Problem No.1 Cumulative cannon

Reporter: Artem Sukhov

Team of Russia

International Physicists' Tournament 2020

How high may a ping-pong ball jump using the setup on the video? What is the maximal fraction of the total kinetic energy that can be transferred to the ball?

Level of water in cup

 $V_{cup} = 500 \, ml$

Experimental part

Rest phase

Falling phase

Experiment by GetAClass

$$\Sigma \vec{F} = \vec{F}_{g.} + \vec{F}_{in.} + \vec{F}_{s.t.} + \vec{F}_{res.}$$

$$\vec{F}_{g.} + \vec{F}_{in.} \approx 0 \longrightarrow$$

Surface tends to hemisphere (Full wetting case)

Experimental part

Qualitative explanation

There is no effect in the cup with the walls lubricated with paraffin.

Effect still occurs in the cup with rigid walls.

Experimental part

Qualitative explanation

Plan of investigation

Cumulative jet calculation 1 Parameters of a fluid and a cup Energy transfer to a ball Parameters of the ball Height maximization And maximal fraction of the energy

Some questions are covered in the hidden part of the investigation.

Collapse of crater

Energy cumulation coefficient

9

Let's consider that water front already has velocity

- "Кумулятивный эффект в простых опытах" [Cumulative effect in simple experiments] , V. V. Mayer

Experimental setup

We carry out 5 measurements per 1 point of dependence

We put the camera at a distance of 2 meters to avoid the parallax effect

Experimental part

To save the angle of contact with the plane, we will improve the experimental setup.

The experiment was repeatable. (Standard deviation about 5%)

Qualitative explanation

Maximum jet height vs. initial height Analytical solution

11

Depth of crater vs. time of falling

Coefficient of lift velocity

Numerical calculation **ANSYS AUTODYN**

15

Comparison

- 1. We can calculate lifting in zero gravity
- 2. We can calculate collision with large negative accelerations

Numerically calculate the fluid motion by solving the Navier-Stokes differential

equation **by FEM**

The calculation procedure is in the hidden part

Experimental part

Qualitative explanation

Maximum jet height vs. fluid volume

Ping-pong ball, initial height – 35 cm

Plan of investigation

17

1 Cumulative jet calculation Parameters of a fluid and a cup Energy transfer to a ball 2 Parameters of the ball 3 Height maximization And maximal fraction of the energy

Energy transfer to ball from jet

h

Law of energy conservation:

$$\frac{\rho u^2}{2} + \rho g h = \rho g H$$

Law of change of momentum:

$$\Delta p = F \Delta t = m \Delta u$$

Law of mass conservation:

$$\pi r_0^2 u_0 = \pi r^2 u$$

$$-F = P = \frac{m\Delta u}{\Delta t} = \rho \frac{u_0 \pi r_0^2}{u} (u - v_{ball})^2$$
Experimental part Qualitative explanation Calculation part

18

Ball maximum height calculation

The resulting differential equations are solved by the **Euler method with correction** and a dependent step.

Experimental part

Qualitative explanation

Ball height vs. time after collision

Numerical calculation, plastic cup, ping-pong ball, initial height - 35 cm

Maximum height of ball vs. diameter of cup

Ping-pong ball, initial height – 35 cm, 150 ml water

Plan of investigation

22

1 Cumulative jet calculation Parameters of a fluid and a cup Energy transfer to a ball Parameters of the ball Height maximization 3 And maximal fraction of the energy

Boundaries of model applicability

73

Fraction of energy vs. diameter of cup

Ping pong ball, initial height - 35 cm, 150 ml of water

^{0,16} J k, relative units

Fraction of energy vs. fluid volume

Ping pong ball, initial height - 55 cm

Ideas for optimal design

- 1.
- 2. The whole jet concentrates to hit the ball and works like a piston
- 3. Sealing pipe strip slightly holds the ball (**empiric**)
- Materials are well wetted by water. 4.

Device can accelerate heavy objects well 🙂

Experimental part

Qualitative explanation

CUMULATIVE CANNON!

Experimental part

Qualitative explanation

Conclusions

Final thought

Found the essence of the problem. *The formed crater* place *the key role*. And **its collapse** under the influence of **large accelerations**.

An experimental setup has been designed to **improve the repeatability** of the phenomenon.

The maximum height of the jet from the important parameters of the liquid and the cup is investigated. An rather accurate calculation is made. The **dynamics** of the formation **of** a **crater is investigated** depending on the properties of the liquid. **Empirical amendment**.

Maximum jet height vs. initial height Added numerical calculation with dynamic of crater

14

Conclusions

The mechanism of energy transfer is **investigated**. The energy transfer process is almost instantaneous. The theory describes the experiment well.

The maximum height is defined under conditions of limited parameters. The coefficient of energy transfer from the diameter and fullness of the cup is investigated.

In the end, the real "Cumulative Cannon"

is developed.

Final thought

Bibliography

"Кумулятивный эффект в простых опытах", [Сиријатіуо offoct in simple experiments] .V. V

- [Cumulative effect in simple experiments], V. V. Mayer
- "Аналитическая гидродинамика",
- [Analytical fluid dynamics], A. G. Petrov
- Solution of IYPT problem "Drawing pins", Alex Krotov, Team of Russia (2012)

"Молекулярная физика", [Molecular physics], G. Y. Myakishev, A. Z. Sinyakov

Further research:

- 1. Strut angle investigation
- 2. Focusing effect investigation

Final thought

Problem №1 Cumulative cannon

Reporter: Artem Sukhov

It was also investigated:

- 1. Strut angle of cone and another cups (change cumulation coefficient)
- 2. Mass of the ball
- 3. Radius of jet from radius of cup
- 4. Vortex in cup
- 5. Focusing effect (interesting phenomenon)
- 6. Surface (elasticity of collision)
- 7. Deformations effect
- 8. Decay into droplets (theory limitation)

31

Team of Russia

COMPARISON

Thank you! Questions?

Final thought