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PROJECT SPECIFICATION 

 

 

CMS will include a new paradigm for the Level 1 Trigger for LHC run 3. It will for the first time enable 
the reading out of trigger objects at the full collision rate (40 MHz), in order to perform studies and take 
measurements not possible within the constraints of the 100 KHz Level 1 accept rate. 
 
One such set of trigger objects are the Global Muon Trigger objects. The Global Muon Trigger 
accumulates muon candidates from barrel, endcap, and overlap trigger regions, and selects eight 
based on their quality and transverse momentum to be sent to the Global Trigger.  
 
A deep learning machine inference solution has been proposed to manipulate these trigger objects 
such that they are more usable in offline or semi-offline analysis, rather than simply near the triggering 
thresholds. By using the offline-reconstructed objects as a target for the training of an artificial neural 
network, this project aims at providing muon parameters adequate for standard handling in a physics 
analysis. The machine inference is expected to be carried out in real time using data-processing PCIe 
boards provided by Micron.  
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ABSTRACT 

  

The muon track finder of the CMS experiment at the Large Hadron Collider uses custom FPGA-based 
processors to identify muons and measure their momentum for a fast Level-1 trigger selection. A 40 
MHz scouting system at CMS will provide fast statistics for detector diagnostics, alternative luminosity 
measurements, and new analysis possibilities.  
 
Deep learning is a subfield of machine learning algorithms that uses multiple hidden neural layers to 
extract relevant features from raw inputs. Previous studies have demonstrated the potential of deep 
learning in many areas of particle physics. The purpose of this study is to analyse the performance of 
deep learning algorithms to recalibrate the muon track parameters (transverse momentum, η and 𝜑) 
for the best resolution. Deep learning regression models are compared against simple linear fits. The 
performance of these models is evaluated and compared. 
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1. INTRODUCTION 
 

The Large Hadron Collider (LHC) [1] is the largest (27 km) and most powerful particle accelerator ever built. 
It accelerates protons to nearly the speed of light and then collides them at four locations around its ring, 
producing new particles that move outwards from the collision point. 

One of the four collision points hosts the CMS (Compact Muon Solenoid) detector [2]. CMS is a general all-
purpose particle detector. The possibility to detect the Standard Model (SM) Higgs boson played a crucial 
role in its conceptual [3]. It consists of multiple layers of detectors and material (including the 3.8 T solenoidal 
magnet) that exploit the different properties of particles to measure the energy and momentum of each one. 
Muons are charged particles similar to electrons, but are about 200 times heavier. One can obtain a 
particle’s trajectory by tracking its position through the multiple layers of detectors. Figure 1 depicts a muon’s 
curved trajectory in four muon detector stations. In total there are 1400 muon chambers, including drift tube 
detectors, cathode strip chambers, and resistive plate chambers [4]. A sectional view of the CMS detector 
can be seen in Figure 2. 

        
Figure 1. A transverse slice of the CMS detector barrel. The trajectory of an example muon is shown. [5] 

The LHC delivers proton-proton collisions to CMS at a 40 MHz bunch crossing rate. Each bunch crossing 
(event) generates a huge amount of data in the detectors. As a result of bandwidth limitations, it is 
therefore only possible to read full event information out of the detector at 100 KHz. In fact, only around 
1000 full events per second can be permanently stored. CMS runs a two-tier trigger system in order to 
select the potentially interesting events for read out and analysis.  

The Level-1 (L1) trigger [6], located off-detector, consists of custom electronics boards based on field 
programmable gate arrays (FPGAs), and performs partial reconstruction on a small subset of the event 
data, selecting events at a maximum rate of 100 kHz to be triggered for full read out. The second layer, 
called the High Level Trigger (HLT), is a farm of processors that analyses the full event information using 
complex software algorithms, further reducing the event rate to about 1 kHz, which can be stored for offline 
analysis [7].  
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The Global Muon Trigger (GMT) [8], part of the L1 trigger, accumulates muons candidates from the barrel, 
endcap and overlap regions, and selects eight based on their quality and transverse momentum, sending 
them to the Global Trigger (also part of the L1 trigger) to make the final decision. 

L1 scouting is a new paradigm for data collection at CMS. L1 scouting consists of capturing, reducing, and 
analysing trigger-level information from the various L1 trigger processors, and storing only relevant high-
level information about physics objects.  

 

Figure 2. Sectional View of the CMS detector [8] 

 

Machine Learning (ML) is a method of data analysis that automates analytical model building. ML is the 
process of teaching a computer system how to make accurate predictions when fed data. Neural networks 
(NN) are a biologically inspired programming paradigm that enable a computer to learn from observational 
data. The main components of a neural network are: inputs, outputs, and hidden layers that perform 
nonlinear transformations on the inputs. Deep Learning (DL), a sub-category of ML, is a powerful set of 
techniques for training multilayered neural networks. 

The purpose of this study is to analyse the performance of DL algorithms in recalibrating the GMT muon 
parameters for the best resolution, using matching offline fully reconstructed muon tracks as the target. In 
particular, the pT measurement in the L1 muon trigger is defined so that when selecting muons with a 
measured pT greater than or equal to a certain threshold, the trigger condition is 90% efficient for muons 
with a true pT grater or equal to the threshold value. The pT measurement of the L1 trigger is therefore by 
definition not an estimate of the true pT and not suitable to be used directly for a physics analysis [7].  

Deep learning regression models are compared against simple linear fits and the results are shown in the 
following sections.  
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2. DATA ANALYSIS 

In the CMS coordinate system (Figure 3), the origin coincides with the nominal collision point, the 
geometrical centre of the detector. The parameter 𝜑 is the azimuthal angle. The pseudorapidity η, is related 

to the polar angle, θ, and defined by 𝜂 = − ln tan(
θ

2
). The transverse momentum is given by  𝑝T = psinθ 

[12]. The detector can be divided into three regions of η; the barrel, overlap, and endcap regions, as shown 
in Figure 4. Different sensor technologies are used in the barrel and endcap regions. The coverage extends 

up to |𝜂| ≤ 2.5. A different L1 trigger algorithm is used for muon tracking in each of these three regions.  

 

 

Figure 3. Diagram of the coordinate system used by CMS [9]  

 

 

 

Figure 4.  Quarter longitudinal schematic view of the CMS detector [10] 
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Parameter Range 

𝜑 [- π, π] radians 

𝜑 extrapolated [- π, π] radians 

η [- 2.45, 2.45] 

η extrapolated [- 2.45, 2.45] 

pT [0, 255] GeV 

charge [-1,1] 

quality {0, 4, 8, 12} 

reconstructed 𝜑 [- π, π] radians 

reconstructed η [- 2.45, 2.45] 

reconstructed pT [0, 255] GeV 

Δ 𝜑 = 𝜑 – 𝜑 reco [-0.5, 0.5] radians 

Δ η = η - η reco [-0.15, 0.15] 

Δ pT   = pT   - pT reco [-42.5, 42.5] GeV 

 

 

 

Table 1.  Parameters in the dataset 

 

An L1 trigger muon object is a 64 bit representation of a muon track [8,14]. A certain number of bits are 
assigned to different muon parameters, including 𝜑 and η (both at the second muon station and after 
extrapolation back to the vertex), pT, and charge. These parameters can be used as input to the DL models 
[7]. Table 1 shows the variables included in the training datasets, which includes the parameters of the 
matched offline muons.  

Dataset Number of samples 

barrel    108 299 

overlap    427 165 

endcap 5 224 298 

 

 

Table 2.  Dataset sizes 

Figure 5 shows the distributions of pT, η and 𝜑 in the barrel dataset. 
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Figure 5. Barrel dataset distributions of pT, η and 𝜑 

Additional restrictions on pT are made for each dataset, keeping all muons with 2.5 < 𝑝T < 45 GeV. 

The pT resolution above 45 GeV is very poor, as these muons do not bend very much in the magnetic 
field. On the other hand, below 2.5 GeV muons do not consistently reach the muon detectors, being bent 
too much by the magnetic field. The number of entries in each dataset after applying this preselection 
are shown in Table 2. 

As the FPGA outputs fixed-point integer values for pT, η, 𝜑 we use this integer representation of the data 
as inputs to the NN. 

3. NEURAL NETWORK  MODEL 

The models are implemented using the Keras framework. The first model used is the baseline model 
described in [6]. This model is a multi-layered perceptron with: 

- An input layer with four inputs, an output layer with three outputs and three hidden layers with 32 
nodes per layer. 

- The inputs are integer representations of 𝜑, η, pT and charge. 

- The prediction targets are the differences between the L1 and offline reconstructed 𝜑, η and pT. 

- Before training, the target values are standardised to a mean of zero and a standard deviation of 
one.  

- The ReLU function is used for activation in each hidden layer. 

- Batch normalization (BN) [13] is used after each activation in the hidden layers. 

- The learning rate optimizer is Adadelta [14], with the default parameters. The loss function is 
logcosh error. 

A second, larger model is also evaluated, containing four hidden layers with 128 nodes each. 

 
Eighty percent of the dataset is used to train the model, with the remaining 20 percent reserved for testing. 

a. NEURAL NETWORK RESULTS 

Figures 6-8 show the results of the baseline NN model, when trained separately on each dataset. In order 
to evaluate the performance of the NN, the distribution of differences between the GMT outputs and the 
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offline reconstructed values is compared with the distribution of differences between the NN outputs and 
the offline reconstructed values. It is observed that each of the models show an improvement in parameter 
resolution when compared with the raw GMT values.  

i. BARREL 

   

Figure 6. The difference between the GMT and the offline reconstructed values, compared to the difference 
between the NN predictions and the offline reconstructed values, for the barrel dataset. 

ii. OVERLAP 

    

Figure 7. The difference between the GMT and the offline reconstructed values, compared to the difference 
between the NN predictions and the offline reconstructed values, for the overlap dataset. 

iii. ENDCAP 

 

Figure 8. The difference between the GMT and offline reconstructed values, compared to the difference between 
the NN predictions and the offline reconstructed values, for the endcap dataset. 

The performance of the deep learning model trained on the dataset which combines all three regions was 
also evaluated. As the three datasets are of different sizes, with the endcap dataset containing the majority 
of the data, it is necessary to weight the training loss by the ratio of N samples in individual dataset to N 
samples in the combined dataset. This forces the network to learn from each dataset equally. Figure 9 
shows that this technique improves the overall performance of the model on the combined dataset.  
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Figure 9. The difference between GMT and offline reconstructed values, compared to the difference between the 
NN predictions and offline reconstructed values, for the combined dataset (barrel + overlap + endcap), both with 
and without loss weighting. These plots are dominated by the contribution from the endcap dataset, which 
contains roughly 90% of the total available data. 

4. LINEAR REGRESSION VS NEURAL NETWORK 

A linear regression (LR) fit was also applied to the GMT and the corresponding offline reconstructed values 
in each dataset. We used a one dimensional linear fit for each variable, pT, 𝜑 and η. In order to evaluate the 
performance of the regressor, the distribution of differences between the GMT outputs and the offline 
reconstructed values is compared with the distribution of differences between the LR outputs and the offline 
reconstructed values. For all linear regressions we consider as input the L1 extrapolated values, and as 
output the offline reconstructed values. In the following subsections we will present the performance of the 
LR on each dataset and the comparison between the LR and NN models. To evaluate the LR fit, we use 

the R-squared value, or linear regression score.  To allow for a straight line fit, 𝜑 values very close to ± 𝜋 

were excluded, avoiding the issue of circular wrapping. 

a. BARREL DATASET 
 

Table 3 shows the LR score, intercept and coefficient values for pT, η, and 𝜑. Figure 10 depicts the 
comparison between the raw GMT, LR, and NN predictions.  

We first consider the case of pT as input and reconstructed pT as output. An improvement from the raw GMT 
to the LR estimates is observed. 

Parameter LR score Intercept Coefficient 

pT 0.71 2.2 0.60 

η 0.95 0.0 0.97 

𝜑 0.95 0.0 0.95 

 

 

Table 3. LR score, intercept and coefficient score for pT, η, and 𝜑 on the barrel dataset . 
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Figure 10. The difference between the NN, LR and raw GMT predictions and the offline reconstructed values, for 
the barrel dataset. 

In the case of η there is no significant difference between LR and NN. The high LR score indicates that the 
relationship between η and the offline reconstructed η can be well approximated by a straight line. In the 
case of 𝜑, the NN performed considerably better than the LR. 

b. OVERLAP DATASET 

 

The same procedure was applied to the overlap dataset, with the results shown in Table 4 and Figure 11. 
In this region, the LR does not accurately predict the reconstructed pT or 𝜑, but performs slightly better on 
the prediction of η. 

Parameter LR score Intercept Coefficient 

pT 0.77 2.2 0.60 

η 0.99 0.0 1.0 

𝜑 0.95 0.0 0.97 

 

 

Table 4. LR score, intercept and coefficient score for pT, η, 𝜑 on overlap dataset   

   

Figure 11. The difference between the NN, LR and raw GMT predictions and the offline reconstructed values, for 
the overlap dataset. 
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c. ENDCAP DATASET 

 

Table 5 shows the parameters of the LR fit for the endcap dataset. The performance, when compared to 
the NN and raw GMT is depicted in Figure 12. The relationship between the pT and reconstructed pT is 
particularly non-linear in this dataset, leading to a low LR score from the fit. The distribution of differences 
between the LR and the offline reconstructed pT is narrower than the results for the raw GMT, and has a 
mean close to zero. On the other hand, the NN distribution is narrower still, with a higher peak. Overall we 
see a significant difference between the performance of the NN and the LR, even in the case of η. 

 

Parameter LR score Intercept Coefficient 

pT 0.66 1.2 0.53 

η 0.99 0.0 0.98 

𝜑 0.91 0.0 0.95 

 

 

Table 5. LR score, intercept and coefficient score for pT, η, and 𝜑 on the overlap dataset . 

 

   

Figure 12. The difference between the NN, LR and raw GMT predictions and the offline reconstructed values, for 
the endcap dataset. 

 

In conclusion, the simple linear regression does not match the performance of the neural network solution, 
and a more complex fit is clearly required to properly re-calibrate the data.   
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5. NEW NEURAL NETWORK MODEL  

 

The baseline model was also compared to an improved deep learning model with four hidden layers and 
128 nodes per layer. This comparison was made on the combined dataset, with the reweighing as described 
in Section 3a. As expected, the improved neural network produces a narrower distribution of differences 
when compared to the baseline model (see Figure 13), but the improvement is very small. The increased 
complexity and computational expense of the larger model largely outweighs the minimal performance 
improvement observed. 

  . 

Figure 13. The difference between GMT and offline reconstructed values of, compared to the difference between 
the NN predictions and reconstructed values and NN-4 (the new neural network with 4 layers) predictions and 
reconstructed values. 

6. SUMMARY  

Deep learning models show huge potential for future use within the CMS L1 scouting system. The baseline 
neural network is able to recalibrate the GMT muon parameters to be significantly closer to the offline 
reconstructed muon parameters. The performance of the neural network was also compared to a simple 
linear regression approach. The linear regression shows some improvements in comparison with the raw 
GMT values, but performs much worse than the neural network. A more complex NN model was also tested, 
and shows better results in comparison with the baseline model, however, the increased complexity and 
computational expense of the larger model largely outweigh the minimal performance improvement 

observed. Future work includes using data from a the Kalman filter [15] track finder that will replace the L1 

barrel muon track finder algorithm in 2021, running the models on the FPGA boards, and checking the 
performance of the deep learning model for a semi-offline analysis.  
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