Problem No. 1 Cumulative cannon

 Reporter: Artem Sukhov

Team of Russia

International Physicists' Tournament 2020
How high may a ping-pong ball jump using the setup on the video? What is the maximal fraction of the total kinetic energy that can be transferred to the ball?

Level of water in cup

2

Video from nearby camera

$$
\begin{aligned}
& V_{\text {water }}=100 \mathrm{ml} \\
& V_{\text {cup }}=500 \mathrm{ml}
\end{aligned}
$$

Experimental part

Qualitative explanation

Rest phase

3

Falling phase

4

Experiment by GetAClass

$$
\Sigma \vec{F}=\vec{F}_{\text {g. }}+\vec{F}_{\text {in. }}+\vec{F}_{\text {s.t. }}+\vec{F}_{\text {res. }}
$$

$$
\vec{F}_{g .}+\vec{F}_{\text {in. }} \approx 0 \rightarrow \begin{array}{|c}
\begin{array}{c}
\text { Surface tendst to } \\
\text { fhem ishnere } \\
\text { fful wetring sase })
\end{array} \\
\hline
\end{array}
$$

Experimental part
Qualitative explanation
Calculation part

Collision phase

There is no effect in the cup with the walls lubricated with paraffin.

Effect still occurs in the cup with rigid walls.

Plan of investigation

1 Cumulative jet calculation
Parameters of a fluid and a cup

2

Energy transfer to a ball Parameters of the ball

Height maximization And maximal fraction of the energy

Some questions are covered in the hidden part of the investigation.

Collapse of crater

Calculation of cumulative jet height

A $\frac{A}{A_{d .}} \sim 10$

$$
H=\frac{u^{2}}{2 g}=\frac{k v^{2}}{2 g}=k \Delta h \frac{G}{g}
$$

Cumulation coefficient

Maximum height is proportional to initial

$H=k h_{0}$

Energy cumulation coefficient

Let's consider that water front already has velocity

[^0]
Experimental setup

We carry out 5 measurements per 1 point of dependence

We put the camera at a distance of 2 meters to avoid the parallax effect

Experimental part

10

Maximum jet height vs. initial height
11 Analytical solution

Water $20^{\circ} \mathrm{C}$, cup diameter $40 \mathrm{~mm}, 100 \mathrm{ml}$ water

Experimental part
Qualitative explanation
Calculation part

Depth of crater vs. time of falling

12

Experimental part
Qualitative explanation
Calculation part

Coefficient of lift velocity

Maximum jet height vs. initial height

Numerical calculation ANSYS AUTODYN

15

Comparison

1. We can calculate lifting in zero gravity
2. We can calculate collision with large negative accelerations

Numerically calculate the fluid motion by
solving the Navier-Stokes differential
equation by FEM

The calculation procedure is in the hidden part

Maximum jet height vs. fluid volume

16
Ping-pong ball, initial height -35 cm

Plan of investigation

Cumulative jet calculation

Parameters of a fluid and a cup

2

Energy transfer to a ball

 Parameters of the ball
Height maximization

 And maximal fraction of the energy
Energy transfer to ball from jet

$$
-F=P=\frac{m \Delta u}{\Delta t}=\rho \frac{u_{0} \pi r_{0}^{2}}{u}\left(u-v_{\text {ball }}\right)^{2}
$$

Ball maximum height calculation

The resulting differential equations are solved by the Euler method with correction and a dependent step.

Ball height vs. time after collision

Numerical calculation, plastic cup, ping-pong ball, initial height - 35 cm
0,6 $]$ Height, m

Ball added to the model
$\xrightarrow[0,4]{\substack{\text { Time after collision, } \\ \hline \\ 0,5}}$
Experimental part
Qualitative explanation
Calculation part

Maximum height of ball vs. diameter of cup

Ping-pong ball, initial height - $35 \mathrm{~cm}, 150 \mathrm{ml}$ water 0,6] Maximum height, m

Plan of investigation

Cumulative jet calculation

Parameters of a fluid and a cup

Energy transfer to a ball

 Parameters of the ball3
Height maximization
And maximal fraction of the energy

Boundaries of model applicability

The limit of jet speeds is subsonic speed.

$v \leq 331 \underline{m}$ S

The height limit is the breaking point of the cup.

$$
h_{0} \leq 2,1 \mathrm{~m}
$$

The acceleration time limit by the size of the cup.
$\tau_{\text {acceleration }} \ll \frac{d_{\text {character }}}{v_{\text {sound }}}$
The limit on the maximum height is air resistance.

$$
F_{\text {gravity }}=F_{\text {drag }}
$$

$$
H_{\mathrm{exp}}=3,1 \mathrm{~m} \approx \mathrm{H}_{\text {theor }}
$$

Fraction of energy vs. diameter of cup

Ping pong ball, initial height $-35 \mathrm{~cm}, 150 \mathrm{ml}$ of water
0,16
0,14
The effective jet size is limited
by the diameter of the ball
0,12

Fraction of energy vs. fluid volume

25

Ping pong ball, initial height -55 cm

Ideas for optimal design

t_{A}

$\phi 20{ }^{+5}{ }^{+5}$
Sieve

1. The ball moves up the center
2. The whole jet concentrates to hit the ball and works like a piston
3. Sealing pipe strip slightly holds the ball (empiric)
4. Materials are well wetted by water.

Device can accelerate heavy objects well ;)

Qualitative explanation

CUMULATIVE CANNON!

Toroidal bottom

Flat bottom

Experimental part
Qualitative explanation
Calculation part

Conclusions

Found the essence of the problem.
The formed crater place the key role. And its collapse under the influence of large accelerations.

An experimental setup has been designed to improve the repeatability of the phenomenon.

The maximum height of the jet from the important parameters of the liquid and the cup is investigated. An rather accurate calculation is made.

The dynamics of the formation of a crater is investigated depending on the properties of the liquid. Empirical amendment.

Conclusions

The mechanism of energy transfer is investigated. The energy transfer process is almost instantaneous. The theory describes the experiment well.

The maximum height is defined under conditions of limited parameters. The coefficient of energy transfer from the diameter and fullness of the cup is investigated.

In the end, the real "Cumulative Cannon"

 is developed. Final thought

Bibliography

"Кумулятивный эффект в простых опытах", [Cumulative effect in simple experiments], V. V. Mayer "Аналитическая гидродинамика", [Analytical fluid dynamics], A. G. Petrov Solution of IYPT problem "Drawing pins", Alex Krotov, Team of Russia (2012)
"Молекулярная физика", [Molecular physics], G. Y. Myakishev, A. Z. Sinyakov

Further research:

1. Strut angle investigation
2. Focusing effect investigation

Problem №1 Cumulative cannon Reporter: Artem Sukhov

Team of Russia

COMPARISON

[^0]: - "Кумулятивный эффект в простых опытах" [Cumulative effect in simple experiments] , V. V. Mayer

