts for visualization. Moreover, the patient and DPO can also directly 
use APAM’s visualization interface, which is a web interface running inside the APAM server that 
provides predefined charts.  
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Figure 6: Architecture diagram showing APAM (components in green), the Registration Authority 
(responsible for the audit logs), Data Access Policies Interpretation and Enforcement mechanism 

(responsible for access control), and the User Interface (application and web browser). 

3.4.2 Constraints 

Task 2.6 raised the requirements for auditability and the necessity of a single audit log data source 
in the ASCLEPIOS framework. Until that point, however, such logs were not considered as an 
integral part of the ASCLEPIOS framework. The development of APAM is directly related to the 
development of the audit log data source and the access control models that will be offered by 
other components of the ASCLEPIOS framework. Therefore, APAM’s development has been 
constrained by the early stage of considerations about logs in the project, and the start of 
integration efforts being carried out in WP5. This concerns the absence of a Registration Authority 
component, and therefore no audit logs database, as well as no defined policies for access control 
to the supposed logs.  
 
For demonstration purposes, we therefore implemented the components that should be provided 
by the ASCLEPIOS framework in the future. We created a database containing synthetic audit 
logs, however disregarding any access control mechanism. Such demonstration enables 
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illustrating privacy analytics tools and investigating alternatives for APAM implementation and its 
services.  

3.4.3 Implementation 

Figure 7 shows the software and services used to implement the prototype following the 
architecture presented in Figure 6. The audit logs database is placed inside APAM, and the 
visualization interface was expanded and implemented using generic packages Logstash72, 
Elasticsearch73 and Kibana74.  Below we present an overview of the services and libraries used 
to implement the APAM prototype. The full documentation and open source code of APAM will 
be available in the Gitlab repository75 of the ASCLEPIOS project.  

 

                                                 
72 Elastic Logstash https://www.elastic.co/logstash  
73 ElasticSearch https://www.elastic.co/elasticsearch/  
74 Elastic Kibana https://www.elastic.co/kibana  
75 ASCLEPIOS APAM REST API https://gitlab.com/asclepios-project/apam  

https://www.elastic.co/logstash
https://www.elastic.co/elasticsearch/
https://www.elastic.co/kibana
https://gitlab.com/asclepios-project/apam
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Figure 7: APAM’s prototype implementation diagram with services available and software used. 

The audit logs database was implemented using MySQL, and the analytical engine was 
implemented using the programming language Python. Moreover, we use Pandas76 and Scikit- 
learn77 libraries to perform regular statistics and analytics functions using machine learning 
algorithms. We created the web interface using Kibana and implemented a REST API using the 
Django Rest Framework39. Table 12 summarizes the services and their respective role in the 
prototype implementation.  
 

Services Role  

MySQL78  Database management system (DBMS) used to deploy the 

                                                 
76 Pandas https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html  
77 Scikit-learn https://scikit-learn.org/stable/  
78 MySQL WorkBench https://www.mysql.com/products/workbench/  

 

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://scikit-learn.org/stable/
https://www.mysql.com/products/workbench/
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audit logs. 

Logstash79 Feeds ElasticSearch with data from the database. In this case, 
from MySQL. 

ElasticSearch80 Indexes the data that is ingested into it and makes them 
available to Kibana 

Kibana81 Offers visualization for the data indexed by ElasticSearch. 

REST API Handles HTTP requests and returns the output data to 
applications. 

Analytics Engine Performs analytics functions on the data.  

Table 12: Services that compose APAM. 

There are two data flows in APAM from the audit logs until the end-user: by the REST API and 
by the web interface. First, the audit logs can be retrieved by the application through the REST 
API calls. An application performs a request to the REST API, which retrieves the audit logs from 
the database and processes them with the Analytics Engine functions. After processing the 
request, the REST API sends the response to the application in JSON format. Second, the logs 
can be consulted through an interactive web interface, using functions that retrieve the logs from 
the database and ingest them into ElasticSearch for data indexing. Then, Kibana consumes the 
logs from ElasticSearch to apply filtering, run analytics and to create a dashboard with various 
types of visualizations. 
 
Below we describe each component of the APAM implementation in detail. 

3.4.4 Synthetic audit logs 

APAM’s current audit log model was built based on the FHIR AuditEvent specification. Figure 8 
shows the relational model using the attributes derived from the envisioned audit logs described 
in Section 3.3.2. The model was created with MySQL WorkBench and then deployed with a 
MySQL relational database.  

                                                 
79 Elastic Logstash https://www.elastic.co/logstash  
80 ElasticSearch https://www.elastic.co/elasticsearch/  
81 Elastic Kibana https://www.elastic.co/kibana  

https://www.elastic.co/logstash
https://www.elastic.co/elasticsearch/
https://www.elastic.co/kibana
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Figure 8: Relational audit log model for APAM. 

The model in Figure 8 was used to populate the synthetic logs database, including patients, EMR 
data, healthcare professionals, and activity data corresponding to EMR access CRUD operations. 
We generated fake names, roles, addresses, attributes etc. The organizations were populated 
with real healthcare organization’s information. To simulate access from multiple regions of the 
world, we used a geolocation generator, which provides attributes such as country codes, 
coordinates, IP addresses, time zone, etc. Finally, we simulated random CRUD operations and 
their outcome on the patient's EMR in a range of time. The audit logs simulator was implemented 
using the Python package Faker82 and IP2Geotools83 libraries. 

3.4.5 Analytics engine 

The APAM analytics engine offers functions to perform analytics on the audit logs, such as basic 
statistics and anomaly detection techniques. APAM returns to the application the results of the 

                                                 
82 Faker, fake data generator https://github.com/joke2k/faker    
83 IP2Geotools, API for geolocations https://pypi.org/project/ip2geotools/  

https://github.com/joke2k/faker
https://pypi.org/project/ip2geotools/
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analytics functions and the list of events where they were applied through the REST API. Here 
we present the functions that the analytics engine offers, and the interaction through the REST 
API will be present in the section 5.4.6.  

Basic statistics 

The basic statistics functions were implemented using the Pandas library84. APAM offers functions 
to count the number of occurrences of a given value of an attribute, or of events with combined 
attributes, in a set of audit logs that can filter by time. After counting, APAM calculates the 
percentage of the values occurrences as well as the maximum, minimum, mean, median values 
and standard deviation. For example, it is possible to count the total number of "create" actions 
performed per day in the last week, then calculate the mean, median and standard deviation of 
the number of "create" actions in the week, and then identify the days that had the maximum and 
minimum number of these actions. APAM also offers the basis statistics for other numerical 
attributes, such as the duration of an event.  

Anomaly detection  

Deliverable D2.3 “GDPR-compliant and Privacy-Preserving Analytics for Healthcare Providers” 
describes the taxonomy of the most used algorithms for anomaly detection. It defines 
unsupervised methods as capable of detecting outliers in an unlabeled dataset, which is the case 
of APAM. The assumption is that most of the instances have a common behaviour considered 
normal, so the instances that fit least to this common behaviour can be interpreted as most 
anomalous. This can be done using by a clustering approach85, where similar instances are 
grouped into clusters based on similarity measures. Instances that do not belong to the group, or 
that are the farthest to the center of the group, are considered outliers, and interpreted as 
anomalies. Some unsupervised ML-algorithms for clustering approach are k-means, k-medoids 
and EM clustering86.  
 
The prototype implementation of APAM provides the k-means clustering algorithm for outlier 
detection using the Scikit-learn library87. The k-means clustering algorithm creates groups of 
similar events into clusters that are characterized by their centroids. No predefined classification 
is required for the points. The assumption is that each cluster defines some type of normal 
behaviour, and the distance from a point to the cluster's centroid can be considered as a deviation 
from “normal”. The events that are most distant from the respective centroid is considered an 
anomaly or outlier88. In APAM, a list of the top anomalous events is returned by the outlier 
detection function. 

                                                 
84 Pandas https://pandas.pydata.org  
85 Garcia-Teodoro, Pedro, et al. "Anomaly-based network intrusion detection: Techniques, systems and challenges." 
computers & security 28.1-2 (2009): 18-28. 
86 Agrawal, Shikha, and Jitendra Agrawal. "Survey on anomaly detection using data mining techniques. "Procedia 
Computer Science 60 (2015): 708-713. 
87 Scikit-learn k-means https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html  
88 MacQueen, James. "Some methods for classification and analysis of multivariate observations." Proceedings of the 
fifth Berkeley symposium on mathematical statistics and probability. Vol. 1. No. 14. 1967. 

 

https://pandas.pydata.org/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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In APAM the implementation of this outlier detection mechanism with k-means also relies on the 
use of Principal Component Analysis (PCA)89, which is a dimensionality-reduction method for 
setting the most relevant attributes of the large set. By applying this principle, we cluster the audit 
logs in k groups, and, after re-dimensioning and clustering, we take the farthest points from each 
centroid. The DPO can define parameters such as k (the number of clusters), number of principal 
components and the time interval of the logs to be considered. However, APAM offers support 
that automatically chooses the optimal values for k and PCA parameters, to enable the APAM to 
detect anomalies with as less human intervention as possible.  
 
The adaptive support to define k is based on highest silhouette coefficient (SC)90. APAM uses the 
silhouette score function91 to calculate SC for a predefined range of possible k’s. The silhouette 
score function measures how close each cluster point is to points in neighbouring clusters. The 
number of clusters with the highest value from the silhouette coefficient analysis is automatically 
chosen as k. 
 
The PCA parameter is determined based on the explained variance that we want in our re-
dimensioned attributes features, which is set as a parameter in Scikit-learn PCA function92. The 
explained variance is the percentage of information that we want to retain while decreasing the 
dimension. The attributes with low or any variance are considered to have flat data and do not 
impact in the representation of the information. In APAM, the default explained variance is 95% 
and can be changed. Therefore, when the DPO uses the adaptive support functions the only 
parameter that she/he needs to input is the top percentage to consider anomaly.  

REST API 

REST API is a web application often built over HTTP protocol that allows multiple applications to 
perform HTTP actions by making requests to its endpoints. APAM REST API provides endpoints 
to which the applications can send requests. Each endpoint performs some function of the 
Analytics Engine on the audit logs and sends the response containing metrics and the list of 
related attributes back to the application that issued the request. For APAM endpoints, the 
parameters of the request specify the target agents (all healthcare professionals from the 
organization or a specific one), the data subject (all patients or a specific one), and also diverse 
filtering options to compose more complex queries on the audit logs. For example, it is possible 
to choose to filter by date range, organization, and agent role. The response provided by the 
REST API can be further processed by the application to implement custom analysis and 
visualizations in the application’s user interface. 
 

                                                 
89 Ding, Chris, and Xiaofeng He. "K-means clustering via principal component analysis." Proceedings of the twenty-first 
international conference on Machine learning. 2004. 
90 Rousseeuw, Peter, Silhouettes: A graphical aid to the interpretation and validation of cluster analysis, Journal of 
Computational and Applied Mathematics, 20(20), 53–65, 1987 
91 Scikit-learn Silhouette score https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html  
92 Scikit-learn PCA function https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html  

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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Examples of the functions provided by APAM's REST API are described in Table 13. All the 

functions retrieve, filter and process the audit logs using the Analytics Engine. The URL path 

begins with APAM_IP/APAM/*. The call can specify as parameters all the attributes of the audit 

logs listed in  Table 10. The full content of available endpoints, functions and parameters can be found in the 
APAM documentation in the Gitlab repository93. 
 

URL Parameters Output description 

/patient/full_log start_date, end_date, 
start_hour, end_hour, 
subject_id. 

Returns all the data access 
Events on the given 
subject/patient for the given 
date range. 

/patient/outcome_metrics start_date, end_date, 
subject_id, 
organisation_name, 
source_city, 
source_country, 
agent_role, 
agent_action etc. 

Returns metrics about the 
outcome of the data access 
events, how many denied, 
permitted, and failed, 
grouping by organization and 
agent roles. 

/patient/access_period_metrics start_date, end_date, 
subject_id, 
organisation_name, 
source_city, 
source_country, 
agent_role, 
agent_action. 
etc.  

Returns metrics about the 
duration of access to the 
patient’s EMR grouping by 
organizations, agent roles and 
actions. 

/patient/action_metrics start_date, end_date, 
subject_id, 
organisation_name, 
source_city, 
source_country, 
agent_role, 
agent_action etc.  

Returns metrics about the 
actions performed on the 
patient's EMR, grouped by 
organization and agent roles. 

                                                 

93 ASCLEPIOS APAM REST API https://gitlab.com/asclepios-project/apam  

https://gitlab.com/asclepios-project/apam
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/organisation/full_log start_date, end_date, 
start_hour, end_hour, 
organisation_id. 

Returns all the organization 
audit logs for the given date 
range. 

/organisation/outcome_metrics start_date, end_date, 
organisation_id, 
source_country, 
source_city, agent_id, 
agent_role, 
agent_action, 
subject_id etc. 

Returns metrics related to the 
outcome of the request. How 
many denied, permitted, and 
failed, grouped by agent roles. 

/organisation/location_metrics start_date, end_date,  
organisation_id, 
source_country, 
source_city, agent_id, 
agent_role, 
agent_action, 
subject_id etc. 

Returns metrics related to the 
location (country and city) of 
where the request access was 
made. Grouping by each 
access location, the actions 
and outcome. 

/organisation/action_metrics start_date, end_date, 
start_hour, end_hour, 
organisation_id, 
source_country, 
source_city, agent_id, 
agent_role, 
agent_action, 
subject_id etc. 

Returns metrics related to the 
actions performed. How many 
of each action, grouped by 
agent_roles. 

/organisation/time_period_acce
ss 

start_date, end_date, 
organisation_id, 
source_country, 
source_city, agent_id, 
agent_role, 
agent_action, 
subject_id etc. 

Returns metrics related to the 
time of the access, grouped 
by agent_roles. 

/organisation/outlier_detection start_date, end_date, 
start_hour, end_hour, 
farthest_percent, 
k_number, 
pca_number 

Returns a list of the events 
classified as outliers. 

Table 13: APAM REST API: available endpoints and functions performed. 
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Figure 9: Example of a request to the APAM_IP/apam/patient/outcome_metrics endpoint. shows an 
example of a request to the REST API APAM_IP/APAM/patient/outcome_metrics endpoint, with 
the introduction of filter parameters during the request to specify the time range to be considered. 
 

 

Figure 9: Example of a request to the APAM_IP/apam/patient/outcome_metrics endpoint. 

The response of the REST API call shown in Figure 9 contains details about the request done 
and the metrics calculated. In this example the response HTTP code was 200, the date when the 
request was performed was on 24th August of 2020, and the parameters used for filtering were 
the subject_id, start_date and end_date. The metrics are returned separated and grouped by 
organizations, agent roles, actions etc. 
Figure 10: Example of request for outlier detection using the 
APAM_IP/apam/organisation/outlier_detection endpoint.  
Figure 10 shows an example of the request for outlier detection. In this example, we have passed 
the number of clusters (k_number), the number of principal components analysis (pca_number) 
and the percentage of the farthest events from each cluster centroid (top_percent). The output 
contains the details about the request and the list of events considered outliers. 
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Figure 10: Example of request for outlier detection using the 
APAM_IP/apam/organisation/outlier_detection endpoint.  

3.4.6 Visualization interface 

APAM’s visualization web interface provides charts for patients and DPOs that show the results 
of basic statistics on the audit logs. The charts are created following the same metrics provided 
by the REST API. The visualization interface allows the users to interact with APAM using the 
web browser directly. It does not require any integration of APAM with the application. 
 
For the patient, the web interface shows charts about events of data processing on her/his medical 
record. This includes 5W1H information, indicating the healthcare professional roles, department, 
organizations, and origin of access, as well as the action performed on the patient’s data, on 
which data and the outcome (failed or denial attempts).  
 
For a DPO, the web interface shows charts containing information about access to data done by 
all professionals from the organization wherein the DPO is responsible. For example, the DPO 
can see and monitor the locations where the data was accessed or check the most performed 
CRUD functions. As another example, in a detective approach, the DPO can visualize and track 
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the audit logs from a specific professional or visualize the events that diverge from the normal 
behaviour of the professional's role.  
 
Patient and DPO can also specify filters that directly affect the content of the metrics and charts, 
e.g. the date interval of the audit logs. For demonstration purposes, APAM’s visualization interface 
was created using Kibana. The created charts illustrated below show how the output from the 
REST API is displayed to the end-user. 

 

Figure 11: APAM visualization: dashboard filters for DPO. 

Figure 11: APAM visualization: dashboard filters for DPO. shows an example of filters that can be 
used by the DPO, and Figure 12 shows an example of a chart presenting the actions performed 
by the healthcare professionals of a given organization. In this example, the DPO can see that no 
records have been deleted in this organization. 
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Figure 12: Line chart showing the number of actions performed by date. 

Figure 13: Pie chart with statistics grouped by department and role shows a pie chart presenting 
the percentage of each department and the percentage of roles in the department from all the 
requests to access the patient’s EMR. This type of chart can be applied to various attributes, such 
as the metrics retrieved from grouping by actions and outcomes or grouping by regions of access 
and actions. 
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Figure 13: Pie chart with statistics grouped by department and role. 

 

Figure 14: Map showing from which countries the patient’s EMR was accessed. 

 
Figure 14: Map showing from which countries the patient’s EMR was accessed shows an 
example of a region map showing the countries from where some patient's data was accessed.  
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Figure 15: An example of the patient's dashboard. 

Figure 15 shows the dashboard containing charts and explicit metrics that allows the patient to 
know what is going on with his/her data. The figure shows the number of denied requests or failed 
attempts to decrypt the data, what organizations have accessed the data, and from where. It also 
shows the actions performed and their outcome. 
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4 Conclusions 

The deliverable reported the design of a tool, called Emnet, that enables privacy-preserving 
statistical computation on data distributed across multiple data sources. Emnet computes based 
on decomposing statistical algorithms into sub-computations of summation forms that are 
executed using secure summation protocols. To that end, the tool currently implemented two 
secure summation protocols such as the SINE and the k-secure summation protocols. It is known 
that secure summation protocols are efficient and scalable. In addition, the record level 
computations are locally executed at the data sources. Therefore, Emnet is efficient and scalable.  
 
The deliverable described how different statistics, summation, count, ratio, mean, min, max, 
percentile, variance, covariance, and Pearson’s r statistics can be computed on data distributed 

across three or more data sources. Sample Emnet queries and results are available in Annex. 
II:  Sample Emnet queries. We planned to implement more statistics and perform 

experimental evaluations. We also planned to implement the rest of the statistics. Studies have 
shown that many more statistics can be decomposed into sub-computations of summation forms, 
and, therefore, can be implemented in Emnet. 
 
Emnet currently computes on plain health data distributed across healthcare institutions. There is 
a plan to enable computation on health data encrypted using SSE scheme. To that end, we will 
replace Emnet data analytics service with Functional Encryption (FE) service, developed as part 
of Task T2.3 “GDPR-compliant and Functional Encryption-enabled Prescriptive Analytics for 
Healthcare Providers”94.  
 
The deliverable presented a background study about privacy analytics for the data owner, raising 
responsibilities and requirements for privacy and transparency on the healthcare domain where 
the data subject (patient) represents the data owner, and the DPO represents the interests of the 
data subject in each organization. In ASCLEPIOS, both patient and DPO are considered 
stakeholders in privacy analytics. 
 
During the background study regarding privacy analytics, including stakeholders, privacy 
auditability requirements, the requirements for the ASCLEPIOS framework, as well as 
transparency requirements from the GDPR, we became more aware of the importance and how 
sensitive the audit logs are. Furthermore, we identified the absence of a model for the audit logs 
and a process to capture and store them in the ASCLEPIOS framework. After discussions among 
the project partners, it was decided that the Registration Authority component should store the 
logs captured during the data access requests from the user interface. Moreover, we proposed 
an audit logs model and dataflow to capture the logs as a suggestion for development during the 
integration task in WP5. 
 

                                                 
94 Evmorfia Biliri, Nefeli Bountouni. D2.3 “GDPR - compliant and Privacy-Preserving Analytics for Healthcare 
Providers”. May 2020. 
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The main result of Task 2.6 is the ASCLEPIOS Privacy Analytics Module (APAM). The design of 
APAM considered the two stakeholders mentioned above, patient and DPO, and the main 
objective of guaranteeing transparency about the patient's privacy and enabling analytics on the 
audit logs. APAM offers a toolkit for audit logs analytics in which the users can interact and 
determine the attributes that they want to analyze and the metrics that they want to visualize. 
Furthermore, APAM offers to the DPO a basic event outlier detection tool through the k-means 
clustering algorithm. The implemented outlier detection function has support for automatically 
defining the necessary parameters, with no human intervention necessary for configuration. 
APAM offers a REST API to enable integration into any healthcare applications. Finally, APAM 
also used ElasticSearch and Kibana to prototype and illustrate the privacy analytics tools that can 
be implemented from audit logs. 
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Annex. I: Sequence diagrams of Emnet 

Annex. I.A: Dataset definition sequence diagram 

The following sequence diagram shows how the different components of Emnet execute a dataset 
definition query. 
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Annex. I.B: Statistical computation sequence diagram 

The following sequence diagram shows how the different components of Emnet execute a 
statistics query. 
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Annex. II:  Sample Emnet queries and result 

Annex. II.A: Dataset definition query 

The following dataset definition query selects records of both male and female patients who had 
a healthcare visit after November 18, 2015. 
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Annex. II.B: Statistics query 

The following query computes the ratio of the number of selected drugs prescribed to the number 
of patients diagnosed with selected diagnoses. 
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Annex. II.C: Statistics result 

The following query computes the average age of female and male patients in the study 
population.  

 

 

 

 

 

 

 

 

 

 

 

 

   


