
Control of Positive and Negative Magnetoresistance in Iron Oxide−
Iron Nanocomposite Thin Films for Tunable Magnetoelectric
Nanodevices
Martin Nichterwitz, Shashank Honnali, Jonas Zehner, Sebastian Schneider, Darius Pohl,
Sandra Schiemenz, Sebastian T. B. Goennenwein, Kornelius Nielsch, and Karin Leistner*

Cite This: ACS Appl. Electron. Mater. 2020, 2, 2543−2549 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The perspective of energy-efficient and tunable functional magnetic nanostructures
has triggered research efforts in the fields of voltage control of magnetism and spintronics. We
investigate the magnetotransport properties of nanocomposite iron oxide/iron thin films with a
nominal iron thickness of 5−50 nm and find a positive magnetoresistance at small thicknesses. The
highest magnetoresistance was found for 30 nm Fe with +1.1% at 3 T. This anomalous behavior is
attributed to the presence of Fe3O4−Fe nanocomposite regions due to grain boundary oxidation.
At the Fe3O4/Fe interfaces, spin-polarized electrons in the magnetite can be scattered and
reoriented. A crossover to negative magnetoresistance (−0.11%) is achieved at a larger thickness
(>40 nm) when interface scattering effects become negligible as more current flows through the
iron layer. Electrolytic gating of this system induces voltage-triggered redox reactions in the Fe3O4
regions and thereby enables voltage-tuning of the magnetoresistance with the locally oxidized
regions as the active tuning elements. In the low-magnetic-field region (<1 T), a crossover from positive to negative
magnetoresistance is achieved by a voltage change of only 1.72 V. At 3 T, a relative change of magnetoresistance about −45% during
reduction was achieved for the 30 nm Fe sample. The present low-voltage approach signifies a step forward to practical and tunable
room-temperature magnetoresistance-based nanodevices, which can boost the development of nanoscale and energy-efficient
magnetic field sensors with high sensitivity, magnetic memories, and magnetoelectric devices in general.
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■ INTRODUCTION

The understanding and control over magnetoresistance (MR)
in nanostructured materials is crucial for the development of
modern magnetic sensors,1,2 high-density information storage,3

spintronics,4,5 biochips,6 magnetoelectronic logic devices7 or
microwave nanoelectronics.8 Intense research efforts have been
focussed on tailoring MR by optimizing the material
composition and nanostructure, and, ideally, finding systems
in which MR is tunable by an external control parameter, e.g.,
by electric fields or optical modulation.9,10 In semiconductor
nanowires11−13 and spin-valve devices,14 as well as atomically
thin Weyl semimetals,15 large changes of MR by electric field
effects have been demonstrated. However, in these cases, the
tunable MR becomes significant only at low temperatures (<5
K) or the synthesis routes are complex. Voltage control of
magnetic layers is another promising route to control MR. For
example, voltage-tunable giant magnetoresistance (GMR) and
tunneling magnetoresistance (TMR) have been achieved via
capacitive electronic charging induced changes of magnetic
anisotropy16 or multiferroic effects17 in ferromagnetic layers.
Here, high electric fields or strain coupling in complex layer
architectures are required to achieve large effects.

Interfacial electrochemical effects on magnetism,18 often also
named magneto-ionic effects,19 are an emerging room-
temperature and low-voltage approaches in the research area
of voltage control of magnetism.20,21 In magneto-ionic systems,
the magnetic layer is gated via a solid or liquid electrolyte and
the voltage triggers ion migration and interfacial redox
reactions, which impact the magnetic properties. In contrast
to multiferroic systems and capacitive electronic charging,
magneto-ionic concepts make significant magnetic property
changes possible at room temperature and without the need
for strain mediation. A magneto-ionic control of magnetization,
exchange bias, and coercivity is well documented in various
ferromagnetic metal/metal oxide systems.19,22−25 A tunable
negative magnetoresistance was achieved in a Fe3O4 thin film
using the mechanism of Li+ ion insertion and removal.26
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In the present study, we produced Fe3O4/iron films in stripe
geometry by lithography and sputtering followed by native
oxidation. Their magnetoresistance was investigated ex situ and
during electrolytic gating at room temperature. We demon-
strate tunable sign and magnitude of MR at room temperature
by tailoring the film thickness and exploiting magneto-ionic
control in the iron oxide−iron nanocomposite thin films. The
effects are attributed to a variety of spin scattering at Fe3O4/
iron interfaces.

■ EXPERIMENTAL SECTION
Device Fabrication. The devices for transport measurements

were prepared on thermally oxidized (100 nm) Si (100) wafer
substrates (1 cm × 1 cm) as follows: First, contact pads consisting of
Au (100 nm)/Cr (5 nm) layers were deposited by DC magnetron
sputtering (1.2 × 10−6 mbar, room temperature, Ar sputtering gas) in
the substrate corners using a shadow mask. Second, different stacks
with varying nominal Fe layer thickness (dFe,nom) [Fe(dFe,nom = 5−50
nm)/ Au (10 nm)/ Cr (4 nm)] in stripe geometry (4 μm x 50 μm
nominal lateral dimensions, see Figure 1a) were produced on the
substrate by lithography steps, followed by DC magnetron sputtering
(2 × 10−8 mbar, room temperature, Ar with 2% H2 sputtering gas).
For comparison, stacks of [Au (10 nm)/ Fe (30 nm)/ Au (10 nm)/
Cr(4 nm)], [Fe (30 nm)], and [Fe (30 nm)/ Pd(10 nm)/ Cr (4
nm)] were prepared in stripe geometry in the same manner. During
this step, the gold, iron, and palladium target guns had an inclination
angle of 45° with respect to the substrate normal. The stripes were
then removed from the sputtering chamber to ambient air condition,
which causes the formation of a native iron oxide layer on top of the
sputtered Fe. Note that the passivating iron oxide layer on the
nanocrystalline iron films forms within few minutes and remains
stable during the subsequent storage at room temperature and in dry
(lab) atmosphere.27−29 Third, a second lithography step and
subsequent sputtering, under the same conditions as step 1, was
performed to form Au/Cr contacts between the stripe edges and the
contact pads. To avoid Schottky barrier contacts and remove the iron
oxide layer from the iron stripe at the contact points, Ar plasma
etching was performed prior to Au/Cr deposition.
Microstructural Characterization. High-resolution transmission

electron microscopy (HR-TEM) was conducted on a double-
aberration-corrected Thermo Fisher Scientific Titan3 80-300 micro-
scope to investigate the film layer architecture and microstructure.
The preparation of the cross-section lamella was carried out via a
focused ion beam technique in a Thermo Fisher Scientific Helios
Nanolab 600i with 30 and 4 kV Ga+ ions. Further thinning of the
lamella was performed in a Gatan PIPSII with 0.2 kV Ar+ ions. Fast
Fourier transformations (FFTs) were performed for selected sample
areas using the Gatan Microscopy Suite. Scanning transmission
electron microscopy and energy-dispersive X-ray diffraction (STEM-
EDX) measurements were conducted in a JEOL Jem F-200C
microscope operated at 200 kV. The convergence angle was set to

10 mrad. Raman spectra were recorded using a 532 nm excitation
wavelength of a Torus 532 laser (Laser Quantum) on a T64000 triple
spectrometer (Jobin Yvon) Horiba, equipped with a diffraction grid of
600 gr/mm. The laser power was adjusted to less than 7.3 μW to
avoid laser-induced iron oxide transformation30 (see Supporting
Information S1). The laser spot on the sample had a diameter of 20
μm. The spectra were obtained with an acquisition time of 150 s,
accumulated five times.

In Situ Magnetoresistance Measurements. The MR measure-
ments were performed in a physical property measurement system
magnetometer (PPMS6100, Quantum Design). The samples were
measured within a few weeks after preparation. A current of 10 μA
was applied in-plane along the stripe and the corresponding voltage
was detected (Figure 1b). A magnetic field μ0H of up to ±3 T was
applied perpendicular to the substrate plane at a rate of 20 mT s−1.
The MR curves were corrected using a linear fit for each field sweep
(+3 to −3 T and −3 to +3 T), followed by symmetrization. All MR
measurements were performed in a custom-built electrochemical cell
shown in Figure 1c and described in detail in previous work.31 First,
an ex situ MR measurement without electrolyte was performed. The
behavior of the stripes upon sole contact with the electrolyte was then
probed by an in situ MR measurement. For this, the electrolyte
compartment was filled with 1 mol/L LiOH aqueous solution and no
external voltage was applied, corresponding to the open-circuit
potential (OCP) state. A Pt wire, placed in the electrolyte, served as
the counter electrode to apply the reduction and oxidation potentials
(ERed, EOx) via an additional external Keithley 2400 sourcemeter. MR
measurements were then performed at specific potentials. The
potentials for reduction to metallic iron and reoxidation to iron
oxide were chosen on the basis of the previously conducted three-
electrode measurements as ERed = −1.84 V and EOx = −0.12 V,
respectively.32 During the reduction step, the iron oxide/iron stripe is
the cathode, while during the oxidation step it is the anode. To
minimize the dissolution processes, the potential is switched, and not
ramped, between the oxidation and the reduction step.33

■ RESULTS AND DISCUSSION
To search for tunable magnetotransport properties, we chose
iron oxide/iron films with different nominal thicknesses on an
Au buffer layer, which are suitable for magneto-ionic control.32

Au is utilized as an underlayer to ensure sufficient electrical
conductivity of the working electrode during electrolytic
gating. Since in the present stripe geometry, the buffer layer
is in contact with the electrolyte at the vertical edges, it must
also be inert with regard to the electrochemical processes. Au is
preferred over Pd or Pt here because, in contrast to those
metals, it does not catalyze the hydrogen evolution reaction,
which can lead to undesired pH changes or gas bubbling
during the reduction process in the electrolyte.22,34

The native iron oxide layer forms on top of the iron film
when removing the sample from the sputter chamber. To

Figure 1. (a) Layer architecture of the iron oxide/iron thin film stripe. (b) Light microscopy image of an iron oxide/iron stripe with Au contacts for
the MR measurement. The directions of magnetic field H, applied current I, and measured voltage U are indicated. (c) Sketch of the in situ
transport cell for the MR measurements, with the iron oxide/iron stripe as the working electrode and a Pt wire as the counter electrode immersed
in the electrolyte.
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characterize the nanostructure and type of iron oxide, HR-
TEM and Raman spectroscopy were conducted. Figure 2a

shows the HR-TEM image of a film with dFe,nom of 10 nm after
the native oxidation. Iron grains with lateral dimensions in the
range of 10 nm are observed, which are covered by an ∼3 nm
thin iron oxide layer. At the grain boundaries, due to the
curvature of the iron grains, the iron oxide penetrates deeper
into the iron layer. This is evidenced further by the STEM-
EDX investigations. The associated EDX mappings for oxygen
(O−K) and iron (Fe−K), and a line scan over these EDX
elemental maps show an enhanced oxygen content in the dent
between two iron grains (Figure 2b). Raman measurements
(Figure 2c) show only modes for magnetite (Fe3O4) besides
the substrate peak. Since no peaks for the hematite and
maghemite, and no peak splitting of the A1g phonon mode 661
cm−1, are detected, Fe3O4 is confirmed as the dominant iron
oxide,35−37 even though small amounts of other iron oxides
cannot be fully excluded (see Supporting Information S1). The
formation of a crystalline magnetite layer is expected for native
oxidation of iron in ambient conditions29,38−40 and consistent
with the fast Fourier transform (FFT) of the HR-TEM image
(Figure 2a) in the iron oxide region of the sample. X-ray
diffraction resolves a broad Fe(110) peak for this sample,

reflecting the nanocrystalline nature of the thin film (see
Supporting Information S2). It can be concluded that, for small
enough thicknesses, the natively oxidized iron thin films can be
regarded as iron oxide−iron nanocomposite films with
nanosized iron grains embedded in a Fe3O4 layer.
The deposition of films with different sputtered nominal

iron thickness and subsequent native oxidation is a route to
prepare films with different iron oxide/iron metal ratios. The
reason is that the thickness of the native oxide layer at the iron
surface is expected to be approximately constant and
independent of the underlying iron thickness.41 The larger
the nominal deposited iron film thickness, the smaller is the
surface-to-volume ratio; this directly results in a decreased
oxide-to-metal ratio after native oxidation. The previous
reports40 on the native oxidation of sputtered Fe films show
that this effect is amplified by thickness-dependent morpho-
logical features. The transition from an island-like to a film-like
growth mode will cause a further decrease of the surface area at
increasing film thickness.22 In addition, after coalescence of the
nanoislands, the film thickness increase will lead to a deeper
extension of the vertical grain boundaries in the film, which
makes them less susceptible to grain boundary oxidation. All
three effects occur in the present iron films and will result in an
especially large iron oxide/metal ratio at small film thickness.
The MR of the iron oxide−iron nanocomposites was

investigated for samples with a different sputtered nominal
iron thickness between 5 and 50 nm and compared to the MR
of the substrate and a pure iron stripe. The MR is defined as
[R(H) − R(0)]/R(0), where R is the resistance, H is the
external magnetic field, and R(0) is the resistance at zero
magnetic field. Figure 3a shows the MR curves for the sole Au/
Cr buffer layer and a 30 nm thick iron stripe protected from
oxidation by an Au cover layer. The Au/Cr stripe sample
showed a small positive MR, which is as expected for Au
exhibiting the ordinary magnetoresistance effect (OMR).42 For
the sandwiched pure iron stripe, a small negative MR is
observed. The measurable negative MR effect is small and
rather noisy because most of the current flows through the top
and bottom Au layers, which are more conductive than iron.
This negative MR is as expected for ferromagnetic layers, when
measuring in the transverse current−magnetic field geometry,
and can be explained by spin−orbit coupling.43 In contrast to
this, Figure 3b shows that a positive MR occurs when the iron
stripes with dFe,nom = 30 nm are natively oxidized. Large
positive MR values of 1.1 and 1.5% at 3 T are obtained with
and without Au/Cr buffer layer, respectively. In Figure 3c, the
MR curves for films with 5 nm ≤ dFe,nom ≤ 50 nm on an Au/Cr
buffer layer are plotted. The MR at μ0H = 3 T extracted from
these curves is plotted in Figure 3d in depending on dFe,nom.
For the iron oxide−iron nanocomposite films, the increase of
dFe,nom from 5 to 30 nm leads to an increasingly positive MR up
to a maximum of +1.1% at dFe,nom of 30 nm. For thicknesses of
dFe,nom > 30 nm, MR decreases again and finally changes sign
from positive to negative at dFe,nom ≥40 nm. This negative MR
at large iron layer thickness is expected for ferromagnetic
layers. The positive MR observed at the lower thickness,
however, is rather unusual for room-temperature measure-
ments.
This distinct thickness dependence of MR and the positive

MR at room temperature are discussed in the following by
taking into account the nanocomposite Fe3O4−Fe micro-
structure of the films. For both Fe and Fe3O4, a negative MR is
expected and usually observed.44−49 There are, however, also

Figure 2. Composition and morphology of pristine iron oxide−iron
nanocomposite films. (a) Cross-sectional HR-TEM image and FFTs
of a FeOx/Fe/Au/Cr layer stack show nanosized iron grains covered
by the native iron oxide layer. (b) Cross-sectional STEM image with
associated EDX maps for Au (L-edge), Fe, and O (K-edges) and a
line scan over these maps showing the enhanced oxygen content in
the dent between two iron grains. (c) Raman spectrum identifies
Fe3O4 as the dominant native oxide.
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several reports on positive MR effects in Fe3O4-based systems
such as Fe3O4 nanowires,

50 thin films,51 nanocomposites,52,53

and heterojunctions.54 To explain the positive MR effects in
such Fe3O4-based devices, different mechanisms are proposed.
The works of Liao et al.50 and Reddy et al.54 describe a spin-
dependent scattering at the interface between the metal
contact and the strongly spin-polarized magnetite, leading to a
spin filter effect associated with high contact resistance. In the
present study, such a contact effect is excluded because the
native oxide layer was removed by Ar plasma etching prior to
the sputter deposition of the Au contacts. In addition, the
contact effect could not explain the distinct thickness
dependence in our case.
Another mechanism is discussed for Fe3O4−Ag compo-

sites.53,55 In these studies,53,55 the positive MR effect is
attributed to spin injection from the highly spin-polarized
magnetite into diamagnetic Ag grains with zero spin polar-
ization, and associated spin-dependent scattering at Fe3O4/Ag
grain boundaries. This effect is only observed for a small
compositional range, and a crossover to negative MR occurs
for smaller and larger Ag amounts. We propose that in the
present Fe3O4−Fe nanocomposite system, a similar effect
causes the positive MR which is discussed in more detail in the
following text.
At small thicknesses, granular film growth takes place and

results in the presence of more or less coalesced iron
nanoislands. Since these iron nanoislands are exposed to
ambient conditions, their surface is completely oxidized. This
is analogue to iron nanoparticles, which, after native oxidation
at room temperature, yield iron cores covered by a Fe3O4
shell.29,56 Thus, at small enough iron film thickness, the

volume of the oxidized regions after native oxidation will
dominate over or be in the same order of magnitude of the
volume of the iron grains. Thus, these films consist of a Fe3O4/
Fe nanocomposite region, in which small Fe grains are
distributed in the natural magnetite oxide layer, and a
continuous Fe3O4 top layer (see scheme in Figure 3d). The
top Fe3O4 layer is expected to give a negative contribution to
MR. In the nanocomposite region, however, spin injection and
spin reorientation can occur at the Fe3O4/Fe grain interfaces,
similar to the case of Fe3O4/Ag nanocomposites,53,55 since
ferromagnetic Fe exhibits a lower spin polarization than Fe3O4.
The increase in positive MR when increasing the thickness
from 5 to 30 nm could then be caused by the increasing
Fe3O4/Fe nanocomposite layer thickness, and associated
increasing Fe3O4/Fe interface area, while the Fe3O4 top layer
thickness remains constant (see scheme in Figure 3d). For
small enough iron thickness, spin injection from Fe3O4 into the
underlying Au will also occur, which even more resembles the
Fe3O4−Ag system53,55 because Au, like Ag, is a strong
diamagnet. For the present iron oxide−iron nanocomposites,
we measured a positive MR also on a (paramagnetic) Pd
underlayer (see Supporting Information S3) and without a
metal underlayer (Figure 3b). This indicates that interface
scattering and spin injection from highly spin-polarized Fe3O4
in any metal with lower spin polarization, such as Ag,53,55 or, in
the present case Au, Pd, and Fe, can give rise to positive MR.
The effect seems to be less pronounced on Pd compared to Au
(see Supporting Information S3), but since the impact of
interface scattering on the measured MR also strongly depends
on the share of the electric current flowing through the
different layers (and thus on the different resistivities), the
origin for such differences in the magnitude of the positive MR
cannot be resolved unambiguously at this point.
For the iron oxide−iron nanocomposites on Au (Figure

3c,d), the crossover to negative magnetoresistance, when
dFe,nom is increased to 40 nm, can be explained by the
decreasing importance of interface effects, when more electric
current flows through the (thicker) iron layer. Then, the
negative magnetoresistance in iron will dominate the interface
scattering and suppress the spin injection and the associated
positive MR.
At dFe,nom >40 nm, the magnitude of the MR remains similar.

This signifies that no finite-size effects, which are sometimes
reported for MR in iron thin films,43 occur. Granberg et al.43

showed that the electron mean free path in single-crystalline
iron films at 300 K is in the order of 3 nm due to electron−
phonon scattering. In the present iron oxide/iron films, the
grain size is much larger than 3 nm, which consistently explains
the thickness independent negative MR for samples thicker
than 40 nm.
To achieve voltage control of MR by magneto-ionic

reactions we applied electrolytic gating to selected Fe3O4/Fe
stripe samples. Magneto-ionic control in metal oxide/metal
films relies on oxidation/reduction processes, which can
change the oxide/metal proportion.25,32,57 Therefore, the
strong dependency of the magnitude and sign of MR on
dFe,nom (and thus on the oxide/metal proportion) that we
observed is highly promising for magneto-ionic control of MR.
To investigate the possibility of magneto-ionic control, we
chose nanocomposites with dFe,nom equal to 5, 10, and 30 nm.
These are samples with positive MR and, for the 30 nm
sample, close to the crossover to negative MR. For the 40 nm
sample, no MR change upon magneto-ionic reduction, i.e.,

Figure 3. (a−c) MR of (a) an iron stripe protected by an Au (10 nm)
top layer, (b) iron oxide−iron nanocomposite stripes with and
without Au/Cr underlayer, and (c) iron oxide−iron nanocomposite
stripes on an Au/Cr underlayer with different nominal sputtered Fe
layer thickness (dFe,nom), all in comparison to the MR of the Au/Cr/
SiO2/Si substrate (gray line). (d) Schemes for the expected Fe3O4/Fe
nanocomposite films (top) and MR at μ0H = 3 T extracted from (c)
in dependence of the nominal Fe thickness (bottom). A positive MR
at the small thickness and a crossover to a negative MR at larger Fe
thickness is observed. The dashed and dotted lines are guides to the
eye.
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voltage-induced iron layer thickness increase,25 is expected,
which is confirmed experimentally for the low field region (see
Supporting Information S4).
As an electrolyte, we used 1 mol/L aqueous LiOH solution,

which was added into the in situ transport cell. Different gate
voltages were applied via a Pt counter electrode, and
simultaneously the in situ MR measurements were conducted
via press contacts outside the electrolyte area. Figure 4 shows

the MR signals for dFe,nom = 5, 10, and 30 nm during the
application of an oxidation potential (EOx = −0.12 V) or
reduction potential (ERed = −1.84 V). The MR curves with
dFe,nom of 5 and 10 nm (Figure 4a,b, respectively) show just
minimal differences for the two gating voltages. This can be
explained by the relatively thick Fe3O4 grain boundary layer,
which is expected as the starting state (see scheme in Figure
3d). Possibly, in this case, the oxide in the grain boundaries
cannot be reduced completely and, in consequence, residual
oxide in the grain boundaries may prevent a change in the
conduction mechanism. In contrast, a large voltage-induced
change in MR is observed for the sample with dFe,nom = 30 nm
(Figure 4c). At the oxidation potential, a significantly larger
positive MR effect is observed in comparison to the state at the
reduction potential. At 3 T, the MR was reduced by about
0.5% upon reduction, corresponding to a relative change of
−45%. The negative MR of ferromagnetic iron seems to play a
more pronounced role during reduction, even though the
positive MR attributed to spin injection in the nanocomposite
region is still dominant. In the low-magnetic-field region
between ±1 T (insets in Figure 4), signatures for the negative
MR induced by ERed appear in all three samples. These
signatures occur between ±0.5 T and are more pronounced in
the 10 and 30 nm samples. Thus, depending on the external
magnetic field and the applied voltage, the MR can be set on
and off and change its sign. For the 30 nm sample, the
reversibility of the voltage-induced MR switching is demon-
strated for two cycles (see Supporting Information S5).
Reversibility of more than several hundred cycles may be
expected, as this has been shown for oxidation/reduction in
similar FeOx/Fe nanostructure/alkaline electrolyte systems for

supercapacitor applications.58 These findings show that, with
our mechanism, a voltage-controlled sign change of MR can be
achieved in low magnetic fields at room temperature. By
further tuning the starting iron layer thickness close to the MR
crossover (Figure 3d), the voltage-switching between positive
and negative MR should be within reach also in the high-
magnetic-field region.

■ CONCLUSIONS

The presented tunable MR relies on the combination of a spin-
polarized Fe3O4 phase with nanocrystalline iron grains. So far,
the introduction of artificial defects, such as vertical grain
boundaries in perovskite manganite thin films59 and crystalline
boundaries in graphene,60 was applied to tune MR in an
irreversible manner. In contrast, in the present approach, the
locally oxidized regions adjacent to iron are susceptible to
voltage-induced reduction processes during electrolytic gating,
which enables voltage-tunable MR. This represents an original
route to a reversible control of MR on the base of magneto-
ionic reactions. Since locally oxidized regions are the active
tuning elements, the downscaling to nanometer-sized devices,
with the limit of, e.g., one oxidized grain boundary/device,
might be within reach. Also, a transfer to solid electrolytes with
similar redox behavior may be possible.19 The large range of
positive and negative MR values set by the thickness and a low
voltage (∼1 V) at room temperature goes beyond state-of-the-
art voltage-tunable MR devices, which are restricted to positive
or negative MR,11,16,17 high applied voltage,15,17 or low-
temperature operation.12,15,61

In summary, we investigated the MR of iron oxide−iron
nanocomposite films for nominal sputtered iron thicknesses
dFe,nom from 5 to 50 nm. We found a rather unusual positive
MR, which is attributed to surface and grain boundary
oxidation causing spin injection and spin reorientation at the
Fe3O4/Fe interfaces. The MR can be tuned by varying the
deposited iron layer thickness and via voltage-gating in the
alkaline electrolyte at room temperature. We recorded MR
values from −0.11% for dFe,nom = 50 nm up to +1.11% at 3 T
for dFe,nom = 30 nm. By applying gate voltages, a relative MR (3
T) change of 45% can be achieved by magneto-ionic switching
between reduced and oxidized state. In the low-magnetic-field
region, on/off switching and a sign change of MR can be
achieved with a potential difference of only 1.72 V. The
present approach signifies a step forward to practical and
tunable room-temperature MR-based nanodevices, which can
boost the development of nanoscale and energy-efficient
magnetic field sensors with high sensitivity, magnetic
memories, and magnetoelectric devices in general.
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Figure 4. Voltage control of the magnitude and sign of MR by
electrolytic gating. MR of iron oxide−iron nanocomposite stripes with
dFe,nom of (a) 5 nm, (b) 10 nm, and (c) 30 nm measured in situ during
the polarization in LiOH solution at ERed = −1.84 V (blue symbols)
and EOx = −0.12 V (red symbols). The insets show the enlargement
of the low magnetic field (±1 T) region.
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(16) Skowronśki, W.; Wisńiowski, P.; Stobiecki, T.; Cardoso, S.;
Freitas, P. P.; van Dijken, S. Magnetic Field Sensor with Voltage-
Tunable Sensing Properties. Appl. Phys. Lett. 2012, 101, No. 192401.
(17) Wang, L.; Hu, Z.; Zhu, Y.; Xian, D.; Cai, J.; Guan, M.; Wang,
C.; Duan, J.; Wu, J.; Wang, Z.; Zhou, Z.; Jiang, Z.-D.; Zeng, Z.; Liu,
M. Electric Field-Tunable Giant Magnetoresistance (GMR) Sensor
with Enhanced Linear Range. ACS Appl. Mater. Interfaces 2020, 12,
8855−8861.
(18) Leistner, K.; Wunderwald, J.; Lange, N.; Oswald, S.; Richter,
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