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Abstract—Modern commodity computing systems are com-
posed of a number of heterogeneous processing units, each one
with its own unique performance and energy characteristics.
However, the majority of current network packet processing
frameworks targets only one device (either the CPU or an
accelerator), leaving the remaining computational resources un-
derutilized or even idle. In this paper, we propose an adaptive
scheduling approach for network packet processing applications
that exploits any heterogeneous architecture that can be found
in a commodity high-end hardware setup. Our scheduler not
only distributes the workloads to the appropriate devices in
the system to achieve the desired performance results, but
also enables the multiplexing of diverse, concurrently executed
network packet processing applications, eliminating the inter-
ference effects introduced at run-time. The evaluation results
show that our scheduler is able to tackle any interference in
the shared hardware resources as well to respond quickly to
dynamic fluctuations (e.g., application overloads, traffic bursts,
infrastructural changes, etc.) that may occur at real time.

I. INTRODUCTION

The advent of high-end commodity heterogeneous systems
(i.e. systems that utilize multiple processing units, typically
CPUs and GPUs) has motivated the networking community
to exploit alternative architectures [1]-[4]. Yet, the majority of
those works often target a single device, usually underutilizing
the rest of them. Developing a network packet processing
application framework that can exploit any available device
efficiently and consistently, between a wide range of diverse
workloads running concurrently, is highly challenging. First,
interference between different devices needs to be minimized
in an automated way [5]. Second, support for multiple, con-
currently executed workloads should be provided, as this is
a typical use-case in networking middleboxes. Third, data
heterogeneity should be considered, as traffic variability signif-
icantly impacts system’s utilization and performance [6]—[8].

In this paper, we propose a scheduling approach tailored
for network packet processing workloads executed concur-
rently in a heterogeneous system. Specifically, our proposed
solution is designed to explicitly tackle the heterogeneity that
is introduced in the underlying hardware architectures, the
applications and the network traffic rate. The scheduler dy-
namically adapts to performance fluctuations that may occur,
such as traffic bursts or overloads. The contributions of this
work are the following: (i) Performance characterization and
power consumption of several typical network applications
concurrently executed on heterogeneous, commodity multi-
device systems. (ii) A software-based energy profiling tool that

reports live power consumption measurements for any device
in a commodity system setup, by exploiting the corresponding
hardware registers. (iii) A scheduling approach that can effi-
ciently select the best device(s) to execute one or more typical
packet processing applications, based on current system and
network conditions, using a predefined policy goal.

II. SYSTEM SETUP

a) Hardware Setup: Our hardware setup consists of a
high-end NVIDIA GeForce GTX 1080 Ti GPU and an Intel
Core i7-8700K CPU which integrates a UHD Graphics 630
GPU . Our setup presents interesting trade-offs: even though
the integrated GPU has fewer and less powerful resources
when compared to its high-end competitor or the CPU, it
consumes much lower power. It is also directly connected to
the main memory subsystem via a fast on-chip ring bus, which
results to fewer data transfers and hence lower processing
latency than a discrete GPU. Yet, the CPU is considered
the best option for latency-aware setups, as it can sustain
very small processing times compared to the batch-oriented
processing followed by both GPU types. Our machine is also
equipped with a 40 Gbps NIC (4 ports of 10 Gbps each).

b) Applications: We implement the following packet
processing applications, using version 2.1 of OpenCL:

Deep Packet Inspection (DPI): A very common operation
when processing network traffic. We use the Aho-Corasick
algorithm, which offers multi-pattern searching, and feed it
with 10,000 fixed-string patterns from Snort IDS [9].

Packet Hashing (MDS5): Typically used in redundancy elim-
ination and in-network caching systems [10]. We implement
the MDS5 algorithm, which minimizes collisions and is mainly
used for checking data integrity or deduplication.

Encryption (AES): We use the Cipher Block Chaining
(CBC) operation alongside with a 128-bit key per connection.
Due to its nature, this encryption technique is a representative
form of computational-intensive packet processing.

III. IMPLEMENTATION

Each of the three applications is implemented as a unique
kernel. In OpenCL, an instance of a kernel is called work-
item and a set of multiple work-items is called work-group.
Typically, GPUs contain a very fast thread scheduler, thus it

'In this work we use an i7 CPU to take advantage of the integrated GPU
packed in the same processor die, instead of having a NUMA setup with Xeon
processors.



is recommended to spawn a large number of work-groups. In
contrast, CPUs perform more efficiently, when the number of
work-groups is close to the number of the available cores.
Discrete, GPUs have a dedicated memory space, meaning that
an explicit data transfer from the host (i.e. CPU) to the device
(i.e. GPU) must precede. On top of that, a data buffer, which
is required for the execution of a computing kernel, has to
be created and associated with a specific OpenCL context.
Even though different contexts cannot share data directly,
the data transfers (host-device-host) and the GPU execution
are performed asynchronously, which significantly improves
parallelism. After careful evaluation, we notice that data
transfer requirements differ per application. For instance, DPI
and MDS5 kernels do not change packet headers or payloads,
so there is no need to transfer them back to the host after
the execution. On the other hand, AES kernel changes the
packet contents, making backward transfers inevitable. Still,
when the processing is performed on the main processor or
an integrated GPU, expensive data transfers are not required
(both devices have direct access to the host memory) as long
as the corresponding memory buffers are explicitly mapped,
via the c1EnqueueMapBuffer () function.

a) Batch Processing: A typical approach is to place
packets into batches exactly in the same order they are received
through each NIC. However, when using multiple processing
devices, packets can be reordered. To prevent reordering,
devices are being syncronized using a barrier, which enforces
them to execute in a lockstep fashion. There is a major
performance drawback when using this approach though, as
fast devices have to wait for the slow ones. To bypass this
problem, we pre-classify incoming packets by building the
typical 5-tuple flows before creating the batches and then
enqueue all packets of a flow in the same batch.

b) Performance Measurements: We now present the per-
formance achieved in our hardware setup. We use netmap [11]
to generate and transmit network packets to our machine?.
Due to space constraints, we select to present a fraction of
configurations that clearly show the diversity of performance
characteristics of each device and application. Each config-
uration was active for a 10-second window, during which
the performance of the system was being monitored every
second. Tables I, II and III present both the individual and the
aggregated performance achieved by the DPI, AES, and MD5
applications, when executed either standalone or by sharing
the device with 1 or 3 co-workers. The same benchmark
executions are repeated for all the available devices of the
system, i.e. CPU, integrated GPU and discrete GPU. We note
that the current implementation of our scheduler supports
the concurrent execution of every network packet processing
application combined; for the purposes of simplicity though,
we present only the combination of two different applications
in each device at a time.

2Even though our machine is equipped with a 40 Gbps NIC, the overall
throughput achieved is not higher that 30 Gbps; the reason is that both our
NIC and discrete GPU (GTX 1080 Ti) run at a reduced I/O bandwidth (PCle
x8), due to motherboard PCle constraints
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Fig. 1. Throughput sustained for processing 1500-bytes network packets.
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Fig. 2. Overall latency for processing 1500-bytes network packets.

We observe that the benefits from constantly increasing the
batch size stop at some point. However, different applications
on different devices may require batch size optimizations
within a specific range to reach maximum throughput. In the
case of DPI, for example, increasing the batch size further
of 4096 packets has little impact on the throughput of a
discrete GPU. Furthermore, we also notice that the sustained
throughput is not consistent across diverse devices. For in-
stance, an integrated GPU seems to be a reasonable choice
when performing MD5 and DPI on large packet batches,
compared to AES, where the same device results to low
throughput. Overall, the CPU is the best option for latency-
aware environments, especially when combined with small



batch sizes and not many interfering kernels (Figure 2). Due to
its characteristics, AES is an exception to the rule, benefiting
more if placed on the discrete GPU even in the case of latency-
critical scenarios, regardless of the number of co-workers.
Apparently, there is no clear ranking between the devices,
not even a clear winner. A device can actually be the best fit
for some applications and the worst fit for some others.
When executing concurrently more than one network packet
processing applications in one device, we face the challenge
of unknown interference effects, due to contention for hard-
ware resources, software resources and false sharing of cache
blocks. In the case of the GTX 1080 Ti, for example, we
can see that a large batch size (16K) has negative effects in
cases where more than one applications are being executed.
The reason is that both the discrete graphics card and the
NIC, share the same I/O interconnect (i.e. the PCI bus).
Another interesting fact is when having multiple instances
of AES on the same device: the aggregated performance is
lower compared to that of every other kernel combination on
a given device, as shown in Table II. GTX 1080 Ti is an
exception as it is not affected by the compute-intensive nature
of AES and is able to sustain peak performance even when
four AES instances are concurrently executed. On that note,
despite that the integrated GPU performs tolerably well on
single AES execution when combined with a large batch size
(Figure 1), it is the least suitable device when the desired
scenario requires the concurrent execution of an AES instance
alongside an instance of any other application, as shown in
the bottom part of Table II. Moreover, when DPI is coupled
with MD5 (Tables I and III), the GTX 1080 Ti seems to have
a twofold drawback as its performance is poor while being the
most energy-hungry device of the system. The CPU and the
integrated GPU both achieve similar performance results, but
in the case of the UHD graphics card, top performance can
be sustained regardless of the batch size. These observations
lead us to a conclusion that in the presence of those two appli-
cations, by offloading the workload to the integrated graphics
card we sustain top performance while keeping the latency low
and we also keep the CPU and the discrete GPU idle, which
either promotes the energy efficiency of the system or provides
room for the execution of at least one computation-intensive
application, like AES, without sacrificing performance.

IV. REAL-TIME SCHEDULING

Our scheduler is based on a lock-free architecture model,
as illustrated in Figure 3. A detailed comparison of different
models can be found at [8]. Each worker is responsible for
capturing the network traffic from a set of bound network
interfaces, spawning the execution of a kernel on a target
device and collecting performance metrics.

As a first phase, our scheduler uses an offline analysis
tool that creates all the possible application combinations,
tests them on every device combination and gathers the re-
sulted performance statistics (as described in Section III). The
scheduler is using these collected results when processing the
incoming network traffic, to select the optimal configuration,
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according to a user specified policy. In particular, we create a
special worker, called monitor, that keeps track of the active
configuration and manage how efficiently it distributes its
resources to workers. The monitor executes periodically (using
an ALARM signal) to (i) decide if the active configuration
is still performing better than any other configuration, and
to (ii) update the performance statistics of the current active
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configuration to match the most recent performance statistics
of the system. By doing so, our scheduler is able to adapt to
traffic rate changes quickly and also re-train itself over time.
A representative set of policies that we have implemented so
far, include (a) throughput maximization in which we seek
to optimize in terms of aggregated processing rate (typically
at the cost of increased latency and power consumption;
(b) latency minimization, that can be applied to real-time
or latency-critical applications; and (c) energy consumption
minimization.

V. EVALUATION

Figures 4(a)-(d) show the performance of our scheduler for
a representative fraction of applications (i.e., AES and DPI)
when (i) fluctuating network traffic rate and (ii) changing
policies on-the-fly. For the former, we use a policy to handle
all input traffic at highest energy efficiency. The traffic rate is
low enough for a single device to cope with it, which results
to significantly low power consumption. This is not the case in
the second experiment, in which we seek the maximum pos-
sible throughput before aggressively switching to an energy-
efficient policy. For comparison, we also display the maximum
power consumption when both devices are exhaustively used

simultaneously. The observed variability in latency is the result
of the dynamic scheduler decisions regarding the batching and
device selection. Overall, our scheduler is capable to adapt
to a highly diverse computational demand among different
applications, producing live decisions that aim to maintain the
maximum energy efficiency and to avoid excessive latency
(besides the requested performance policy).

a) Throughput: As shown in Figures 4(c) and 4(d), our
system is able to process a constant traffic rate of almost
20 Gbps when a single applications is active and at about
30 Gbps in the scenario of two active applications (0-15
seconds mark). When the traffic rate varies, our scheduling
schema manages to cope with up to 10 Gbps input traffic
rate per application as shown in Figures 4(a) and 4(b) (O-
20 seconds mark). When the traffic rate changes, such as the
increase from 20 to 40 Gbps (Figure 4(b)), a second device
(in this case the GTX 1080 Ti) is enabled to increase the
computational capacity of the system. An interesting time
interval exists between the 20th and the 30th second mark
of Figure 4(a) when the discrete GPU is activated but is
immediately deactivated, as the monitoring reveals that only
the presence of the integrated graphics card can still cope with
the incoming traffic. The GTX 1080 Ti is only re-activated
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Fig. 4. Adaptive scheduling for different workload combinations under different conditions: network traffic rate fluctuations (a)-(b), and policy changes (c)-(d).

TABLE IV
COMPARISON WITH STATE-OF-THE-ART TOOLS.

Target architecture Concurrent app support
Related work Single Dev | Multi Devs | Single App | Multi Apps
GASPP [3] (comp. offloading) v - v -
APUnet [4] (comp. offloading) v - v -
Dobrescu et al. [12] v - v v
Papadogiannaki et al. [8] v v v -
Pythia v v v v

when the traffic rate is doubled to 40 Gbps.

b) Energy Efficiency: The activation of the minimum
necessary number of devices, typically leads to lower power
consumption. When activating a lowest power consumption
policy in Figures 4(c)-(d) (15-second mark), the GTX 1080
Ti is forced to shut-down, resulting to significant energy
savings. It is also clear from the results of variable traffic rate
experiments (Figures 4(a) and 4(b)) that only when an increase
in the traffic rate occurs and more computational capacity is
needed, the system activates an extra device at the cost of
greater energy expenditure.

c) Latency: An increase of the batch size usually results
to higher throughput, but also to increased latency. Overall, we
try to minimize latency up to a point where no interference
with the requested policy occurs. For example, even when
the goal is to maximize the overall throughput of the system
(Figure 4(b)), during the second 20-seconds interval, latency
remains considerably low despite the fact that the discrete GPU
is active as the traffic characteristics demands so. The reason
behind this is not only the presence of an extra device, but
mainly because the system does recognize that an even larger
batch size would not result in extra performance gains.

VI. RELATED WORK

A comparison of Pythia to the most relevant state-of-
the-art tools is shown in Table IV. GASPP [3] shows an
extreme approach that delivers all packets directly to a high-
end GPU for processing, while APUNet [4] utilizes GPUs
that are integrated in the CPU die, to alleviate the overhead
of extra memory copies. Papadogiannaki et al [8] propose an
adaptive scheduling approach that uses performance policies to
determine the appropriate combination of devices for efficient
execution of network packet processing applications. In this
work, we extend this solution by enabling the multiplexing
of different network functions across heterogeneous devices.

Finally, there is ongoing work on providing performance
predictability [12] and fair queuing [13] when running a
diverse set of applications that contend for shared resources.

VII. CONCLUSIONS

We proposed an adaptive scheduling solution that enables
real-time application multiplexing across heterogeneous pro-
cessors, and is able to respond quickly to network fluctuations
or system changes. As part of our future work, we plan to
optimize the complexity of the offline analysis phase by taking
into consideration, a-priori, the specific cﬁaracteristics of the
available processing devices.
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