
A Service Level Agreement Verification System
using Blockchains

João Paulo de Brito Gonçalves, Roberta Lima Gomes,
Rodolfo da Silva Villaca

Federal University of Espirito Santo (Ufes)
Vitoria–ES, Brazil

jpaulo@ifes.edu.br, rgomes@inf.ufes.br,
rodolfo.villaca@ufes.br

Esteban Municio, Johann M. Marquez-Barja
IDLab – imec – University of Antwerp

Antwerp, Belgium
esteban.municio@uantwerpen.be

johann.marquez-barja@uantwerpen.be

Abstract—Service Level Agreements (SLAs) are used to estab-
lish a contract, an agreement between two parties, which can be
between two operators, or between a customer and an operator.
The SLAs methods are a key aspect between consumers and
providers, which can continuously monitor the Quality of Service
(QoS) attributes and enforce its reliability, but the SLA also
needs an entity to manage it. Smarts contracts are programs that
are executed in a blockchain and ensure integrity and reliability
to data stored in the distributed structure. This work proposes
a solution using smarts contracts and blockchains in order to
simplify the process of SLA validation.

Index Terms—Blockchain, Service Level Agreement, Smart
Contracts, Network Monitoring

I. INTRODUCTION

The Brazilian National Education and Research Network
(RNP) operates a backbone service to serve the academic
and research communities by providing access to the Internet
through its regional Points of Presence (PoPs) which make
up its national backbone. There are PoPs deployed along the
all 27 brazilian federation units, and the PoP-ES is located in
Vitória, Espı́rito Santo, Brazil.

The PoP-ES has the basic function of maintaining, operating
and coordinating actions on the academic Internet, serving as
point of access for users to the Ipê Network backbone [1].
In addition, PoP-ES offers a variety of services related to
the maintenance, management, planning and development of
advanced networks.

PoP-ES arbitrates Service Level Agreements (SLAs) be-
tween network providers (operators) and the academic institu-
tions connected to the Ipê Network backbone. PoP-ES is the
manager of each SLA and has the responsibility of verify if
they are being respected. A SLA can be defined qualitatively
for each customer based on their required resources, reliability
and availability. A traditional SLA has the following perfor-
mance metrics: bandwidth, availability, latency, packet loss
and error rate [2]. There are also metrics related to response
time to serve tickets opened in the a help desk application
(call center) and minimum time before requesting maintenance
windows [3].

PoP-ES is responsible to verify, periodically, if the SLA of
each customer is being fulfilled per agreement. In the negative
case, a report must be generated showing which metric was

violated and when. In this case, every unavailability event is
automatically generated and a ticket is opened in the help
desk system of RNP. An alert is generated to the network
provider, the customer (academic institution), and to the PoP-
ES team. Now the problem must be addressed by those
partners responsible to handle such problem. Once the link
becomes available again, an availability event is generated and
the ticket is closed. Every month, each ticket must be manually
evaluated by the PoP-ES team and each problem related to
the ticket must be classified regarding the responsibility: the
network provider, the customer itself, or the PoP-ES. Only
unavailability events generated by a problem related to the
network provider can count on the SLA availability metric, as
an example.

POP-ES maintains an availability level agreed via SLA
with the institutions served of 99.6 and allows maintenance
windows created by link operators. Since there are three
interacting entities (academic institutions, network providers
and POP-ES) in the SLA-based agreed service, a reliable
record of downtime is required to resolve disputes and verify
that agreed levels via SLA are being respected. In the face of
this problem, the following research question is raised: ”how
to ensure that the SLA is being fulfilled in a secure, certified
and dynamic way?”

Blockchains and Smart Contracts can address the issues
about certified the SLA in a secure, certified and dynamic
way by providing an immutable data storage and a distributed
consensus between members without the need of an exter-
nal validation. In this sense, smart contracts executing in a
blockchain can be used to express, in a tamper-proof manner,
SLAs containing quantitative terms, such as QoS metrics [4],
excluding the need for an entity to arbitrate the agreement.
Besides that, the concept of Blockchain as a Service (BaaS) is
characterized by the ability to create and manage the access to
a blockchain network using a cloud computing environment.

This work proposes a solution empowered by smart con-
tracts in order to simplify the process of SLA validation using
a cloud environment.

This paper is organized as follows: Section II provides a
theoretical background on the topic and III the related work. In
Section IV, the applications developed are presented. Section



V shows the tests performed and the section VI presents the
final conclusions and some future work proposals.

II. BACKGROUND

A. Blockchain

Despite his initial financial application, blockchain technol-
ogy [5] has grown to a multiplicity of different applications
where there is the constant necessity of unchanging and
distributed recording of operations performed on a system such
as distributed computing [6], Internet of Things [7], file storage
[8], prediction [9], among many others. The blockchain is a
distributed ledger, where each participant has a copy of the
database with all the information already made and there is a
consensus among the participants about validated transactions.

In the blockchain, each block is a set of transactions chained
through hash addresses. Each block has recorded, among other
information, the time it was validated, its hash and also the
hash of the previous block, so that once the block is generated,
it can not be tampered under the penalty of the stored hash
not match to the hash of the modified block, thus evidencing
the attempted fraud.

In public blockchains, i.e. where access is not controlled by
a central authority, consensus and validation of transactions
and blocks is preceded by a step called Proof of Work (PoW),
where a cryptic challenge is proposed which, once solved, is
propagated over the network. Only after the transaction has
been validated, the pending transaction is actually performed.
Invalidated transactions arriving at the network are stored in
a transaction pool, where they await for validation.

PoW is used to discourage malicious users from creating
fraudulent transactions on the network, but there is criticism
regarding performance loss caused by their use in block
creation. In the past few years, others validation strategies
have been proposed, as Proof of Stake(PoS) [7] and Proof
of Authority (PoA) [7], both based more in users’ currency
amount and reputation and less in computation power.

B. Ethereum

Several blockchain technologies have emerged in recent
years and among the most popular are those based on the
Ethereum platform. Ethereum is a platform for executing
blockchain-based applications that are modeled as smart con-
tracts [10] and has its own cryptocurrency, ether.

Another important Ethereum concept is gas. Gas is a way of
decoupling the cost of transactions in the Ethereum from the
floating exchange rate of the ether cryptocurrency, establishing
a cost for each fluctuating computational job in the financial
market. Gas is also a mechanism to prevent a smart contract
with infinite loops from running indefinitely on the blockchain.
Once the maximum amount of gas allocated to contract
expires, the contract finish its execution.

On the Ethereum platform, smart contacts run on Ethereum
Virtual Machine (EVM). It is completely isolated and the code
that runs on it has no access to any external resources such as
the network or the computer file system [11]. Ethereum uses
Proof of Work as its current consensus mechanism.

The Ethereum platform is a very flexible alternative to the
development of dApps (Decentralized Applications). A dApp
is a decentralized application that uses a smart contract in
the blockchain as backend and a web interface as frontend,
allowing users to insert and receive data from the blockchain
in a friendly way.

C. InterPlanetary File System

The InterPlanetary File System (IPFS) [12] is a peer-to-
peer distributed file system that aims to connect all computing
nodes in the same file system. In some ways, this is similar to
the original aims of the World Wide Web, but IPFS is actually
more similar to a single bit torrent exchanging objects. Due to
its decentralized nature, IPFS is used to store files that would
be too expensive to write in the blockchain.

IPFS is considered a promising solution for saving data
for decentralized applications. Without IPFS, the blockchain
would be reduced to any other regular storing mechanism with
many limitations. In IPFS, the file storage address is the hash,
providing a unique identification that is tightly linked to the
file itself.

III. RELATED WORK

Scheid et. al. [4] presented is presented the design and
implementation of a blockchain-based smart contract that
simplifies and automates the compensation process in case of
an SLA violation. The prototype was deployed in Ganache
tool, that simulates a Ethereum-based blockchain to simplify
dApps deploy and tests.

Uriarte et. al [13] present a formal language(SLAC) to
describe their SLAs for cloud providers. In this paper, they
inform that are currently analysing the use of SLAC in the
context of blockchain and smart contracts, but don’t provide
any implementation details. In [14] the same authors describe
a prototype for the support of the SLA management.

Pascale et. al [15] proposes automatize Small-Cell-as-a-
Service (SCaaS) agreements between the small-cell owners
and network operators using smart contracts. The smart con-
tract code is available, but the paper does not describe any
performance test or deployment process.

In this paper we propose a solution based on the real
operation of PoP-ES, as well as the deployment of a proof-
of-concept on a cloud structure and on a real and public
Ethereum-like blockchain to keep it on-line 24 hours per day,
besides the integration of blockchain and IPFS technologies.

IV. SYSTEM DESIGN

In order to validate our proposal, we created two dApps
to store the periods of unavailability in the service provided
between PoP-ES and institutions served and to verify the SLA
conformity.

We developed the smart contract in Solidity language. This
smart contract is connected to a web interface, composing a
dApp. We created the dApp interface using React framework,
a JavaScript library for building user interfaces.



We deployed the smart contract in the Ropsten network, a
test network based in Ethereum blockchain. We choosed this
network among all the Ethereum-like test networks because
it is the only one that implements the PoW, being closer to
the real Ethereum’s current network but with no monetary
expenses to execute transactions. In the Ropsten, are used
faucets, ethers without real value that can be request and used.

To visualize the transactions submitted to the blockchain, we
use Etherscan [16], a block explorer and analytics platform for
Ethereum blockchain. In its dashboard, wen can see all the
transactions details: status, block, timestamp, gas used, gas
price as well as the transaction content itself.

As showed in figure 1, the information is inserted in the
dApp and forwarded to the smart contract using the web3.js
library, that connects web applications to the blockchain. We
use Metamask plugin in the browser to allow our interaction
with the blockchain without the need to run a full Ethereum
node. In Metamask, the Ethereum’s account used to perform
transactions is configured. The users’ accounts authorized to
use the applications are hard coded in the source code, so only
these users will be able to perform operations, even if other
accounts are used in Metamask.

To connect to IPFS, it was used Infura, a scalable back-
end infrastructure for building dApps, to connect to both
blockchain network and decentralised storage.

A. System Dynamic

There are two dApps that use the same smart contract
address as we show in figure 1. One dApp will be used
by the PoP operator to register downtime periods. The other
dApp will be used by the link operator to insert maintenance
windows that will be disregarded from the total unavailability
count and have no influence in the availability level account-
ing.

There is an option in the PoP operator interface to create a
report of the unavailability period registered that will be saved
in IPFS servers. The file hash which is also the IPFS address
will be stored in the blockchain, and is showed in the graphical
interface for further compliance verification.

For each downtime period inserted in the PoP operator
interface, the downtime time accounting is stored in the
blockchain for further verification. As result, it is possible to
verify the actual availability level and the compliance or not
with the SLA in the dApp.

The algorithm for calculating service availability to the
client is described in Algorithm 1. There are two arrays, one
that receive the downtime moments and the other receives
the uptime moments. After that, we compare if the uptime
moment is smaller that the downtime moment, if so, it is a
inconsistence. If not, the counter variable its incremented with
this new unavailability period. After that, the Availability is
calculated using the total of minutes in a month subtracted
the counter, multiplied by 100 and divided for the total of
minutes in a month. After every availability level update, is
possible to see the compliance with the SLA or not in the
prototype.

Algorithm 1: Downtime Accounting
Input : Downtime periods
Output: Availability level
Result: Calculates the Availability

1 downtime[i] ← down.timestamp;
2 uptime[i] ← up.timestamp;
3 if (uptime[i] ≥ downtime[i]) then
4 period ← uptime[i] - downtime[i];
5 counter ← counter + period;
6 i ← i + 1;
7 else
8 return InvalidInput;
9 end

10 Availability ← ((43200 - counter) * 100)/43200;
11 return Availability;

In the link operator interface, the maintenance windows are
inserted 48 hours in advance to respect the SLA clauses. If
the operator tries to insert a maintenance window less than 48
hours earlier, it can not be allowed by the prototype.

The period inserted is decremented of the unavailability
accountability in the smart contract, after checking if the
maintenance window intersects with one of the registered
downtime events.

The system dynamic is presented in Figure 1.

Fig. 1. System Dynamics

V. DEPLOYMENT AND TESTS

The proof of concept was deployed on a virtual machine in
a Pike version OpenStack cloud, distributed on four servers
with the following configuration:

• Controller node with 32GB RAM, Intel® Xeon® proces-
sor E3-1240 3.70GHz, Ubuntu 16.04 Operating System;



• 2 computing nodes with 32GB RAM, Intel® Xeon®
processor 3.70GHz E3-1240, Ubuntu 16.04 Operating System;

• 1 computing node with 128GB RAM, Intel® Xeon®
processor E5-2650 2.20GHz, Ubuntu 16.04 Operating System.

Ninety transactions were made in the two dApps and the
system behavior was analysed, as well the interaction between
the two systems.

The deployment and interactions with the smart contract that
alters its state require a payment of a certain gas fee. Using
Etherscan we can see a transaction and block history, providing
information such as the amount of gas consumed per transac-
tion and per block. The transactions were executed at a fixed
gas price of around 0.000000001 Ether per unit and transaction
fees that oscillate between 0.0000841 to 0.00042832 ether. It is
noticeable that the creation of the smart contract is the most
expensive function, since it is the operation that writes the
most amount of data on the blockchain. This emerges from
the way transaction costs are composed in Ethereum, namely
a fixed and a variable part. The EVM demands a fixed cost
of 32,000 gas for a contract creation in addition to the 21,000
gas that every transaction costs. The remainder is the variable
part which depends on the size of the contract code. Each byte
of code consumes 200 gas units, the more code a contract has
the more expensive its creation is [17].

The other operations consist of timestamps writes and
numerical operations, these are composed of the fixed gas fee
of 21,000 plus a certain fee for each operation.

In a scenario without IPFS integration, the reports storage
would be the most costly operation, but after the integration,
only the file addresses are written via smart contract.

It was also noticed that although the transactions are inserted
into blocks after the Proof of Work, the time to update contract
variables did not exceed 15 seconds, which makes the response
time acceptable for applications as the one we propose in
this work, where the recording of downtime and maintenance
windows is made sporadically.

VI. CONCLUSIONS AND FUTURE WORK

This work proposes a solution empowered by smart con-
tracts in order to simplify the process of SLA validation. As
proof of concept we developed and deployed two decentralized
applications in a cloud infrastructure in order to be used by
PoP-ES and link provider operators.

In the proof of concept is possible to insert downtime
periods and maintenance windows that are used to calculate
the total availability and his compliance with the SLA. It is
possible to verify that the cost in ethers to execute the basic
operations of the smart contract was not too excessive and
the response time of validated transactions even in a public
blockchain is acceptable.

As future work, we foresee the deploy of the proof of con-
cept on the official Ethereum blockchain, what would enable
the inclusion of monetary refund for clients that suffered SLA
violations, implemented using the cryptocurrency itself.

Another suggestion is the use of service level agreement
verification in other use cases which involve contracts for

the use of network resources between clients and providers
as cloud computing and network slicing. About the latest, an
implementation is already under development.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001 and in part by the European
Union’s Horizon 2020 Research and innovation program,
under grant agreement No. 826284 (ProTego). Authors would
also like to thank FAPES, CNPq, PoP-ES/RNP and University
of Antwerp and IMEC for supporting this research.

REFERENCES

[1] L. Sampaio et al., “Implementing and deploying network monitoring
service oriented architectures: Brazilian national education and research
network measurement experiments,” in 2007 Latin American Network
Operations and Management Symposium. IEEE, 2007, pp. 28–37.
[Online]. Available: https://doi.org/10.1109/LANOMS.2007.4362457

[2] Y. Nugraha and A. Martin, “Understanding trustworthy service level
agreements: Open problems and existing solutions,” 2017. [Online].
Available: https://hal.inria.fr/hal-01684231

[3] J. R. Amazonas, A. Akbari-Moghanjoughi, G. Santos-Boada,
and J. S. Pareta, “Service level agreements for communication
networks: A survey,” INFOCOMP Journal of Computer Science,
vol. 18, no. 1, pp. 32–56, 2019. [Online]. Available:
http://infocomp.dcc.ufla.br/index.php/INFOCOMP/article/view/584

[4] E. J. Scheid, B. B. Rodrigues, L. Z. Granville, and B. Stiller, “Enabling
dynamic sla compensation using blockchain-based smart contracts,”
in 2019 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM). IEEE, 2019, pp. 53–61. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8717859

[5] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system.”
[Online]. Available: http://bitcoin.org/bitcoin.pdf

[6] J. B. Pollack and H. Lipson, “The golem project: Evolving hardware
bodies and brains,” in Proceedings of the 2nd NASA/DoD Workshop
on Evolvable Hardware. IEEE, 2000, pp. 37–42. [Online]. Available:
https://doi.org/10.1109/EH.2000.869340

[7] F. Saleh, “Blockchain without waste: Proof-of-stake,” SSRN, Tech. Rep.,
5 2019. [Online]. Available: https://dx.doi.org/10.2139/ssrn.3183935

[8] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, “Storj
a peer-to-peer cloud storage network,” 2014. [Online]. Available:
https://storj.io/storj2014.pdf

[9] J. Peterson and J. Krug, “Augur: a decentralized, open-source platform
for prediction markets,” arXiv preprint arXiv:1501.01042, 2015.

[10] N. Szabo, “Formalizing and securing relationships on public
networks,” First Monday, vol. 2, no. 9, 1997. [Online]. Available:
https://doi.org/10.5210/fm.v2i9.548

[11] I. Bashir, Mastering Blockchain. Packt Publishing Ltd, 2017.
[12] Q. Zheng, Y. Li, P. Chen, and X. Dong, “An innovative ipfs-based

storage model for blockchain,” in 2018 IEEE/WIC/ACM International
Conference on Web Intelligence (WI). IEEE, 2018, pp. 704–708.
[Online]. Available: https://doi.org/10.1109/WI.2018.000-8

[13] R. B. Uriarte, R. D. Nicola, V. Scoca, and F. Tiezzi, “Defining and
guaranteeing dynamic service levels in clouds,” Future Generation
Computer Systems, vol. 99, pp. 17–40, 10 2019. [Online]. Available:
https://doi.org/10.1016/j.future.2019.04.001

[14] R. B. Uriarte, R. de Nicola, and K. Kritikos, “Towards distributed
sla management with smart contracts and blockchain,” in 2018
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), Dec 2018, pp. 266–271. [Online]. Available:
https://doi.org/10.1109/CloudCom2018.2018.00059

[15] E. D. Pascale, J. McMenamy, I. Macaluso, and L. Doyle, “Smart contract
slas for dense small-cell-as-a-service,” CoRR, vol. abs/1703.04502,
2017. [Online]. Available: http://arxiv.org/abs/1703.04502

[16] E. Team, “Etherscan: The ethereum block explorer,” 2017. [Online].
Available: https://etherscan.io/

[17] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014. [Online].
Available: http://gavwood.com/paper.pdf


