
libCEED User Manual
Release 0.7

Ahmad Abdelfattah Valeria Barra Natalie Beams
Jed Brown Jean-Sylvain Camier Veselin Dobrev
Yohann Dudouit Leila Ghaffari Tzanio Kolev

David Medina Thilina Rathnayake
Jeremy L. Thompson Stan Tomov

Dec 02, 2020

Contents

1 Introduction 4

2 Getting Started 6
2.1 Building . 6
2.2 Testing . 7
2.3 Backends . 7
2.4 Examples . 9
2.5 Benchmarks . 11
2.6 Install . 11

2.6.1 pkg-config . 11
2.7 Contact . 12
2.8 How to Cite . 12
2.9 Copyright . 12

3 Interface Concepts 12
3.1 Theoretical Framework . 13
3.2 Finite Element Operator Decomposition . 13

3.2.1 Terminology and Notation . 14
3.2.2 Partial Assembly . 18
3.2.3 Parallel Decomposition . 19

3.3 API Description . 19

1

3.4 Gallery of QFunctions . 25
3.5 Interface Principles and Evolution . 26

4 Examples 27
4.1 Common notation . 27
4.2 Standalone libCEED . 27

4.2.1 Ex1-Volume . 27
4.2.2 Ex2-Surface . 28

4.3 PETSc demos and BPs . 28
4.3.1 Area . 28

4.3.1.1 Cube . 28
4.3.1.2 Sphere . 29

4.3.2 Bakeoff problems and generalizations . 31
4.3.2.1 Bakeoff problems on the cubed-sphere . 31

4.3.3 Multigrid . 32
4.4 CEED Bakeoff Problems . 32

4.4.1 Mass Operator . 33
4.4.2 Laplace’s Operator . 33

4.5 Compressible Navier-Stokes mini-app . 34
4.5.1 Advection . 37
4.5.2 Density Current . 38

4.6 Solid mechanics elasticity mini-app . 38
4.6.1 Running the mini-app . 39

4.6.1.1 On algebraic solvers . 41
4.6.1.2 Nondimensionalization . 42
4.6.1.3 Diagnostic Quantities . 42

4.6.2 Linear Elasticity . 43
4.6.2.1 Constitutive modeling . 43

4.6.3 Hyperelasticity at Small Strain . 44
4.6.3.1 Newton linearization . 44

4.6.4 Hyperelasticity at Finite Strain . 45
4.6.4.1 Constitutive modeling . 45
4.6.4.2 Weak form . 47
4.6.4.3 Newton linearization . 47

5 API Documentation 49
5.1 Public API . 49

5.1.1 Ceed . 49
5.1.1.1 Base library resources . 49

5.1.2 CeedVector . 53
5.1.2.1 Basic vector operations . 53

5.1.3 CeedElemRestriction . 57
5.1.3.1 Expressing element decomposition and degrees of freedom over a mesh . . 57

5.1.4 CeedBasis . 62
5.1.4.1 Discrete element bases and quadrature . 62

5.1.5 CeedQFunction . 70
5.1.5.1 Resolution/space-independent weak forms and quadrature-based operations 70

5.1.6 CeedOperator . 74
5.1.6.1 Discrete operators on user vectors . 74

5.2 Backend API . 80
5.2.1 Ceed . 80
5.2.2 CeedVector . 85
5.2.3 CeedElemRestriction . 86
5.2.4 CeedBasis . 88

2

5.2.5 CeedQFunction . 91
5.2.6 CeedOperator . 95

5.3 Internal Functions . 98
5.3.1 Ceed . 98
5.3.2 CeedVector . 98
5.3.3 CeedElemRestriction . 98
5.3.4 CeedBasis . 99
5.3.5 CeedQFunction . 100
5.3.6 CeedOperator . 101

6 Developer Notes 103
6.1 Shape . 103
6.2 Internal Layouts . 104
6.3 Backend Inheritance . 104
6.4 Clang-tidy . 105

7 libCEED: How to Contribute 105
7.1 Developer’s Certificate of Origin 1.1 . 106
7.2 Authorship . 106

8 libCEED Code of Conduct 106
8.1 Our Pledge . 106
8.2 Our Standards . 107
8.3 Enforcement Responsibilities . 107
8.4 Scope . 107
8.5 Enforcement . 107
8.6 Enforcement Guidelines . 108

8.6.1 1. Correction . 108
8.6.2 2. Warning . 108
8.6.3 3. Temporary Ban . 108
8.6.4 4. Permanent Ban . 108

8.7 Attribution . 108

9 Changes/Release Notes 109
9.1 Current Main . 109

9.1.1 Interface changes . 109
9.1.2 New features . 109
9.1.3 Performance improvements . 109
9.1.4 Examples . 109

9.2 v0.7 (Sep 29, 2020) . 109
9.2.1 Interface changes . 109
9.2.2 New features . 110
9.2.3 Performance improvements . 110
9.2.4 Examples . 110
9.2.5 Deprecated backends . 110

9.3 v0.6 (Mar 29, 2020) . 110
9.3.1 New features . 110
9.3.2 Performance Improvements . 111
9.3.3 Interface changes . 111
9.3.4 Examples . 111

9.4 v0.5 (Sep 18, 2019) . 112
9.5 v0.4 (Apr 1, 2019) . 113
9.6 v0.3 (Sep 30, 2018) . 114
9.7 v0.21 (Sep 30, 2018) . 115
9.8 v0.2 (Mar 30, 2018) . 116

3

9.9 v0.1 (Jan 3, 2018) . 116

10 Bibliography 117

11 Indices and tables 117

References 117

Index 119

1 Introduction

Historically, conventional high-order finite element methods were rarely used for industrial problems be-
cause the Jacobian rapidly loses sparsity as the order is increased, leading to unaffordable solve times and
memory requirements [Brown10]. This effect typically limited the order of accuracy to at most quadratic,
especially because they are computationally advantageous in terms of floating point operations (FLOPS)
per degree of freedom (DOF)—see Fig. 1.1—, despite the fast convergence and favorable stability proper-
ties offered by higher order discretizations. Nowadays, high-order numerical methods, such as the spectral
element method (SEM)—a special case of nodal p-Finite Element Method (FEM) which can reuse the in-
terpolation nodes for quadrature—are employed, especially with (nearly) affine elements, because linear
constant coefficient problems can be very efficiently solved using the fast diagonalization method com-
bined with a multilevel coarse solve. In Fig. 1.1 we analyze and compare the theoretical costs, of different
configurations: assembling the sparse matrix representing the action of the operator (labeled as assembled),
non assembling the matrix and storing only the metric terms needed as an operator setup-phase (labeled as
tensor-qstore) and non assembling the matrix and computing the metric terms on the fly and storing a com-
pact representation of the linearization at quadrature points (labeled as tensor). In the right panel, we show
the cost in terms of FLOPS/DOF. This metric for computational efficiency made sense historically, when the
performance was mostly limited by processors’ clockspeed. A more relevant performance plot for current
state-of-the-art high-performance machines (for which the bottleneck of performance is mostly in the mem-
ory bandwith) is shown in the right panel of Fig. 1.1, where the memory bandwith is measured in terms
of bytes/DOF. We can see that high-order methods, implemented properly with only partial assembly, re-
quire optimal amount of memory transfers (with respect to the polynomial order) and near-optimal FLOPs
for operator evaluation. Thus, high-order methods in matrix-free representation not only possess favorable
properties, such as higher accuracy and faster convergence to solution, but also manifest an efficiency gain
compared to their corresponding assembled representations.
Furthermore, software packages that provide high-performance implementations have often been special-
purpose and intrusive. libCEED is a new library that offers a purely algebraic interface for matrix-free
operator representation and supports run-time selection of implementations tuned for a variety of compu-
tational device types, including CPUs and GPUs. libCEED’s purely algebraic interface can unobtrusively be
integrated in new and legacy software to provide performance portable interfaces. While libCEED’s focus
is on high-order finite elements, the approach is algebraic and thus applicable to other discretizations in
factored form. libCEED’s role, as a lightweight portable library that allows a wide variety of applications to
share highly optimized discretization kernels, is illustrated in Fig. 1.2, where a non-exhaustive list of spe-
cialized implementations (backends) is provided. libCEED provides a low-level Application Programming
Interface (API) for user codes so that applications with their own discretization infrastructure (e.g., those
in PETSc, MFEM andNek5000) can evaluate and use the core operations provided by libCEED. GPU imple-
mentations are available via pure CUDA aswell as the OCCA andMAGMA libraries. CPU implementations
are available via pure C and AVX intrinsics as well as the LIBXSMM library. libCEED provides a unified
interface, so that users only need to write a single source code and can select the desired specialized imple-
mentation at run time. Moreover, each process or thread can instantiate an arbitrary number of backends.

4

https://www.mcs.anl.gov/petsc/
https://mfem.org/
https://nek5000.mcs.anl.gov/
https://developer.nvidia.com/about-cuda
http://github.com/libocca/occa
https://bitbucket.org/icl/magma
http://github.com/hfp/libxsmm

Fig. 1.1: Comparison of memory transfer and floating point operations per degree of freedom for differ-
ent representations of a linear operator for a PDE in 3D with b components and variable coefficients aris-
ing due to Newton linearization of a material nonlinearity. The representation labeled as tensor computes
metric terms on the fly and stores a compact representation of the linearization at quadrature points. The
representation labeled as tensor-qstore pulls the metric terms into the stored representation. The assembled
representation uses a (block) CSR format.

5

Fig. 1.2: The role of libCEED as a lightweight, portable library which provides a low-level API for efficient,
specialized implementations. libCEED allows different applications to share highly optimized discretization
kernels.

2 Getting Started

2.1 Building

The CEED library, libceed, is a C99 library with no required dependencies, and with Fortran and Python
interfaces. It can be built using:

make

or, with optimization flags:

make OPT='-O3 -march=skylake-avx512 -ffp-contract=fast'

These optimization flags are used by all languages (C, C++, Fortran) and this makefile variable can also be
set for testing and examples (below). Python users can install using:

pip install libceed

or in a clone of the repository via pip install ..
The library attempts to automatically detect support for the AVX instruction set using gcc-style compiler
options for the host. Support may need to be manually specified via:

make AVX=1

or:

6

make AVX=0

if your compiler does not support gcc-style options, if you are cross compiling, etc.

2.2 Testing

The test suite produces TAP output and is run by:

make test

or, using the prove tool distributed with Perl (recommended):

make prove

2.3 Backends

There are multiple supported backends, which can be selected at runtime in the examples:

7

https://testanything.org

CEED resource Backend Deterministic Capa-
ble

CPU Native Backends
/cpu/self/ref/serial Serial reference implementation Yes
/cpu/self/ref/
blocked

Blocked reference implementation Yes

/cpu/self/opt/serial Serial optimized C implementation Yes
/cpu/self/opt/
blocked

Blocked optimized C implementation Yes

/cpu/self/avx/serial Serial AVX implementation Yes
/cpu/self/avx/
blocked

Blocked AVX implementation Yes

CPU Valgrind Backends
/cpu/self/memcheck/* Memcheck backends, undefined value checks Yes
CPU LIBXSMM Backends
/cpu/self/xsmm/
serial

Serial LIBXSMM implementation Yes

/cpu/self/xsmm/
blocked

Blocked LIBXSMM implementation Yes

CUDA Native Backends
/gpu/cuda/ref Reference pure CUDA kernels Yes
/gpu/cuda/shared Optimized pure CUDA kernels using shared

memory
Yes

/gpu/cuda/gen Optimized pure CUDA kernels using code gener-
ation

No

MAGMA Backends
/gpu/cuda/magma CUDAMAGMA kernels No
/gpu/cuda/magma/det CUDAMAGMA kernels Yes
HIP Native Backend
/gpu/hip/ref Reference pure HIP kernels Yes
OCCA Backends
/*/occa Selects backend based on available OCCA modes Yes
/cpu/self/occa OCCA backend with serial CPU kernels Yes
/cpu/openmp/occa OCCA backend with OpenMP kernels Yes
/gpu/cuda/occa OCCA backend with CUDA kernels Yes
/gpu/hip/occa OCCA backend with HIP kernels Yes

The /cpu/self/*/serial backends process one element at a time and are intended for meshes with a
smaller number of high order elements. The /cpu/self/*/blocked backends process blocked batches
of eight interlaced elements and are intended for meshes with higher numbers of elements.
The /cpu/self/ref/* backends are written in pure C and provide basic functionality.
The /cpu/self/opt/* backends are written in pure C and use partial e-vectors to improve performance.
The /cpu/self/avx/* backends rely upon AVX instructions to provide vectorized CPU performance.
The /cpu/self/memcheck/* backends rely upon the Valgrind Memcheck tool to help verify that user
QFunctions have no undefined values. To use, run your code with Valgrind and the Memcheck backends,
e.g. valgrind ./build/ex1 -ceed /cpu/self/ref/memcheck. A ‘development’ or ‘debugging’
version of Valgrind with headers is required to use this backend. This backend can be run in serial or
blocked mode and defaults to running in the serial mode if /cpu/self/memcheck is selected at runtime.
The /cpu/self/xsmm/* backends rely upon the LIBXSMM package to provide vectorized CPU perfor-
mance. If linkingMKL andLIBXSMM is desired but theMakefile is not detectingMKLROOT, linking libCEED

8

http://valgrind.org/
http://github.com/hfp/libxsmm

against MKL can be forced by setting the environment variable MKL=1.
The /gpu/cuda/* backends provide GPU performance strictly using CUDA.
The /gpu/cuda/magma/* backends rely upon the MAGMA package. To enable the MAGMA backends,
the environment variable MAGMA_DIRmust point to the top-level MAGMA directory, with the MAGMA li-
brary located in $(MAGMA_DIR)/lib/. By default, MAGMA_DIR is set to ../magma; to build the MAGMA
backend with a MAGMA installation located elsewhere, create a link to magma/ in libCEED’s parent direc-
tory, or set MAGMA_DIR to the proper location. MAGMA version 2.5.0 or newer is required.
The /gpu/hip/ref backend provides GPU performance strictly using HIP. It is based on the /gpu/cuda/
ref backend. ROCm version 3.5 or newer is required.
The /*/occa backends rely upon the OCCA package to provide cross platform performance. To enable the
OCCA backend, the environment variable OCCA_DIRmust point to the top-level OCCA directory, with the
OCCA library located in the ${OCCA_DIR}/lib (By default, OCCA_DIR is set to ../occa).
Additionally, users can pass specific OCCA device properties after setting the CEED resource. For example:

• “/*/occa:mode=’CUDA’,device_id=0”
Bit-for-bit reproducibility is important in some applications. However, some libCEED backends use non-
deterministic operations, such as atomicAdd for increased performance. The backends which are capable
of generating reproducible results, with the proper compilation options, are highlighted in the list above.

2.4 Examples

libCEED comes with several examples of its usage, ranging from standalone C codes in the /examples/
ceed directory to examples based on external packages, such as MFEM, PETSc, and Nek5000. Nek5000
v18.0 or greater is required.
To build the examples, set the MFEM_DIR, PETSC_DIR, and NEK5K_DIR variables and run:

cd examples/

libCEED examples on CPU and GPU
cd ceed/
make
./ex1-volume -ceed /cpu/self
./ex1-volume -ceed /gpu/cuda
./ex2-surface -ceed /cpu/self
./ex2-surface -ceed /gpu/cuda
cd ..

MFEM+libCEED examples on CPU and GPU
cd mfem/
make
./bp1 -ceed /cpu/self -no-vis
./bp3 -ceed /gpu/cuda -no-vis
cd ..

Nek5000+libCEED examples on CPU and GPU
cd nek/
make
./nek-examples.sh -e bp1 -ceed /cpu/self -b 3
./nek-examples.sh -e bp3 -ceed /gpu/cuda -b 3
cd ..

(continues on next page)

9

https://bitbucket.org/icl/magma
http://github.com/libocca/occa

(continued from previous page)
PETSc+libCEED examples on CPU and GPU
cd petsc/
make
./bps -problem bp1 -ceed /cpu/self
./bps -problem bp2 -ceed /gpu/cuda
./bps -problem bp3 -ceed /cpu/self
./bps -problem bp4 -ceed /gpu/cuda
./bps -problem bp5 -ceed /cpu/self
./bps -problem bp6 -ceed /gpu/cuda
cd ..

cd petsc/
make
./bpsraw -problem bp1 -ceed /cpu/self
./bpsraw -problem bp2 -ceed /gpu/cuda
./bpsraw -problem bp3 -ceed /cpu/self
./bpsraw -problem bp4 -ceed /gpu/cuda
./bpsraw -problem bp5 -ceed /cpu/self
./bpsraw -problem bp6 -ceed /gpu/cuda
cd ..

cd petsc/
make
./bpssphere -problem bp1 -ceed /cpu/self
./bpssphere -problem bp2 -ceed /gpu/cuda
./bpssphere -problem bp3 -ceed /cpu/self
./bpssphere -problem bp4 -ceed /gpu/cuda
./bpssphere -problem bp5 -ceed /cpu/self
./bpssphere -problem bp6 -ceed /gpu/cuda
cd ..

cd petsc/
make
./area -problem cube -ceed /cpu/self -petscspace_degree 3
./area -problem cube -ceed /gpu/cuda -petscspace_degree 3
./area -problem sphere -ceed /cpu/self -petscspace_degree 3 -dm_refine 2
./area -problem sphere -ceed /gpu/cuda -petscspace_degree 3 -dm_refine 2

cd fluids/
make
./navierstokes -ceed /cpu/self -petscspace_degree 1
./navierstokes -ceed /gpu/cuda -petscspace_degree 1
cd ..

cd solids/
make
./elasticity -ceed /cpu/self -mesh [.exo file] -degree 2 -E 1 -nu 0.3 -problem␣
↪→linElas -forcing mms
./elasticity -ceed /gpu/cuda -mesh [.exo file] -degree 2 -E 1 -nu 0.3 -problem␣
↪→linElas -forcing mms
cd ..

For the last example shown, sample meshes to be used in place of [.exo file] can be found at https:
//github.com/jeremylt/ceedSampleMeshes
The above code assumes a GPU-capable machine with the OCCA backend enabled. Depending on the
available backends, otherCEED resource specifiers can be providedwith the-ceed option. Other command

10

https://github.com/jeremylt/ceedSampleMeshes
https://github.com/jeremylt/ceedSampleMeshes

line arguments can be found in the petsc folder.

2.5 Benchmarks

A sequence of benchmarks for all enabled backends can be run using:

make benchmarks

The results from the benchmarks are stored inside the benchmarks/ directory and they can be viewed
using the commands (requires python with matplotlib):

cd benchmarks
python postprocess-plot.py petsc-bps-bp1-*-output.txt
python postprocess-plot.py petsc-bps-bp3-*-output.txt

Using the benchmarks target runs a comprehensive set of benchmarks which may take some time to run.
Subsets of the benchmarks can be run using the scripts in the benchmarks folder.
For more details about the benchmarks, see the benchmarks/README.md file.

2.6 Install

To install libCEED, run:

make install prefix=/usr/local

or (e.g., if creating packages):

make install prefix=/usr DESTDIR=/packaging/path

To install libCEED for Python, run:

pip install libceed

with the desired setuptools options, such as –user.

2.6.1 pkg-config

In addition to library and header, libCEED provides a pkg-config file that can be used to easily com-
pile and link. For example, if $prefix is a standard location or you set the environment variable
PKG_CONFIG_PATH:

cc `pkg-config --cflags --libs ceed` -o myapp myapp.c

will buildmyappwith libCEED. This can be usedwith the source or installed directories. Most build systems
have support for pkg-config.

11

./petsc/README.md
https://en.wikipedia.org/wiki/Pkg-config
https://people.freedesktop.org/~dbn/pkg-config-guide.html#faq

2.7 Contact

You can reach the libCEED team by emailing ceed-users@llnl.gov or by leaving a comment in the issue
tracker.

2.8 How to Cite

If you utilize libCEED please cite:

@misc{libceed-dev-site,
title = {lib{CEED} development site},
url = {https://github.com/ceed/libceed},
howpublished = {\url{https://github.com/ceed/libceed}},
year = 2020

}

For libCEED’s Python interface please cite:

@InProceedings{libceed-paper-proc-scipy-2020,
author = {{V}aleria {B}arra and {J}ed {B}rown and {J}eremy {T}hompson and {Y}

↪→ohann {D}udouit},
title = {{H}igh-performance operator evaluations with ease of use: lib{C}{E}{E}

↪→{D}'s {P}ython interface},
booktitle = {{P}roceedings of the 19th {P}ython in {S}cience {C}onference},
pages = {85 - 90},
year = {2020},
editor = {{M}eghann {A}garwal and {C}hris {C}alloway and {D}illon {N}iederhut␣

↪→and {D}avid {S}hupe},
doi = {10.25080/Majora-342d178e-00c},
url = {https://doi.org/10.25080/Majora-342d178e-00c}

}

The BiBTeX entries for these references can be found in the doc/bib/references.bib file.

2.9 Copyright

The following copyright applies to each file in the CEED software suite, unless otherwise stated in the file:
Copyright (c) 2017, Lawrence Livermore National Security, LLC. Produced at the Lawrence Liv-
ermore National Laboratory. LLNL-CODE-734707. All Rights reserved.

See files LICENSE and NOTICE for details.

3 Interface Concepts

This page provides a brief description of the theoretical foundations and the practical implementation of the
libCEED library.

12

mailto:ceed-users@llnl.gov
https://github.com/CEED/libCEED/issues
https://github.com/CEED/libCEED/issues

3.1 Theoretical Framework

In finite element formulations, the weak form of a Partial Differential Equation (PDE) is evaluated on a
subdomainΩe (element) and the local results are composed into a larger systemof equations thatmodels the
entire problem on the global domain Ω. In particular, when high-order finite elements or spectral elements
are used, the resulting sparse matrix representation of the global operator is computationally expensive,
with respect to both the memory transfer and floating point operations needed for its evaluation. libCEED
provides an interface for matrix-free operator description that enables efficient evaluation on a variety of
computational device types (selectable at run time). We present here the notation and the mathematical
formulation adopted in libCEED.
We start by considering the discrete residual F (u) = 0 formulation in weak form. We first define the L2

inner product between real-valued functions

⟨v, u⟩ =
∫
Ω

vudx,

where x ∈ Rd ⊃ Ω.
We want to find u in a suitable space VD, such that

⟨v,f(u)⟩ =
∫
Ω

v · f0(u,∇u) +∇v : f1(u,∇u) = 0 (3.1)

for all v in the corresponding homogeneous space V0, where f0 and f1 contain all possible sources in the
problem. Wenotice here that f0 represents all terms in (3.1)whichmultiply the (possibly vector-valued) test
function v and f1 all terms which multiply its gradient∇v. For an n-component problems in d dimensions,
f0 ∈ Rn and f1 ∈ Rnd.

Note: The notation∇v :f1 represents contraction over both fields and spatial dimensions while a single dot
represents contraction in just one, which should be clear from context, e.g., v · f0 contracts only over fields.

Note: In the code, the function that represents the weak form at quadrature points is called the CeedQFunc-
tion. In the Examples provided with the library (in the examples/ directory), we store the term f0 directly
into v, and the term f1 directly into dv (which stands for ∇v). If equation (3.1) only presents a term of the
type f0, the CeedQFunction will only have one output argument, namely v. If equation (3.1) also presents a
term of the type f1, then the CeedQFunction will have two output arguments, namely, v and dv.

3.2 Finite Element Operator Decomposition

Finite element operators are typically defined through weak formulations of partial differential equations
that involve integration over a computational mesh. The required integrals are computed by splitting them
as a sum over the mesh elements, mapping each element to a simple reference element (e.g. the unit square)
and applying a quadrature rule in reference space.
This sequence of operations highlights an inherent hierarchical structure present in all finite element oper-
ators where the evaluation starts on global (trial) degrees of freedom (dofs) or nodes on the whole mesh, restricts
to dofs on subdomains (groups of elements), then moves to independent dofs on each element, transitions to
independent quadrature points in reference space, performs the integration, and then goes back in reverse
order to global (test) degrees of freedom on the whole mesh.
This is illustrated below for the simple case of symmetric linear operator on third order (Q3) scalar contin-
uous (H1) elements, where we use the notions T-vector, L-vector, E-vector and Q-vector to represent the

13

sets corresponding to the (true) degrees of freedom on the global mesh, the split local degrees of freedom
on the subdomains, the split degrees of freedom on the mesh elements, and the values at quadrature points,
respectively.
We refer to the operators that connect the different types of vectors as:

• Subdomain restriction P

• Element restrictionG

• Basis (Dofs-to-Qpts) evaluator B
• Operator at quadrature points D

More generally, when the test and trial space differ, they get their own versions of P ,G and B.

Fig. 3.1: Operator Decomposition

Note that in the case of adaptive mesh refinement (AMR), the restrictions P and G will involve not just
extracting sub-vectors, but evaluating values at constrained degrees of freedom through the AMR interpo-
lation. There can also be several levels of subdomains (P1, P2, etc.), and it may be convenient to split D as
the product of several operators (D1,D2, etc.).

3.2.1 Terminology and Notation

Vector representation/storage categories:
• True degrees of freedom/unknowns, T-vector:

– each unknown i has exactly one copy, on exactly one processor, rank(i)
– this is a non-overlapping vector decomposition
– usually includes any essential (fixed) dofs.

14

P
ro

ce
ss

o
rs

E
le

m
e
n
ts

D
e
g
re

e
s o

f fre
e
d
o
m

• Local (w.r.t. processors) degrees of freedom/unknowns, L-vector:
– each unknown i has exactly one copy on each processor that owns an element containing
i

– this is an overlapping vector decomposition with overlaps only across different
processors—there is no duplication of unknowns on a single processor

– the shared dofs/unknowns are the overlapping dofs, i.e. the ones that have more than
one copy, on different processors.

15

P
ro

ce
ss

o
rs

E
le

m
e
n
ts

D
e
g
re

e
s o

f fre
e
d
o
m

• Per element decomposition, E-vector:
– each unknown i has as many copies as the number of elements that contain i
– usually, the copies of the unknowns are grouped by the element they belong to.

P
ro

ce
ss

o
rs

E
le

m
e
n
ts

D
e
g
re

e
s o

f fre
e
d
o
m

16

• In the case of AMR with hanging nodes (giving rise to hanging dofs):
– the L-vector is enhanced with the hanging/dependent dofs
– the additional hanging/dependent dofs are duplicated when they are shared by multi-
ple processors

– this way, an E-vector can be derived from an L-vectorwithout any communications and
without additional computations to derive the dependend dofs

– in other words, an entry in an E-vector is obtained by copying an entry from the corre-
sponding L-vector, optionally switching the sign of the entry (forH(div)—andH(curl)-
conforming spaces).

P
ro

ce
ss

o
rs

E
le

m
e
n
ts

D
e
g
re

e
s o

f fre
e
d
o
m

• In the case of variable order spaces:
– the dependent dofs (usually on the higher-order side of a face/edge) can be treated just like the
hanging/dependent dofs case.

• Quadrature point vector, Q-vector:
– this is similar to E-vectorwhere instead of dofs, the vector represents values at quadrature points,
grouped by element.

• In many cases it is useful to distinguish two types of vectors:
– X-vector, or primal X-vector, and X’-vector, or dual X-vector
– here X can be any of the T, L, E, or Q categories
– for example, the mass matrix operator maps a T-vector to a T’-vector
– the solutions vector is a T-vector, and the RHS vector is a T’-vector
– using the parallel prolongation operator, one canmap the solutionT-vector to a solution L-vector,
etc.

17

Operator representation/storage/action categories:
• Full true-dof parallel assembly, TA, or A:

– ParCSR or similar format
– the T in TA indicates that the data format represents an operator from a T-vector to a T’-vector.

• Full local assembly, LA:
– CSR matrix on each rank
– the parallel prolongation operator,P , (and its transpose) should use optimizedmatrix-free action
– note that P is the operator mapping T-vectors to L-vectors.

• Element matrix assembly, EA:
– each element matrix is stored as a dense matrix
– optimized element and parallel prolongation operators
– note that the element prolongation operator is the mapping from an L-vector to an E-vector.

• Quadrature-point/partial assembly, QA or PA:
– precompute and store w det(J) at all quadrature points in all mesh elements
– the stored data can be viewed as a Q-vector.

• Unassembled option, UA or U:
– no assembly step
– the action uses directly the mesh node coordinates, and assumes specific form of the coefficient,
e.g. constant, piecewise-constant, or given as a Q-vector (Q-coefficient).

3.2.2 Partial Assembly

Since the global operator A is just a series of variational restrictions with B, G and P , starting from its
point-wise kernelD, a “matvec” withA can be performed by evaluating and storing some of the innermost
variational restriction matrices, and applying the rest of the operators “on-the-fly”. For example, one can
compute and store a global matrix on T-vector level. Alternatively, one can compute and store only the
subdomain (L-vector) or element (E-vector) matrices and perform the action ofA using matvecs with P or
P andG. While these options are natural for low-order discretizations, they are not a good fit for high-order
methods due to the amount of FLOPs needed for their evaluation, as well as the memory transfer needed
for a matvec.
Our focus in libCEED, instead, is on partial assembly, where we compute and store only D (or portions
of it) and evaluate the actions of P , G and B on-the-fly. Critically for performance, we take advantage of
the tensor-product structure of the degrees of freedom and quadrature points on quad and hex elements to
perform the action of B without storing it as a matrix.
Implemented properly, the partial assembly algorithm requires optimal amount of memory transfers (with
respect to the polynomial order) and near-optimal FLOPs for operator evaluation. It consists of an operator
setup phase, that evaluates and storesD and an operator apply (evaluation) phase that computes the action
of A on an input vector. When desired, the setup phase may be done as a side-effect of evaluating a dif-
ferent operator, such as a nonlinear residual. The relative costs of the setup and apply phases are different
depending on the physics being expressed and the representation of D.

18

3.2.3 Parallel Decomposition

After the application of each of the first three transition operators, P , G and B, the operator evaluation is
decoupled on their ranges, so P , G and B allow us to “zoom-in” to subdomain, element and quadrature
point level, ignoring the coupling at higher levels.
Thus, a natural mapping of A on a parallel computer is to split the T-vector over MPI ranks (a non-
overlapping decomposition, as is typically used for sparse matrices), and then split the rest of the vector
types over computational devices (CPUs, GPUs, etc.) as indicated by the shaded regions in the diagram
above.
One of the advantages of the decomposition perspective in these settings is that the operators P ,G,B and
D clearly separate the MPI parallelism in the operator (P) from the unstructured mesh topology (G), the
choice of the finite element space/basis (B) and the geometry and point-wise physicsD. These components
also naturally fall in different classes of numerical algorithms – parallel (multi-device) linear algebra for P ,
sparse (on-device) linear algebra for G, dense/structured linear algebra (tensor contractions) for B and
parallel point-wise evaluations forD.
Currently in libCEED, it is assumed that the host application manages the global T-vectors and the required
communications among devices (which are generally on different compute nodes) with P. Our API is thus
focused on the L-vector level, where the logical devices, which in the library are represented by the Ceed
object, are independent. EachMPI rank can use one or more Ceeds, and each Ceed, in turn, can represent one
or more physical devices, as long as libCEED backends support such configurations. The idea is that every
MPI rank can use any logical device it is assigned at runtime. For example, on a node with 2 CPU sockets
and 4 GPUs, one may decide to use 6 MPI ranks (each using a single Ceed object): 2 ranks using 1 CPU
socket each, and 4 using 1 GPU each. Another choice could be to run 1MPI rank on the whole node and use
5 Ceed objects: 1 managing all CPU cores on the 2 sockets and 4managing 1 GPU each. The communications
among the devices, e.g. required for applying the action of P , are currently out of scope of libCEED. The
interface is non-blocking for all operations involving more than O(1) data, allowing operations performed
on a coprocessor or worker threads to overlap with operations on the host.

3.3 API Description

The libCEED API takes an algebraic approach, where the user essentially describes in the frontend the op-
erators G, B and D and the library provides backend implementations and coordinates their action to the
original operator on L-vector level (i.e. independently on each device / MPI task).
One of the advantages of this purely algebraic description is that it already includes all the finite element
information, so the backends can operate on linear algebra level without explicit finite element code. The
frontend description is general enough to support a wide variety of finite element algorithms, as well as
some other types algorithms such as spectral finite differences. The separation of the front- and backends
enables applications to easily switch/try different backends. It also enables backend developers to impact
many applications from a single implementation.
Our long-term vision is to include a variety of backend implementations in libCEED, ranging from reference
kernels to highly optimized kernels targeting specific devices (e.g. GPUs) or specific polynomial orders. A
simple reference backend implementation is provided in the file ceed-ref.c.
On the frontend, the mapping between the decomposition concepts and the code implementation is as fol-
lows:

• L-, E- andQ-vector are represented as variables of type CeedVector. (A backendmay choose to operate
incrementally without forming explicit E- or Q-vectors.)

• G is represented as variable of type CeedElemRestriction.
• B is represented as variable of type CeedBasis.

19

https://github.com/CEED/libCEED/blob/main/backends/ref/ceed-ref.c

• the action of D is represented as variable of type CeedQFunction.
• the overall operator GTBTDBG is represented as variable of type CeedOperator and its action is ac-

cessible through CeedOperatorApply().
To clarify these concepts and illustrate how they are combined in the API, consider the implementation of
the action of a simple 1D mass matrix (cf. tests/t500-operator.c).

1 /// @file
2 /// Test creation, action, and destruction for mass matrix operator
3 /// \test Test creation, action, and destruction for mass matrix operator
4 #include <ceed.h>
5 #include <stdlib.h>
6 #include <math.h>
7

8 #include "t500-operator.h"
9

10 int main(int argc, char **argv) {
11 Ceed ceed;
12 CeedElemRestriction Erestrictx, Erestrictu, Erestrictui;
13 CeedBasis bx, bu;
14 CeedQFunction qf_setup, qf_mass;
15 CeedOperator op_setup, op_mass;
16 CeedVector qdata, X, U, V;
17 const CeedScalar *hv;
18 CeedInt nelem = 15, P = 5, Q = 8;
19 CeedInt Nx = nelem+1, Nu = nelem*(P-1)+1;
20 CeedInt indx[nelem*2], indu[nelem*P];
21 CeedScalar x[Nx];
22

23 //! [Ceed Init]
24 CeedInit(argv[1], &ceed);
25 //! [Ceed Init]
26 for (CeedInt i=0; i<Nx; i++)
27 x[i] = (CeedScalar) i / (Nx - 1);
28 for (CeedInt i=0; i<nelem; i++) {
29 indx[2*i+0] = i;
30 indx[2*i+1] = i+1;
31 }
32 //! [ElemRestr Create]
33 CeedElemRestrictionCreate(ceed, nelem, 2, 1, 1, Nx, CEED_MEM_HOST,
34 CEED_USE_POINTER, indx, &Erestrictx);
35 //! [ElemRestr Create]
36

37 for (CeedInt i=0; i<nelem; i++) {
38 for (CeedInt j=0; j<P; j++) {
39 indu[P*i+j] = i*(P-1) + j;
40 }
41 }
42 //! [ElemRestrU Create]
43 CeedElemRestrictionCreate(ceed, nelem, P, 1, 1, Nu, CEED_MEM_HOST,
44 CEED_USE_POINTER, indu, &Erestrictu);
45 CeedInt stridesu[3] = {1, Q, Q};
46 CeedElemRestrictionCreateStrided(ceed, nelem, Q, 1, Q*nelem, stridesu,
47 &Erestrictui);
48 //! [ElemRestrU Create]
49

50 //! [Basis Create]
(continues on next page)

20

https://github.com/CEED/libCEED/blob/main/tests/t500-operator.c

(continued from previous page)
51 CeedBasisCreateTensorH1Lagrange(ceed, 1, 1, 2, Q, CEED_GAUSS, &bx);
52 CeedBasisCreateTensorH1Lagrange(ceed, 1, 1, P, Q, CEED_GAUSS, &bu);
53 //! [Basis Create]
54

55 //! [QFunction Create]
56 CeedQFunctionCreateInterior(ceed, 1, setup, setup_loc, &qf_setup);
57 CeedQFunctionAddInput(qf_setup, "_weight", 1, CEED_EVAL_WEIGHT);
58 CeedQFunctionAddInput(qf_setup, "dx", 1, CEED_EVAL_GRAD);
59 CeedQFunctionAddOutput(qf_setup, "rho", 1, CEED_EVAL_NONE);
60

61 CeedQFunctionCreateInterior(ceed, 1, mass, mass_loc, &qf_mass);
62 CeedQFunctionAddInput(qf_mass, "rho", 1, CEED_EVAL_NONE);
63 CeedQFunctionAddInput(qf_mass, "u", 1, CEED_EVAL_INTERP);
64 CeedQFunctionAddOutput(qf_mass, "v", 1, CEED_EVAL_INTERP);
65 //! [QFunction Create]
66

67 //! [Setup Create]
68 CeedOperatorCreate(ceed, qf_setup, CEED_QFUNCTION_NONE, CEED_QFUNCTION_NONE,
69 &op_setup);
70 //! [Setup Create]
71

72 //! [Operator Create]
73 CeedOperatorCreate(ceed, qf_mass, CEED_QFUNCTION_NONE, CEED_QFUNCTION_NONE,
74 &op_mass);
75 //! [Operator Create]
76

77 CeedVectorCreate(ceed, Nx, &X);
78 CeedVectorSetArray(X, CEED_MEM_HOST, CEED_USE_POINTER, x);
79 CeedVectorCreate(ceed, nelem*Q, &qdata);
80

81 //! [Setup Set]
82 CeedOperatorSetField(op_setup, "_weight", CEED_ELEMRESTRICTION_NONE, bx,
83 CEED_VECTOR_NONE);
84 CeedOperatorSetField(op_setup, "dx", Erestrictx, bx, CEED_VECTOR_ACTIVE);
85 CeedOperatorSetField(op_setup, "rho", Erestrictui, CEED_BASIS_COLLOCATED,
86 CEED_VECTOR_ACTIVE);
87 //! [Setup Set]
88

89 //! [Operator Set]
90 CeedOperatorSetField(op_mass, "rho", Erestrictui,CEED_BASIS_COLLOCATED,
91 qdata);
92 CeedOperatorSetField(op_mass, "u", Erestrictu, bu, CEED_VECTOR_ACTIVE);
93 CeedOperatorSetField(op_mass, "v", Erestrictu, bu, CEED_VECTOR_ACTIVE);
94 //! [Operator Set]
95

96 //! [Setup Apply]
97 CeedOperatorApply(op_setup, X, qdata, CEED_REQUEST_IMMEDIATE);
98 //! [Setup Apply]
99

100 CeedVectorCreate(ceed, Nu, &U);
101 CeedVectorSetValue(U, 0.0);
102 CeedVectorCreate(ceed, Nu, &V);
103 //! [Operator Apply]
104 CeedOperatorApply(op_mass, U, V, CEED_REQUEST_IMMEDIATE);
105 //! [Operator Apply]
106

(continues on next page)

21

(continued from previous page)
107 CeedVectorGetArrayRead(V, CEED_MEM_HOST, &hv);
108 for (CeedInt i=0; i<Nu; i++)
109 if (fabs(hv[i]) > 1e-14) printf("[%d] v %g != 0.0\n",i, hv[i]);
110 CeedVectorRestoreArrayRead(V, &hv);
111

112 CeedQFunctionDestroy(&qf_setup);
113 CeedQFunctionDestroy(&qf_mass);
114 CeedOperatorDestroy(&op_setup);
115 CeedOperatorDestroy(&op_mass);
116 CeedElemRestrictionDestroy(&Erestrictu);
117 CeedElemRestrictionDestroy(&Erestrictx);
118 CeedElemRestrictionDestroy(&Erestrictui);
119 CeedBasisDestroy(&bu);
120 CeedBasisDestroy(&bx);
121 CeedVectorDestroy(&X);
122 CeedVectorDestroy(&U);
123 CeedVectorDestroy(&V);
124 CeedVectorDestroy(&qdata);
125 CeedDestroy(&ceed);
126 return 0;
127 }

The constructor

CeedInit(argv[1], &ceed);

creates a logical deviceceed on the specified resource, which could also be a coprocessor such as "/nvidia/
0". There can be any number of such devices, including multiple logical devices driving the same resource
(though performance may suffer in case of oversubscription). The resource is used to locate a suitable
backend which will have discretion over the implementations of all objects created with this logical device.
The setup routine above computes and storesD, in this case a scalar value in each quadrature point, while
mass uses these saved values to perform the action ofD. These functions are turned into the CeedQFunction
variables qf_setup and qf_mass in the CeedQFunctionCreateInterior() calls:

CeedQFunctionCreateInterior(ceed, 1, setup, setup_loc, &qf_setup);
CeedQFunctionAddInput(qf_setup, "_weight", 1, CEED_EVAL_WEIGHT);
CeedQFunctionAddInput(qf_setup, "dx", 1, CEED_EVAL_GRAD);
CeedQFunctionAddOutput(qf_setup, "rho", 1, CEED_EVAL_NONE);

CeedQFunctionCreateInterior(ceed, 1, mass, mass_loc, &qf_mass);
CeedQFunctionAddInput(qf_mass, "rho", 1, CEED_EVAL_NONE);
CeedQFunctionAddInput(qf_mass, "u", 1, CEED_EVAL_INTERP);
CeedQFunctionAddOutput(qf_mass, "v", 1, CEED_EVAL_INTERP);

A CeedQFunction performs independent operations at each quadrature point and the interface is intended
to facilitate vectorization. The second argument is an expected vector length. If greater than 1, the caller
must ensure that the number of quadrature points Q is divisible by the vector length. This is often satisfied
automatically due to the element size or by batching elements together to facilitate vectorization in other
stages, and can always be ensured by padding.
In addition to the function pointers (setup and mass), CeedQFunction constructors take a string represen-
tation specifying where the source for the implementation is found. This is used by backends that support
Just-In-Time (JIT) compilation (i.e., CUDA and OCCA) to compile for coprocessors. For full support across
all backends, these CeedQFunction source files must only contain constructs mutually supported by C99,
C++11, and CUDA. For example, explict type casting of void pointers and explicit use of compatable argu-
ments for math library functions is required, and variable-length array (VLA) syntax for array reshaping is

22

only avaliable via libCEED’s CEED_Q_VLAmacro.
Different input and output fields are added individually, specifying the field name, size of the field, and
evaluation mode.
The size of the field is provided by a combination of the number of components the effect of any basis
evaluations.
The evaluation mode (see Typedefs and Enumerations) CEED_EVAL_INTERP for both input and output fields
indicates that the mass operator only contains terms of the form∫

Ω

v · f0(u,∇u)

where v are test functions (see the Theoretical Framework). More general operators, such as those of the form∫
Ω

v · f0(u,∇u) +∇v : f1(u,∇u)

can be expressed.
For fields with derivatives, such as with the basis evaluation mode (see Typedefs and Enumerations)
CEED_EVAL_GRAD, the size of the field needs to reflect both the number of components and the geometric
dimension. A 3-dimensional gradient on four components would therefore mean the field has a size of 12.
TheB operators for the mesh nodes, bx, and the unknown field, bu, are defined in the calls to the function
CeedBasisCreateTensorH1Lagrange(). In this example, both themesh and the unknownfield useH1

Lagrange finite elements of order 1 and 4 respectively (the P argument represents the number of 1D degrees
of freedom on each element). Both basis operators use the same integration rule, which is Gauss-Legendre
with 8 points (the Q argument).

CeedBasisCreateTensorH1Lagrange(ceed, 1, 1, 2, Q, CEED_GAUSS, &bx);
CeedBasisCreateTensorH1Lagrange(ceed, 1, 1, P, Q, CEED_GAUSS, &bu);

Other elements with this structure can be specified in terms of the Q×P matrices that evaluate values and
gradients at quadrature points in one dimension using CeedBasisCreateTensorH1(). Elements that do
not have tensor product structure, such as symmetric elements on simplices, will be created using different
constructors.
The G operators for the mesh nodes, Erestrictx, and the unknown field, Erestrictu, are specified in
the CeedElemRestrictionCreate(). Both of these specify directly the dof indices for each element in
the indx and indu arrays:

CeedElemRestrictionCreate(ceed, nelem, 2, 1, 1, Nx, CEED_MEM_HOST,
CEED_USE_POINTER, indx, &Erestrictx);

CeedElemRestrictionCreate(ceed, nelem, P, 1, 1, Nu, CEED_MEM_HOST,
CEED_USE_POINTER, indu, &Erestrictu);

CeedInt stridesu[3] = {1, Q, Q};
CeedElemRestrictionCreateStrided(ceed, nelem, Q, 1, Q*nelem, stridesu,

&Erestrictui);

If the user has arrays available on a device, they can be provided using CEED_MEM_DEVICE. This technique
is used to provide no-copy interfaces in all contexts that involve problem-sized data.
For discontinuous Galerkin and for applications such as Nek5000 that only explicitly store E-vectors (inter-
element continuity has been subsumed by the parallel restriction P), the element restriction G is the iden-
tity and CeedElemRestrictionCreateStrided() is used instead. We plan to support other structured
representations ofGwhichwill be added according to demand. There are two common approaches for sup-
porting non-conforming elements: applying the node constraints viaP so that the L-vector can be processed

23

uniformly and applying the constraintsss viaG so that the E-vector is uniform. The former can be donewith
the existing interface while the latter will require a generalization to element restriction that would define
field values at constrained nodes as linear combinations of the values at primary nodes.
These operations, P ,B, andD, are combined with a CeedOperator. As with CeedQFunctions, operator fields
are added separately with a matching field name, basis (B), element restriction (G), and L-vector. The
flag CEED_VECTOR_ACTIVE indicates that the vector corresponding to that field will be provided to the
operator when CeedOperatorApply() is called. Otherwise the input/output will be read from/written
to the specified L-vector.
With partial assembly, we first perform a setup stage whereD is evaluated and stored. This is accomplished
by the operator op_setup and its application to X, the nodes of themesh (these are needed to compute Jaco-
bians at quadrature points). Note that the corresponding CeedOperatorApply() has no basis evaluation
on the output, as the quadrature data is not needed at the dofs:

CeedOperatorCreate(ceed, qf_setup, CEED_QFUNCTION_NONE, CEED_QFUNCTION_NONE,
&op_setup);

CeedOperatorSetField(op_setup, "_weight", CEED_ELEMRESTRICTION_NONE, bx,
CEED_VECTOR_NONE);

CeedOperatorSetField(op_setup, "dx", Erestrictx, bx, CEED_VECTOR_ACTIVE);
CeedOperatorSetField(op_setup, "rho", Erestrictui, CEED_BASIS_COLLOCATED,

CEED_VECTOR_ACTIVE);

CeedOperatorApply(op_setup, X, qdata, CEED_REQUEST_IMMEDIATE);

The action of the operator is then represented by operator op_mass and its CeedOperatorApply() to the
input L-vector Uwith output in V:

CeedOperatorCreate(ceed, qf_mass, CEED_QFUNCTION_NONE, CEED_QFUNCTION_NONE,
&op_mass);

CeedOperatorSetField(op_mass, "rho", Erestrictui,CEED_BASIS_COLLOCATED,
qdata);

CeedOperatorSetField(op_mass, "u", Erestrictu, bu, CEED_VECTOR_ACTIVE);
CeedOperatorSetField(op_mass, "v", Erestrictu, bu, CEED_VECTOR_ACTIVE);

CeedOperatorApply(op_mass, U, V, CEED_REQUEST_IMMEDIATE);

Anumber of function calls in the interface, such as CeedOperatorApply(), are intended to support asyn-
chronous execution via their last argument, CeedRequest*. The specific (pointer) value used in the above
example, CEED_REQUEST_IMMEDIATE, is used to express the request (from the user) for the operation to
complete before returning from the function call, i.e. tomake sure that the result of the operation is available
in the output parameters immediately after the call. For a true asynchronous call, one needs to provide the
address of a user defined variable. Such a variable can be used later to explicitly wait for the completion of
the operation.

24

3.4 Gallery of QFunctions

LibCEED provides a gallery of built-in CeedQFunctions in the gallery/ directory. The available QFunc-
tions are the ones associated with the mass, the Laplacian, and the identity operators. To illustrate how
the user can declare a CeedQFunction via the gallery of available QFunctions, consider the selection of the
CeedQFunction associated with a simple 1D mass matrix (cf. tests/t410-qfunction.c).

1 /// @file
2 /// Test creation, evaluation, and destruction for qfunction by name
3 /// \test Test creation, evaluation, and destruction for qfunction by name
4 #include <ceed.h>
5

6 int main(int argc, char **argv) {
7 Ceed ceed;
8 CeedVector in[16], out[16];
9 CeedVector Qdata, J, W, U, V;
10 CeedQFunction qf_setup, qf_mass;
11 CeedInt Q = 8;
12 const CeedScalar *vv;
13 CeedScalar j[Q], w[Q], u[Q], v[Q];
14

15

16 CeedInit(argv[1], &ceed);
17

18 CeedQFunctionCreateInteriorByName(ceed, "Mass1DBuild", &qf_setup);
19 CeedQFunctionCreateInteriorByName(ceed, "MassApply", &qf_mass);
20

21 for (CeedInt i=0; i<Q; i++) {
22 CeedScalar x = 2.*i/(Q-1) - 1;
23 j[i] = 1;
24 w[i] = 1 - x*x;
25 u[i] = 2 + 3*x + 5*x*x;
26 v[i] = w[i] * u[i];
27 }
28

29 CeedVectorCreate(ceed, Q, &J);
30 CeedVectorSetArray(J, CEED_MEM_HOST, CEED_USE_POINTER, j);
31 CeedVectorCreate(ceed, Q, &W);
32 CeedVectorSetArray(W, CEED_MEM_HOST, CEED_USE_POINTER, w);
33 CeedVectorCreate(ceed, Q, &U);
34 CeedVectorSetArray(U, CEED_MEM_HOST, CEED_USE_POINTER, u);
35 CeedVectorCreate(ceed, Q, &V);
36 CeedVectorSetValue(V, 0);
37 CeedVectorCreate(ceed, Q, &Qdata);
38 CeedVectorSetValue(Qdata, 0);
39

40 {
41 in[0] = J;
42 in[1] = W;
43 out[0] = Qdata;
44 CeedQFunctionApply(qf_setup, Q, in, out);
45 }
46 {
47 in[0] = W;
48 in[1] = U;
49 out[0] = V;
50 CeedQFunctionApply(qf_mass, Q, in, out);

(continues on next page)

25

https://github.com/CEED/libCEED/blob/main/tests/t410-qfunction.c

(continued from previous page)
51 }
52

53 CeedVectorGetArrayRead(V, CEED_MEM_HOST, &vv);
54 for (CeedInt i=0; i<Q; i++)
55 if (v[i] != vv[i])
56 // LCOV_EXCL_START
57 printf("[%d] v %f != vv %f\n",i, v[i], vv[i]);
58 // LCOV_EXCL_STOP
59 CeedVectorRestoreArrayRead(V, &vv);
60

61 CeedVectorDestroy(&W);
62 CeedVectorDestroy(&U);
63 CeedVectorDestroy(&V);
64 CeedVectorDestroy(&Qdata);
65 CeedQFunctionDestroy(&qf_setup);
66 CeedQFunctionDestroy(&qf_mass);
67 CeedDestroy(&ceed);
68 return 0;
69 }

3.5 Interface Principles and Evolution

LibCEED is intended to be extensible via backends that are packaged with the library and packaged sepa-
rately (possibly as a binary containing proprietary code). Backends are registered by calling

CeedRegister("/cpu/self/ref/serial", CeedInit_Ref, 50);

typically in a library initializer or “constructor” that runs automatically. CeedInit uses this prefix to find
an appropriate backend for the resource.
Source (API) and binary (ABI) stability are important to libCEED. LibCEED is evolving rapidly at present,
but we expect it to stabilize soon at which point we will adopt semantic versioning. User code, including
libraries of CeedQFunctions, will not need to be recompiled except between major releases. The backends
currently have some dependence beyond the public user interface, but we intent to remove that dependence
and will prioritize if anyone expresses interest in distributing a backend outside the libCEED repository.

26

4 Examples

This section contains a mathematical description of all examples provided with libCEED in the examples/
directory. These examples are meant to demonstrate use of libCEED from standalone definition of operators
to integration with external libraries such as PETSc, MFEM, and Nek5000, as well as more substantial mini-
apps.

4.1 Common notation

For most of our examples, the spatial discretization uses high-order finite elements/spectral elements,
namely, the high-order Lagrange polynomials defined over P non-uniformly spaced nodes, the Gauss-
Legendre-Lobatto (GLL) points, and quadrature points {qi}Qi=1, with corresponding weights {wi}Qi=1 (typ-
ically the ones given by Gauss or Gauss-Lobatto quadratures, that are built in the library).

We discretize the domain, Ω ⊂ Rd (with d = 1, 2, 3, typically) by letting Ω =
⋃Ne

e=1 Ωe, with Ne disjoint
elements. For most examples we use unstructured meshes for which the elements are hexahedra (although
this is not a requirement in libCEED).
The physical coordinates are denoted by x = (x, y, z) ≡ (x0, x1, x2) ∈ Ωe, while the reference coordinates
are represented as X = (X,Y, Z) ≡ (X0, X1, X2) ∈ I = [−1, 1]3 (for d = 3).

4.2 Standalone libCEED

The following two examples have no dependencies, and are designed to be self-contained. For additional
examples that use external discretization libraries (MFEM, PETSc, Nek5000 etc.) see the subdirectories in
examples/.

4.2.1 Ex1-Volume

This example is located in the subdirectory examples/ceed. It illustrates a simple usage of libCEED to
compute the volume of a given body using a matrix-free application of the mass operator. Arbitrary mesh
and solution orders in 1D, 2D, and 3D are supported from the same code.
This example shows how to compute line/surface/volume integrals of a 1D, 2D, or 3DdomainΩ respectively,
by applying the mass operator to a vector of 1s. It computes:

I =

∫
Ω

1 dV. (4.1)

Using the same notation as in Theoretical Framework, we write here the vector u(x) ≡ 1 in the Galerkin
approximation, and find the volume of Ω as ∑

e

∫
Ωe

v(x)1 dV (4.2)

with v(x) ∈ Vp = {v ∈ H1(Ωe) | v ∈ Pp(I), e = 1, . . . , Ne}, the test functions.

27

https://mcs.anl.gov/petsc
https://mfem.org
https://nek5000.mcs.anl.gov/

4.2.2 Ex2-Surface

This example is located in the subdirectory examples/ceed. It computes the surface area of a given body
using matrix-free application of a diffusion operator. Similar to Ex1-Volume, arbitrary mesh and solution
orders in 1D, 2D, and 3D are supported from the same code. It computes:

I =

∫
∂Ω

1 dS, (4.3)

by applying the divergence theorem. In particular, we select u(x) = x0 + x1 + x2, for which∇u = [1, 1, 1]T ,
and thus ∇u · n̂ = 1.
Given Laplace’s equation,

∇ · ∇u = 0, for x ∈ Ω,

let us multiply by a test function v and integrate by parts to obtain∫
Ω

∇v · ∇u dV −
∫
∂Ω

v∇u · n̂ dS = 0.

Since we have chosen u such that ∇u · n̂ = 1, the boundary integrand is v1 ≡ v. Hence, similar to (4.2), we
can evaluate the surface integral by applying the volumetric Laplacian as follows∫

Ω

∇v · ∇u dV ≈
∑
e

∫
∂Ωe

v(x)1 dS.

4.3 PETSc demos and BPs

4.3.1 Area

This example is located in the subdirectory examples/petsc. It demonstrates a simple usage of libCEED
with PETSc to calculate the surface area of a closed surface. The code uses higher level communication
protocols for mesh handling in PETSc’s DMPlex. This example has the same mathematical formulation as
Ex1-Volume, with the exception that the physical coordinates for this problem are x = (x, y, z) ∈ R3, while
the coordinates of the reference element are X = (X,Y) ≡ (X0, X1) ∈ I = [−1, 1]2.

4.3.1.1 Cube

This is one of the test cases of the computation of the Area of a 2D manifold embedded in 3D. This problem
can be run with:

./area -problem cube

This example uses the following coordinate transformations for the computation of the geometric factors:
from the physical coordinates on the cube, denoted by x̄ = (x̄, ȳ, z̄), and physical coordinates on the discrete
surface, denoted by x = (x, y), toX = (X,Y) ∈ I on the reference element, via the chain rule

∂x

∂X (2×2)
=
∂x

∂x̄ (2×3)

∂x̄

∂X (3×2)
, (4.4)

with Jacobian determinant given by

|J | =
∥∥∥∥col1(∂x̄

∂X

)∥∥∥∥∥∥∥∥col2(∂x̄

∂X

)∥∥∥∥ (4.5)

28

We note that in equation (4.4), the right-most Jacobian matrix ∂x̄/∂X(3×2) is provided by the library, while
∂x/∂x̄(2×3) is provided by the user as[

col1

(
∂x̄

∂X

)
/

∥∥∥∥col1(∂x̄

∂X

)∥∥∥∥ , col2(∂x̄

∂X

)
/

∥∥∥∥col2(∂x̄

∂X

)∥∥∥∥]T
(2×3)

.

4.3.1.2 Sphere

This problem computes the surface Area of a tensor-product discrete sphere, obtained by projecting a cube
inscribed in a sphere onto the surface of the sphere. This discrete surface is sometimes referred to as a
cubed-sphere (an example of such as a surface is given in figure Fig. 4.1). This problem can be run with:

./area -problem sphere

Fig. 4.1: Example of a cubed-sphere, i.e., a tensor-product discrete sphere, obtained by projecting a cube
inscribed in a sphere onto the surface of the sphere.

This example uses the following coordinate transformations for the computation of the geometric factors:
from the physical coordinates on the sphere, denoted by ◦

x = (
◦
x,

◦
y,

◦
z), and physical coordinates on the

discrete surface, denoted by x = (x, y, z) (depicted, for simplicity, as coordinates on a circle and 1D linear

29

element in figure Fig. 4.2), toX = (X,Y) ∈ I on the reference element, via the chain rule

∂
◦
x

∂X (3×2)
=
∂

◦
x

∂x (3×3)

∂x

∂X (3×2)
, (4.6)

with Jacobian determinant given by

|J | =

∣∣∣∣∣col1
(
∂

◦
x

∂X

)
× col2

(
∂

◦
x

∂X

)∣∣∣∣∣ . (4.7)

Fig. 4.2: Sketch of coordinates mapping between a 1D linear element and a circle. In the case of a linear
element the two nodes, p0 and p1, marked by red crosses, coincide with the endpoints of the element. Two
quadrature points, q0 and q1, marked by blue dots, with physical coordinates denoted by x(X), are mapped
to their corresponding radial projections on the circle, which have coordinates ◦

x(x).

We note that in equation (4.6), the right-most Jacobian matrix ∂x/∂X(3×2) is provided by the library, while
∂

◦
x/∂x(3×3) is provided by the user with analytical derivatives. In particular, for a sphere of radius 1, we

have
◦
x(x) =

1

∥x∥
x(3×1)

and thus

∂
◦
x

∂x
=

1

∥x∥
I(3×3) −

1

∥x∥3
(xxT)(3×3).

30

4.3.2 Bakeoff problems and generalizations

The PETSc examples in this directory include a full suite of parallel bakeoff problems (BPs) using a “raw”
parallel decomposition (see bpsraw.c) and using PETSc’s DMPlex for unstructured gridmanagement (see
bps.c). A generalization of these BPs to the surface of the cubed-sphere are available in bpssphere.c.

4.3.2.1 Bakeoff problems on the cubed-sphere

For theL2 projection problems, BP1-BP2, that use themass operator, the coordinate transformations and the
corresponding Jacobian determinant, equation (4.7), are the same as in the Sphere example. For the Poisson’s
problem, BP3-BP6, on the cubed-sphere, in addition to equation (4.7), the pseudo-inverse of ∂ ◦

x/∂X is used
to derive the contravariant metric tensor (please see figure Fig. 4.2 for a reference of the notation used). We
begin by expressing the Moore-Penrose (left) pseudo-inverse:

∂X

∂
◦
x (2×3)

≡

(
∂

◦
x

∂X

)+

(2×3)

=

 ∂
◦
x

∂X

T

(2×3)

∂
◦
x

∂X (3×2)

−1

∂
◦
x

∂X

T

(2×3)
. (4.8)

This enables computation of gradients of an arbitrary function u(◦x) in the embedding space as

∂u

∂
◦
x (1×3)

=
∂u

∂X (1×2)

∂X

∂
◦
x (2×3)

and thus the weak Laplacian may be expressed as∫
Ω

∂v

∂
◦
x

(
∂u

∂
◦
x

)T

dS =

∫
Ω

∂v

∂X

∂X

∂
◦
x

(
∂X

∂
◦
x

)T

︸ ︷︷ ︸
g(2×2)

(
∂u

∂X

)T

dS
(4.9)

where we have identified the 2 × 2 contravariant metric tensor g (sometimes written gij), and where now
Ω represents the surface of the sphere, which is a two-dimensional closed surface embedded in the three-
dimensional Euclidean space R3. This expression can be simplified to avoid the explicit Moore-Penrose
pseudo-inverse,

g =

 ∂
◦
x

∂X

T
∂

◦
x

∂X

−1

(2×2)

∂
◦
x

∂X

T

(2×3)

∂
◦
x

∂X (3×2)

 ∂
◦
x

∂X

T
∂

◦
x

∂X

−T

(2×2)

=

 ∂
◦
x

∂X

T
∂

◦
x

∂X

−1

(2×2)

where we have dropped the transpose due to symmetry. This allows us to simplify (4.9) as

∫
Ω

∂v

∂
◦
x

(
∂u

∂
◦
x

)T

dS =

∫
Ω

∂v

∂X

 ∂
◦
x

∂X

T
∂

◦
x

∂X

−1

︸ ︷︷ ︸
g(2×2)

(
∂u

∂X

)T

dS,

which is the form implemented in qfunctions/bps/bp3sphere.h.

31

4.3.3 Multigrid

This example is located in the subdirectory examples/petsc. It investigates p-multigrid for the Poisson
problem, equation (4.10), using an unstructured high-order finite element discretization. All of the opera-
tors associated with the geometric multigrid are implemented in libCEED.

−∇ · (κ (x)∇x) = g (x) (4.10)

The Poisson operator can be specified with the decomposition given by the equation in figure Operator De-
composition, and the restriction and prolongation operators given by interpolation basis operations, B, and
BT , respectively, act on the different grid levels with corresponding element restrictions,G. These three op-
erations can be exploited by existing matrix-free multigrid software and smoothers. Preconditioning based
on the libCEED finite element operator decomposition is an ongoing area of research.

4.4 CEED Bakeoff Problems

The Center for Efficient Exascale Discretizations (CEED) uses Bakeoff Problems (BPs) to test and compare
the performance of high-order finite element implementations. The definitions of the problems are given on
the ceed website. Each of the following bakeoff problems that use external discretization libraries (such as
MFEM,PETSc, andNek5000) are located in the subdirectoriesmfem/, petsc/, andnek5000/, respectively.
Here we provide a short summary:

User code BPs
mfem

• BP1 (scalar mass operator), with Q = P + 1
• BP3 (scalar Laplace operator), withQ = P+1

petsc
• BP1 (scalar mass operator), with Q = P + 1
• BP2 (vector mass operator), with Q = P + 1
• BP3 (scalar Laplace operator), withQ = P+1
• BP4 (vector Laplace operator), withQ = P +

1
• BP5 (collocated scalar Laplace operator),

with Q = P
• BP6 (collocated vector Laplace operator),

with Q = P

nek5000
• BP1 (scalar mass operator), with Q = P + 1
• BP3 (scalar Laplace operator), withQ = P+1

These are all T-vector-to-T-vector and include parallel scatter, element scatter, element evaluation kernel,
element gather, and parallel gather (with the parallel gathers/scatters done externally to libCEED).
BP1 and BP2 are L2 projections, and thus have no boundary condition. The rest of the BPs have homoge-
neous Dirichlet boundary conditions.
The BPs are parametrized by the number P of Gauss-Legendre-Lobatto nodal points (with P = p+ 1, and
p the degree of the basis polynomial) for the Lagrange polynomials, as well as the number of quadrature
points, Q. A Q-point Gauss-Legendre quadrature is used for all BPs except BP5 and BP6, which choose
Q = P and Gauss-Legendre-Lobatto quadrature to collocate with the interpolation nodes. This latter choice
is popular in applications that use spectral element methods because it produces a diagonal mass matrix

32

https://ceed.exascaleproject.org/bps/

(enabling easy explicit time integration) and significantly reduces the number of floating point operations
to apply the operator.

4.4.1 Mass Operator

The Mass Operator used in BP1 and BP2 is defined via the L2 projection problem, posed as a weak form on
a Hilbert space V p ⊂ H1, i.e., find u ∈ V p such that for all v ∈ V p

⟨v, u⟩ = ⟨v, f⟩, (4.11)

where ⟨v, u⟩ and ⟨v, f⟩ express the continuous bilinear and linear forms, respectively, defined on V p, and,
for sufficiently regular u, v, and f , we have:

⟨v, u⟩ :=
∫
Ω

v u dV,

⟨v, f⟩ :=
∫
Ω

v f dV.

Following the standard finite/spectral element approach, we formally expand all functions in terms of basis
functions, such as

u(x) =

n∑
j=1

uj ϕj(x),

v(x) =

n∑
i=1

vi ϕi(x).

(4.12)

The coefficients {uj} and {vi} are the nodal values of u and v, respectively. Inserting the expressions (4.12)
into (4.11), we obtain the inner-products

⟨v, u⟩ = vTMu, ⟨v, f⟩ = vT b . (4.13)

Here, we have introduced the mass matrix,M , and the right-hand side, b,

Mij := (ϕi, ϕj), bi := ⟨ϕi, f⟩,

each defined for index sets i, j ∈ {1, . . . , n}.

4.4.2 Laplace’s Operator

The Laplace’s operator used in BP3-BP6 is defined via the following variational formulation, i.e., find u ∈ V p

such that for all v ∈ V p

a(v, u) = ⟨v, f⟩,

where now a(v, u) expresses the continuous bilinear form defined on V p for sufficiently regular u, v, and f ,
that is:

a(v, u) :=

∫
Ω

∇v · ∇u dV,

⟨v, f⟩ :=
∫
Ω

v f dV.

After substituting the same formulations provided in (4.12), we obtain

a(v, u) = vTKu,

33

in which we have introduced the stiffness (diffusion) matrix,K, defined as

Kij = a(ϕi, ϕj),

for index sets i, j ∈ {1, . . . , n}.

4.5 Compressible Navier-Stokes mini-app

This example is located in the subdirectory examples/fluids. It solves the time-dependentNavier-Stokes
equations of compressible gas dynamics in a static Eulerian three-dimensional frame using unstructured
high-order finite/spectral element spatial discretizations and explicit or implicit high-order time-stepping
(available in PETSc). Moreover, the Navier-Stokes example has been developed using PETSc, so that the
pointwise physics (defined at quadrature points) is separated from the parallelization and meshing con-
cerns.
The mathematical formulation (from [GRL10], cf. SE3) is given in what follows. The compressible Navier-
Stokes equations in conservative form are

∂ρ

∂t
+∇ ·U = 0

∂U

∂t
+∇ ·

(
U ⊗U

ρ
+ PI3 − σ

)
+ ρgk̂ = 0

∂E

∂t
+∇ ·

(
(E + P)U

ρ
− u · σ − k∇T

)
= 0 ,

(4.14)

whereσ = µ(∇u+(∇u)T+λ(∇·u)I3) is the Cauchy (symmetric) stress tensor, with µ the dynamic viscosity
coefficient, and λ = −2/3 the Stokes hypothesis constant. In equations (4.14), ρ represents the volumemass
density, U the momentum density (defined as U = ρu, where u is the vector velocity field), E the total
energy density (defined asE = ρe, where e is the total energy), I3 represents the 3×3 identity matrix, g the
gravitational acceleration constant, k̂ the unit vector in the z direction, k the thermal conductivity constant,
T represents the temperature, and P the pressure, given by the following equation of state

P = (cp/cv − 1) (E −U ·U/(2ρ)− ρgz) , (4.15)

where cp is the specific heat at constant pressure and cv is the specific heat at constant volume (that define
γ = cp/cv , the specific heat ratio).
The system (4.14) can be rewritten in vector form

∂q

∂t
+∇ · F (q)− S(q) = 0 , (4.16)

for the state variables 5-dimensional vector

q =

 ρ
U ≡ ρu
E ≡ ρe

 ← volume mass density
← momentum density
← energy density

where the flux and the source terms, respectively, are given by

F (q) =

 U
(U ⊗U)/ρ+ PI3 − σ

(E + P)U/ρ− u · σ − k∇T

 ,

S(q) = −

 0

ρgk̂
0

 .

34

Let the discrete solution be

qN (x, t)(e) =

P∑
k=1

ψk(x)q
(e)
k

with P = p + 1 the number of nodes in the element e. We use tensor-product bases ψkji =
hi(X0)hj(X1)hk(X2).
For the time discretization, we use two types of time stepping schemes.

• Explicit time-stepping method
The following explicit formulation is solvedwith the adaptive Runge-Kutta-Fehlberg (RKF4-
5) method by default (any explicit time-stepping scheme available in PETSc can be chosen
at runtime)

qn+1
N = qn

N +∆t

s∑
i=1

biki ,

where
k1 = f(tn, qn

N)

k2 = f(tn + c2∆t, q
n
N +∆t(a21k1))

k3 = f(tn + c3∆t, q
n
N +∆t(a31k1 + a32k2))

...

ki = f

tn + ci∆t, q
n
N +∆t

s∑
j=1

aijkj


and with

f(tn, qn
N) = −[∇ · F (qN)]n + [S(qN)]n .

• Implicit time-stepping method
This time steppingmethodwhich can be selectedusing the option-implicit is solvedwith
Backward Differentiation Formula (BDF) method by default (similarly, any implicit time-
stepping scheme available in PETSc can be chosen at runtime). The implicit formulation
solves nonlinear systems for qN :

f(qN) ≡ g(tn+1, qN , q̇N) = 0 , (4.17)

where the time derivative q̇N is defined by

q̇N (qN) = αqN + zN

in terms of zN from prior state and α > 0, both of which depend on the specific time in-
tegration scheme (backward difference formulas, generalized alpha, implicit Runge-Kutta,
etc.). Each nonlinear system (4.17) will correspond to a weak form, as explained below. In
determining how difficult a given problem is to solve, we consider the Jacobian of (4.17),

∂f

∂qN
=

∂g

∂qN
+ α

∂g

∂q̇N
.

The scalar “shift” α scales inversely with the time step ∆t, so small time steps result in the
Jacobian being dominated by the second term, which is a sort of “mass matrix”, and typi-
cally well-conditioned independent of grid resolutionwith a simple preconditioner (such as

35

Jacobi). In contrast, the first term dominates for large time steps, with a condition number
that grows with the diameter of the domain and polynomial degree of the approximation
space. Both terms are significant for time-accurate simulation and the setup costs of strong
preconditioners must be balanced with the convergence rate of Krylov methods using weak
preconditioners.

To obtain a finite element discretization, we firstmultiply the strong form (4.16) by a test function v ∈ H1(Ω)
and integrate, ∫

Ω

v ·
(
∂qN
∂t

+∇ · F (qN)− S(qN)

)
dV = 0 , ∀v ∈ Vp ,

with Vp = {v(x) ∈ H1(Ωe) |v(xe(X)) ∈ Pp(I), e = 1, . . . , Ne} a mapped space of polynomials containing
at least polynomials of degree p (with or without the higher mixed terms that appear in tensor product
spaces).
Integrating by parts on the divergence term, we arrive at the weak form,∫

Ω

v ·
(
∂qN
∂t
− S(qN)

)
dV −

∫
Ω

∇v :F (qN) dV

+

∫
∂Ω

v · F (qN) · n̂ dS = 0 , ∀v ∈ Vp ,
(4.18)

where F (qN) · n̂ is typically replaced with a boundary condition.

Note: The notation∇v :F represents contraction over both fields and spatial dimensions while a single dot
represents contraction in just one, which should be clear from context, e.g., v · S contracts over fields while
F · n̂ contracts over spatial dimensions.

We solve (4.18) using a Galerkin discretization (default) or a stabilized method, as is necessary for most
real-world flows.
Galerkin methods produce oscillations for transport-dominated problems (any time the cell Péclet number
is larger than 1), and those tend to blow up for nonlinear problems such as the Euler equations and (low-
viscosity/poorly resolved) Navier-Stokes, in which case stabilization is necessary. Our formulation follows
[HST10], which offers a comprehensive review of stabilization and shock-capturingmethods for continuous
finite element discretization of compressible flows.

• SUPG (streamline-upwind/Petrov-Galerkin)
In this method, the weighted residual of the strong form (4.16) is added to the Galerkin
formulation (4.18). The weak form for this method is given as∫

Ω

v ·
(
∂qN
∂t
− S(qN)

)
dV −

∫
Ω

∇v :F (qN) dV

+

∫
∂Ω

v · F (qN) · n̂ dS

+

∫
Ω

P (v)T
(
∂qN
∂t

+ ∇ · F (qN)− S(qN)

)
dV = 0 , ∀v ∈ Vp

(4.19)

This stabilization technique can be selected using the option -stab supg.
• SU (streamline-upwind)

36

This method is a simplified version of SUPG (4.19) which is developed for debug-
ging/comparison purposes. The weak form for this method is∫

Ω

v ·
(
∂qN
∂t
− S(qN)

)
dV −

∫
Ω

∇v :F (qN) dV

+

∫
∂Ω

v · F (qN) · n̂ dS

+

∫
Ω

P (v)T ∇ · F (qN) dV = 0 , ∀v ∈ Vp

(4.20)

This stabilization technique can be selected using the option -stab su.
In both (4.20) and (4.19), P is called the perturbation to the test-function space, since it modifies the original
Galerkin method into SUPG or SU schemes. It is defined as

P (v) ≡
(
τ · ∂F (qN)

∂qN

)T

∇v ,

where parameter τ ∈ R3×3 is an intrinsic time/space scale matrix.
Currently, this demo provides two types of problems/physical models that can be selected at run time via
the option -problem. One is the problem of transport of energy in a uniform vector velocity field, called
the Advection problem, and is the so called Density Current problem.

4.5.1 Advection

A simplified version of system (4.14), only accounting for the transport of total energy, is given by

∂E

∂t
+∇ · (uE) = 0 , (4.21)

with u the vector velocity field. In this particular test case, a blob of total energy (defined by a characteristic
radius rc) is transported by two different wind types.

• Rotation
In this case, a uniform circular velocity field transports the blob of total energy. We have
solved (4.21) applying zero energy density E, and no-flux for u on the boundaries.
The 3D version of this test case can be run with:

./navierstokes -problem advection -problem_advection_wind rotation

while the 2D version with:

./navierstokes -problem advection2d -problem_advection_wind rotation

• Translation
In this case, a background wind with a constant rectilinear velocity field, enters the domain
and transports the blob of total energy out of the domain.
For the inflow boundary conditions, a prescribed Ewind is applied weakly on the inflow
boundaries such that the weak form boundary integral in (4.18) is defined as∫

∂Ωinflow

v · F (qN) · n̂ dS =

∫
∂Ωinflow

vEwind u · n̂ dS ,

37

For the outflow boundary conditions, we have used the current values of E, following
[PMK92] which extends the validity of the weak form of the governing equations to the
outflow instead of replacing them with unknown essential or natural boundary conditions.
The weak form boundary integral in (4.18) for outflow boundary conditions is defined as∫

∂Ωoutflow

v · F (qN) · n̂ dS =

∫
∂Ωoutflow

vE u · n̂ dS ,

The 3D version of this test case problem can be run with:

./navierstokes -problem advection -problem_advection_wind translation -
↪→problem_advection_wind translation .5,-1,0

while the 2D version with:

./navierstokes -problem advection2d -problem_advection_wind translation -
↪→problem_advection_wind translation 1,-.5

4.5.2 Density Current

For this test problem (from [SWW+93]), we solve the full Navier-Stokes equations (4.14), for which a cold
air bubble (of radius rc) drops by convection in a neutrally stratified atmosphere. Its initial condition is
defined in terms of the Exner pressure, π(x, t), and potential temperature, θ(x, t), that relate to the state
variables via

ρ =
P0

(cp − cv)θ(x, t)
π(x, t)

cv
cp−cv ,

e = cvθ(x, t)π(x, t) + u · u/2 + gz ,

whereP0 is the atmospheric pressure. For this problem,wehave usedno-slip andnon-penetration boundary
conditions for u, and no-flux for mass and energy densities. This problem can be run with:

./navierstokes -problem density_current

4.6 Solid mechanics elasticity mini-app

This example is located in the subdirectory examples/solids. It solves the steady-state static momentum
balance equations using unstructured high-order finite/spectral element spatial discretizations. As for the
Compressible Navier-Stokes mini-app case, the solid mechanics elasticity example has been developed using
PETSc, so that the pointwise physics (defined at quadrature points) is separated from the parallelization
and meshing concerns.
In this mini-app, we consider three formulations used in solidmechanics applications: linear elasticity, Neo-
Hookean hyperelasticity at small strain, and Neo-Hookean hyperelasticity at finite strain. We provide the
strong and weak forms of static balance of linear momentum in the small strain and finite strain regimes.
The stress-strain relationship (constitutive law) for each of the material models is provided. Due to the
nonlinearity of material models in Neo-Hookean hyperelasticity, the Newton linearization of the material
models is provided.

Note: Linear elasticity and small-strain hyperelasticity can both by obtained from the finite-strain hyper-
elastic formulation by linearization of geometric and constitutive nonlinearities. The effect of these lin-
earizations is sketched in the diagram below, where σ and ϵ are stress and strain, respectively, in the small

38

strain regime, while S andE are their finite-strain generalizations (second Piola-Kirchoff tensor and Green-
Lagrange strain tensor, respectively) defined in the reference configuration, andC is a linearized constitutive
model.

Finite Strain Hyperelastic constitutive−→
S=CE

St. Venant-Kirchoff
geometric ↓ E → ϵ geometric ↓ E → ϵ

Small Strain Hyperelastic constitutive−→
σ=Cϵ

Linear Elastic

4.6.1 Running the mini-app

The elasticity min-app is controlled via command-line options, the following of which are mandatory.

Table 4.1: Mandatory Runtime Options
Option Description
-mesh
[filename]

Path to mesh file in any format supported by PETSc.

-degree
[int]

Polynomial degree of the finite element basis

-E [real] Young’s modulus, E > 0
-nu [real] Poisson’s ratio, ν < 0.5
-bc_clamp
[int list]

List of face sets on which to displace by -bc_clamp_[facenumber]_translate
[x,y,z] and/or bc_clamp_[facenumber]_rotate [rx,ry,rz,theta]

Note: The default for a clamped face is zero displacement. All displacement is with respect to the initial
configuration.

Note: This solver can use any mesh format that PETSc’s DMPlex can read (Exodus, Gmsh, Med, etc.). Our
tests have primarily been using Exodus meshes created using CUBIT; sample meshes used for the example
runs suggested here can be found in this repository. Note that many mesh formats require PETSc to be
configured appropriately; e.g., --download-exodusii for Exodus support.

Consider the specific example of the mesh seen below:

39

https://en.wikipedia.org/wiki/Young%27s_modulus
https://en.wikipedia.org/wiki/Poisson%27s_ratio
https://cubit.sandia.gov/
https://github.com/jeremylt/ceedSampleMeshes

With the sidesets defined in the figure, we provide here an example of a minimal set of command line
options:

./elasticity -mesh [.exo file] -degree 4 -E 1e6 -nu 0.3 -bc_clamp 998,999 -bc_clamp_
↪→998_translate 0,-0.5,1

In this example, we set the left boundary, face set 999, to zero displacement and the right boundary, face set
998, to displace 0 in the x direction, −0.5 in the y, and 1 in the z.
As an alternative to specifying a mesh with -mesh, the user may use a DMPlex box mesh by
specifying -dm_plex_box_faces [int list], -dm_plex_box_upper [real list], and
-dm_plex_box_lower [real list].
The command line options just shown are the minimum requirements to run the mini-app, but additional
options may also be set as follows

40

Table 4.2: Additional Runtime Options
Option Description Default value
-ceed CEED resource specifier /cpu/self
-qextra Number of extra quadrature points 0
-test Run in test mode
-problem Problem to solve (linElas, hyperSS or hyperFS) linElas
-forcing Forcing term option (none, constant, or mms) none
-forcing_vec Forcing vector 0,-1,0
-multigrid Multigrid coarsening to use (logarithmic, uniform or

none)
logarithmic

-nu_smoother
[real]

Poisson’s ratio for multigrid smoothers, ν < 0.5

-num_steps Number of load increments for continuation method 1 if linElas else
10

-view_soln Output solution at each load increment for viewing
-view_final_soln Output solution at final load increment for viewing
-snes_view View PETSc SNES nonlinear solver configuration
-log_view View PETSc performance log
-help View comprehensive information about run-time options

To verify the convergence of the linear elasticity formulation on a given mesh with the method of manufac-
tured solutions, run:

./elasticity -mesh [mesh] -degree [degree] -nu [nu] -E [E] -forcing mms

This option attempts to recover a known solution from an analytically computed forcing term.

4.6.1.1 On algebraic solvers

This mini-app is configured to use the following Newton-Krylov-Multigrid method by default.
• Newton-type methods for the nonlinear solve, with the hyperelasticity models globalized using load

increments.
• Preconditioned conjugate gradients to solve the symmetric positive definite linear systems arising at

each Newton step.
• Preconditioning via p-version multigrid coarsening to linear elements, with algebraic multigrid

(PETSc’s GAMG) for the coarse solve. The default smoother uses degree 3 Chebyshev with Jacobi pre-
conditioning. (Lower degree is often faster, albeit less robust; try -outer_mg_levels_ksp_max_it
2, for example.) Application of the linear operators for all levels with degree p > 1 is performed
matrix-free using analytic Newton linearization, while the lowest order p = 1 operators are assembled
explicitly (using coloring at present).

Many related solvers can be implemented by composing PETSc command-line options.

41

4.6.1.2 Nondimensionalization

Quantities such as the Young’s modulus vary over many orders of magnitude, and thus can lead to poorly
scaled equations. One can nondimensionalize the model by choosing an alternate system of units, such that
displacements and residuals are of reasonable scales.

Table 4.3: (Non)dimensionalization options
Option Description Default value
-units_meter 1 meter in scaled length units 1
-units_second 1 second in scaled time units 1
-units_kilogram 1 kilogram in scaled mass units 1

For example, consider a problem involving metals subject to gravity.

Table 4.4: Characteristic units for metals
Quantity Typical value in SI units
Displacement, u 1 cm = 10−2 m
Young’s modulus, E 1011 Pa = 1011 kgm−1 s−2

Body force (gravity) on volume,
∫
ρg 5 · 104 kgm−2 s−2 · (volumem3)

One can choose units of displacement independently (e.g., -units_meter 100 to measure displacement
in centimeters), but E and

∫
ρg have the same dependence on mass and time, so cannot both be made of

order 1. This reflects the fact that both quantities are not equally significant for a given displacement size;
the relative significance of gravity increases as the domain size grows.

4.6.1.3 Diagnostic Quantities

Diagnostic quantities for viewing are provided when the command line options for visualization output,
-view_soln or -view_final_soln are used. The diagnostic quantities include displacement in the x
direction, displacement in the y direction, displacement in the z direction, pressure, traceE, traceE2, |J |,
and strain energy density. The table below summarizes the formulations of each of these quantities for each
problem type.

Table 4.5: Diagnostic quantities
Quantity Linear Elas-

ticity
Hyperelasticity, Small Strain Hyperelasticity, Finite

Strain
Pressure λ trace ϵ λ log trace ϵ λ log J
Volumetric Strain trace ϵ trace ϵ traceE
traceE2 trace ϵ2 trace ϵ2 traceE2

|J | 1 + trace ϵ 1 + trace ϵ |J |
Strain Energy
Density

λ
2 (trace ϵ)

2 +
µϵ : ϵ

λ(1+trace ϵ)(log(1+trace ϵ)−1)+
µϵ : ϵ

λ
2 (log J)

2 + µ traceE −
µ log J

42

4.6.2 Linear Elasticity

The strong form of the static balance of linear momentum at small strain for the three-dimensional linear
elasticity problem is given by [Hug12]:

∇ · σ + g = 0 (4.22)

where σ and g are stress and forcing functions, respectively. We multiply (4.22) by a test function v and
integrate the divergence term by parts to arrive at the weak form: find u ∈ V ⊂ H1(Ω) such that∫

Ω

∇v : σ dV −
∫
∂Ω

v · (σ · n̂) dS −
∫
Ω

v · g dV = 0, ∀v ∈ V, (4.23)

where σ · n̂|∂Ω is replaced by an applied force/traction boundary condition written in terms of the reference
configuration.

4.6.2.1 Constitutive modeling

In their most general form, constitutive models define σ in terms of state variables. In the model taken into
consideration in the present mini-app, the state variables are constituted by the vector displacement field u,
and its gradient∇u. We begin by defining the symmetric (small/infintesimal) strain tensor as

ϵ =
1

2

(
∇u+∇uT

)
. (4.24)

This constitutive model σ(ϵ) is a linear tensor-valued function of a tensor-valued input, but wewill consider
the more general nonlinear case in other models below. In these cases, an arbitrary choice of such a function
will generally not be invariant under orthogonal transformations and thus will not admissible as a physical
model must not depend on the coordinate system chosen to express it. In particular, given an orthogonal
transformation Q, we desire

Qσ(ϵ)QT = σ(QϵQT), (4.25)

which means that we can change our reference frame before or after computing σ, and get the same result
either way. Constitutive relations in which σ is uniquely determined by ϵ while satisfying the invariance
property (4.25) are known as Cauchy elastic materials. Here, we define a strain energy density functional
Φ(ϵ) ∈ R and obtain the strain energy from its gradient,

σ(ϵ) =
∂Φ

∂ϵ
. (4.26)

Note: The strain energy density functional cannot be an arbitrary function Φ(ϵ); it can only depend on
invariants, scalar-valued functions γ satisfying

γ(ϵ) = γ(QϵQT)

for all orthogonal matrices Q.

For the linear elasticity model, the strain energy density is given by

Φ =
λ

2
(trace ϵ)2 + µϵ : ϵ.

The constitutive law (stress-strain relationship) is therefore given by its gradient,

σ = λ(trace ϵ)I3 + 2µϵ,

43

where I3 is the 3× 3 identity matrix, the colon represents a double contraction (over both indices of ϵ), and
the Lamé parameters are given by

λ =
Eν

(1 + ν)(1− 2ν)

µ =
E

2(1 + ν)

.

The constitutive law (stress-strain relationship) can also be written as

σ = C :ϵ. (4.27)

For notational convenience, we express the symmetric second order tensors σ and ϵ as vectors of length 6
using the Voigt notation. Hence, the fourth order elasticity tensor C (also known as elastic moduli tensor or
material stiffness tensor) can be represented as

C =


λ+ 2µ λ λ
λ λ+ 2µ λ
λ λ λ+ 2µ

µ
µ

µ

 .

Note that the incompressible limit ν → 1
2 causes λ→∞, and thus C becomes singular.

4.6.3 Hyperelasticity at Small Strain

The strong and weak forms given above, in (4.22) and (4.23), are valid for Neo-Hookean hyperelasticity at
small strain. However, the strain energy density differs and is given by

Φ = λ(1 + trace ϵ)(log(1 + trace ϵ)− 1) + µϵ : ϵ.

As above, we have the corresponding constitutive law given by

σ = λ log(1 + trace ϵ)I3 + 2µϵ (4.28)

where ϵ is defined as in (4.24).

4.6.3.1 Newton linearization

Due to nonlinearity in the constitutive law,we require aNewton linearization of (4.28). Toderive theNewton
linearization, we begin by expressing the derivative,

dσ =
∂σ

∂ϵ
: d ϵ

where

d ϵ =
1

2

(
∇ du+∇ duT

)
and

d∇u = ∇du.

44

https://en.wikipedia.org/wiki/Voigt_notation

Therefore,

dσ = λ̄ · trace d ϵ · I3 + 2µd ϵ (4.29)

where we have introduced the symbol

λ̄ =
λ

1 + ϵv

where volumetric strain is given by ϵv =
∑

i ϵii.
Equation (4.29) can be written in Voigt matrix notation as follows:

dσ11
dσ22
dσ33
dσ23
dσ13
dσ12

 =


2µ+ λ̄ λ̄ λ̄
λ̄ 2µ+ λ̄ λ̄
λ̄ λ̄ 2µ+ λ̄

µ
µ

µ




d ϵ11
d ϵ22
d ϵ33
2 d ϵ23
2 d ϵ13
2 d ϵ12

 . (4.30)

4.6.4 Hyperelasticity at Finite Strain

In the total Lagrangian approach for the Neo-Hookean hyperelasticity problem, the discrete equations are
formulated with respect to the reference configuration. In this formulation, we solve for displacement u(X)
in the reference frame X . The notation for elasticity at finite strain is inspired by [Hol00] to distinguish
between the current and reference configurations. As explained in the Common notation section, we denote
by capital letters the reference frame and by small letters the current one.
The strong form of the static balance of linear-momentum at finite strain (total Lagrangian) is given by:

−∇X · P − ρ0g = 0 (4.31)

where the X in ∇X indicates that the gradient is calculated with respect to the reference configuration in
the finite strain regime. P and g are the first Piola-Kirchhoff stress tensor and the prescribed forcing function,
respectively. ρ0 is known as the reference mass density. The tensor P is not symmetric, living in the current
configuration on the left and the reference configuration on the right.
P can be decomposed as

P = F S, (4.32)

where S is the second Piola-Kirchhoff stress tensor, a symmetric tensor defined entirely in the reference con-
figuration, and F = I3 +∇Xu is the deformation gradient. Different constitutive models can define S.

4.6.4.1 Constitutive modeling

For the constitutive modeling of hyperelasticity at finite strain, we begin by defining two symmetric tensors
in the reference configuration, the right Cauchy-Green tensor

C = F TF

and the Green-Lagrange strain tensor

E =
1

2
(C − I3) =

1

2

(
∇Xu+ (∇Xu)T + (∇Xu)T∇Xu

)
, (4.33)

45

the latter of which converges to the linear strain tensor ϵ in the small-deformation limit. The constitutive
models considered, appropriate for large deformations, express S as a function of E, similar to the linear
case, shown in equation (4.27), which expresses the relationship between σ and ϵ.
Recall that the strain energy density functional can only depend upon invariants. We will assume without
loss of generality that E is diagonal and take its set of eigenvalues as the invariants. It is clear that there
can be only three invariants, and there are many alternate choices, such as trace(E), trace(E2), |E|, and
combinations thereof. It is common in the literature for invariants to be taken from C = I3 + 2E instead of
E.
For example, if we take the compressible Neo-Hookean model,

Φ(E) =
λ

2
(log J)2 +

µ

2
(traceC − 3)− µ log J

=
λ

2
(log J)2 + µ traceE − µ log J,

(4.34)

where J = |F | =
√
|C| is the determinant of deformation (i.e., volume change) and λ and µ are the Lamé

parameters in the infinitesimal strain limit.
To evaluate (4.26), we make use of

∂J

∂E
=
∂
√
|C|

∂E
= |C|−1/2|C|C−1 = JC−1,

where the factor of 1
2 has been absorbed due to C = I3 + 2E. Carrying through the differentiation (4.26)

for the model (4.34), we arrive at

S = λ log JC−1 + µ(I3 −C−1). (4.35)

Tip: An equivalent form of (4.35) is

S = λ log JC−1 + 2µC−1E,

which is more numerically stable for small E, and thus preferred for computation. Note that the product
C−1E is also symmetric, and that E should be computed using (4.33).
Similarly, it is preferable to compute log J using log1p, especially in case of nearly incompressiblematerials.
To sketch this idea, suppose we have the 2× 2 symmetric matrix C =

(
1+e00 e01
e01 1+e11

)
. Then we compute

log
√
|C| = 1

2
log1p(e00 + e11 + e00e11 − e201).

which gives accurate results even in the limit when the entries eij are very small. For example, if eij ∼ 10−8,
then naive computation of I3−C−1 and log J will have a relative accuracy of order 10−8 in double precision
and no correct digits in single precision. When using the stable choices above, these quantities retain full
εmachine relative accuracy.

Note: One can linearize (4.35) aroundE = 0, for whichC = I3 +2E → I3 and J → 1+ traceE, therefore
(4.35) reduces to

S = λ(traceE)I3 + 2µE, (4.36)

which is the St. Venant-Kirchoff model.

46

This model can be used for geometrically nonlinear mechanics (e.g., snap-through of thin structures), but
is inappropriate for large strain.
Alternatively, one can drop geometric nonlinearities, E → ϵ and C → I3, while retaining the nonlinear
dependence on J → 1 + trace ϵ, thereby yielding (4.28).

4.6.4.2 Weak form

We multiply (4.31) by a test function v and integrate by parts to obtain the weak form for finite-strain hy-
perelasticity: find u ∈ V ⊂ H1(Ω0) such that∫

Ω0

∇Xv : P dV −
∫
Ω0

v · ρ0g dV −
∫
∂Ω0

v · (P · N̂) dS = 0, ∀v ∈ V, (4.37)

whereP ·N̂ |∂Ω is replaced by any prescribed force/traction boundary conditionwritten in terms of the refer-
ence configuration. This equation contains material/constitutive nonlinearities in defining S(E), as well as
geometric nonlinearities throughP = F S,E(F), and the body force g, whichmust be pulled back from the
current configuration to the reference configuration. Discretization of (4.37) produces a finite-dimensional
system of nonlinear algebraic equations, which we solve using Newton-Raphson methods. One attractive
feature of Galerkin discretization is that we can arrive at the same linear system by discretizing the New-
ton linearization of the continuous form; that is, discretization and differentiation (Newton linearization)
commute.

4.6.4.3 Newton linearization

To derive a Newton linearization of (4.37), we begin by expressing the derivative of (4.32) in incremental
form,

dP =
∂P

∂F
:dF = dF S + F

∂S

∂E
:dE︸ ︷︷ ︸

dS

(4.38)

where

dE =
∂E

∂F
:dF =

1

2

(
dF TF + F T dF

)
.

The quantity ∂S/∂E is known as the incremental elasticity tensor, and is analogous to the linear elasticity
tensor C of linear-elasticity-tensor. We now evaluate dS for the Neo-Hookean model (4.35),

dS =
∂S

∂E
:dE = λ(C−1 :dE)C−1 + 2(µ− λ log J)C−1 dEC−1, (4.39)

where we have used

dC−1 =
∂C−1

∂E
:dE = −2C−1 dEC−1.

Note: In the small-strain limit, C → I3 and log J → 0, thereby reducing (4.39) to the St. Venant-Kirchoff
model (4.36).

47

Note: Some cancellation is possible (at the expense of symmetry) if we substitute (4.39) into (4.38),

dP = dF S + λ(C−1 : dE)F−T + 2(µ− λ log J)F−T dEC−1

= dF S + λ(F−T : dF)F−T + (µ− λ log J)F−T (F T dF + dF TF)C−1

= dF S + λ(F−T : dF)F−T + (µ− λ log J)
(
dF C−1 + F−T dF TF−T

)
,

(4.40)

where we have exploited FC−1 = F−T and

C−1 :dE = C−1
IJ dEIJ =

1

2
F−1
Ik F−1

Jk (FℓI dFℓJ + dFℓIFℓJ)

=
1

2

(
δℓkF

−1
Jk dFℓJ + δℓkF

−1
Ik dFℓI

)
= F−1

Ik dFkI = F−T :dF .

We prefer to compute with (4.39) because (4.40) is more expensive, requiring access to (non-symmetric)
F−1 in addition to (symmetric) C−1 = F−1F−T , having fewer symmetries to exploit in contractions, and
being less numerically stable.

It is sometimes useful to express (4.39) in index notation,

dSIJ =
∂SIJ

∂EKL
dEKL

= λ(C−1
KL dEKL)C

−1
IJ + 2(µ− λ log J)C−1

IK dEKLC
−1
LJ

=
(
λC−1

IJ C−1
KL + 2(µ− λ log J)C−1

IKC−1
JL

)
︸ ︷︷ ︸

CIJKL

dEKL ,

(4.41)

where we have identified the effective elasticity tensor C = CIJKL. It is generally not desirable to store C,
but rather to use the earlier expressions so that only 3 × 3 tensors (most of which are symmetric) must be
manipulated. That is, given the linearization point F and solution increment dF = ∇X(du) (which we are
solving for in the Newton step), we compute dP via

1. recover C−1 and log J (either stored at quadrature points or recomputed),
2. proceed with 3 × 3 matrix products as in (4.39) or the second line of (4.41) to compute dS while

avoiding computation or storage of higher order tensors, and
3. conclude by (4.38), where S is either stored or recomputed from its definition exactly as in the non-

linear residual evaluation.

Note: The decision of whether to recompute or store functions of the current state F depends on a roofline
analysis [WWP09][Brown10] of the computation and the cost of the constitutive model. For low-order
elements where flops tend to be in surplus relative to memory bandwidth, recomputation is likely to be
preferable, where as the opposite may be true for high-order elements. Similarly, analysis with a simple
constitutivemodelmay see better performancewhile storing little or nothingwhile an expensivemodel such
as Arruda-Boyce [AB93], which contains many special functions, may be faster when using more storage
to avoid recomputation. In the case where complete linearization is preferred, note the symmetry CIJKL =
CKLIJ evident in (4.41), thus C can be stored as a symmetric 6 × 6 matrix, which has 21 unique entries.
Along with 6 entries for S, this totals 27 entries of overhead compared to computing everything from F .
This compares with 13 entries of overhead for direct storage of {S,C−1, log J}, which is sufficient for the
Neo-Hookean model to avoid all but matrix products.

48

5 API Documentation

This section contains the code documentation. The subsections represent the different API objects, typedefs,
and enumerations.

5.1 Public API

These objects and functions are intended to be used by general users of libCEED and can generally be found
in ceed.h.

5.1.1 Ceed

A Ceed is a library context representing control of a logical hardware resource.

5.1.1.1 Base library resources

typedef struct Ceed_private *Ceed
Library context created by CeedInit()

typedef struct CeedRequest_private *CeedRequest
Non-blocking Ceed interfaces return a CeedRequest.
To perform an operation immediately, pass CEED_REQUEST_IMMEDIATE instead.

CeedRequest *const CEED_REQUEST_IMMEDIATE = &ceed_request_immediate
Request immediate completion.
This predefined constant is passed as the CeedRequest argument to interfaces when the caller wishes
for the operation to be performed immediately. The code

CeedOperatorApply(op, ..., CEED_REQUEST_IMMEDIATE);

is semantically equivalent to

CeedRequest request;
CeedOperatorApply(op, ..., &request);
CeedRequestWait(&request);

See CEED_REQUEST_ORDERED

CeedRequest *const CEED_REQUEST_ORDERED = &ceed_request_ordered
Request ordered completion.
This predefined constant is passed as the CeedRequest argument to interfaces when the caller wishes
for the operation to be completed in the order that it is submitted to the device. It is typically used in
a construct such as

CeedRequest request;
CeedOperatorApply(op1, ..., CEED_REQUEST_ORDERED);
CeedOperatorApply(op2, ..., &request);
// other optional work
CeedWait(&request);

which allows the sequence to complete asynchronously but does not startop2untilop1has completed.

49

Todo:
The current implementation is overly strict, offering equivalent semantics to
CEED_REQUEST_IMMEDIATE.

See CEED_REQUEST_IMMEDIATE

int CeedRequestWait(CeedRequest *req)
Wait for a CeedRequest to complete.
Calling CeedRequestWait on a NULL request is a no-op.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• req: Address of CeedRequest to wait for; zeroed on completion.
int CeedInit(const char *resource, Ceed *ceed)

Initialize a Ceed: core components context to use the specified resource.
User Functions
See CeedRegister() CeedDestroy()
Return An error code: 0 - success, otherwise - failure
Parameters

• resource: Resource to use, e.g., “/cpu/self”
• ceed: The library context

int CeedGetResource(Ceed ceed, const char **resource)
Get the full resource name for a Ceed context.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context to get resource name of
• [out] resource: Variable to store resource name

int CeedGetPreferredMemType(Ceed ceed, CeedMemType *type)
Return Ceed context preferred memory type.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context to get preferred memory type of
• [out] type: Address to save preferred memory type to

int CeedIsDeterministic(Ceed ceed, bool *isDeterministic)
Get deterministic status of Ceed.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

50

• [in] ceed: Ceed
• [out] isDeterministic: Variable to store deterministic status

int CeedView(Ceed ceed, FILE *stream)
View a Ceed.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] ceed: Ceed to view
• [in] stream: Filestream to write to

int CeedDestroy(Ceed *ceed)
Destroy a Ceed context.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Address of Ceed context to destroy
int CeedErrorImpl(Ceed ceed, const char *filename, int lineno, const char *func, int ecode, const

char *format, ...)
Error handling implementation; use CeedError instead.
Library Developer Functions

int CeedErrorReturn(Ceed ceed, const char *filename, int lineno, const char *func, int ecode, const
char *format, va_list args)

Error handler that returns without printing anything.
Ceed error handlers.
Pass this to CeedSetErrorHandler() to obtain this error handling behavior.
Library Developer Functions

int CeedErrorStore(Ceed ceed, const char *filename, int lineno, const char *func, int ecode, const
char *format, va_list args)

Error handler that stores the error message for future use and returns the error.
Pass this to CeedSetErrorHandler() to obtain this error handling behavior.
Library Developer Functions

int CeedErrorAbort(Ceed ceed, const char *filename, int lineno, const char *func, int ecode, const
char *format, va_list args)

Error handler that prints to stderr and aborts.
Pass this to CeedSetErrorHandler() to obtain this error handling behavior.
Library Developer Functions

int CeedErrorExit(Ceed ceed, const char *filename, int lineno, const char *func, int ecode, const
char *format, va_list args)

Error handler that prints to stderr and exits.
Pass this to CeedSetErrorHandler() to obtain this error handling behavior.
In contrast to CeedErrorAbort(), this exits without a signal, so atexit() handlers (e.g., as used by gcov)
are run.

51

Library Developer Functions
int CeedSetErrorHandler(Ceed ceed, int (*eh))Ceed, const char*, int, const char*, int, const

char*, va_list
Set error handler.
A default error handler is set in CeedInit(). Use this function to change the error handler to CeedError-
Return(), CeedErrorAbort(), or a user-defined error handler.
Library Developer Functions

int CeedGetErrorMessage(Ceed ceed, const char **errmsg)
Get error message.
The error message is only stored when using the error handler CeedErrorStore()
Library Developer Functions
Parameters

• [in] ceed: Ceed contex to retrieve error message
• [out] errmsg: Char pointer to hold error message

int CeedResetErrorMessage(Ceed ceed, const char **errmsg)
Restore error message.
The error message is only stored when using the error handler CeedErrorStore()
Library Developer Functions
Parameters

• [in] ceed: Ceed contex to restore error message
• [out] errmsg: Char pointer that holds error message

Macros

CeedError(ceed, ecode, ...)
Raise an error on ceed object.

See CeedSetErrorHandler()
Parameters

• ceed: Ceed library context or NULL
• ecode: Error code (int)
• ...: printf-style format string followed by arguments as needed

CeedPragmaSIMD
This macro provides the appropriate SIMD Pragma for the compilation environment.
Code generation backends may redefine this macro, as needed.

52

Typedefs and Enumerations

enum CeedMemType
Specify memory type.
Many Ceed interfaces take or return pointers to memory. This enum is used to specify where the
memory being provided or requested must reside.
Values:
enumerator CEED_MEM_HOST

Memory resides on the host.
enumerator CEED_MEM_DEVICE

Memory resides on a device (corresponding to Ceed: core components resource)

5.1.2 CeedVector

CeedVectors constitute the main data structure and serve as input/output for CeedOperators.

5.1.2.1 Basic vector operations

typedef struct CeedVector_private *CeedVector
Handle for vectors over the field CeedScalar.

const CeedVector CEED_VECTOR_ACTIVE = &ceed_vector_active
Indicate that vector will be provided as an explicit argument to CeedOperatorApply().

const CeedVector CEED_VECTOR_NONE = &ceed_vector_none
Indicate that no vector is applicable (i.e., for CEED_EVAL_WEIGHTS).

int CeedVectorCreate(Ceed ceed, CeedInt length, CeedVector *vec)
Create a CeedVector of the specified length (does not allocate memory)
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed object where the CeedVector will be created
• length: Length of vector
• [out] vec: Address of the variable where the newly created CeedVector will be stored

int CeedVectorSetArray(CeedVector vec, CeedMemType mtype, CeedCopyMode cmode, CeedScalar *ar-
ray)

Set the array used by a CeedVector, freeing any previously allocated array if applicable.
The backend may copy values to a different memtype, such as during CeedOperatorApply(). See also
CeedVectorSyncArray() and CeedVectorTakeArray().
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector
• mtype: Memory type of the array being passed

53

• cmode: Copy mode for the array
• array: Array to be used, or NULL with CEED_COPY_VALUES to have the library allocate

int CeedVectorSetValue(CeedVector vec, CeedScalar value)
Set the CeedVector to a constant value.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector
• [in] value: Value to be used

int CeedVectorSyncArray(CeedVector vec, CeedMemType mtype)
Sync the CeedVector to a specified memtype.
This function is used to force synchronization of arrays set with CeedVectorSetArray(). If the requested
memtype is already synchronized, this function results in a no-op.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector
• mtype: Memtype to be synced

int CeedVectorTakeArray(CeedVector vec, CeedMemType mtype, CeedScalar **array)
Take ownership of the CeedVector array and remove the array from the CeedVector.
The caller is responsible for managing and freeing the array.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector
• mtype: Memory type on which to take the array. If the backend uses a different memory

type, this will perform a copy.
• [out] array: Array on memory type mtype, or NULL if array pointer is not required

int CeedVectorGetArray(CeedVector vec, CeedMemType mtype, CeedScalar **array)
Get read/write access to a CeedVector via the specified memory type.
Restore access with CeedVectorRestoreArray().
User Functions
Note The CeedVectorGetArray* and CeedVectorRestoreArray* functions provide access to array

pointers in the desired memory space. Pairing get/restore allows the Vector to track access, thus
knowing if norms or other operations may need to be recomputed.

Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector to access

54

• mtype: Memory type on which to access the array. If the backend uses a different memory
type, this will perform a copy.

• [out] array: Array on memory type mtype
int CeedVectorGetArrayRead(CeedVector vec, CeedMemType mtype, const CeedScalar **array)

Get read-only access to a CeedVector via the specified memory type.
Restore access with CeedVectorRestoreArrayRead().
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector to access
• mtype: Memory type on which to access the array. If the backend uses a different memory

type, this will perform a copy (possibly cached).
• [out] array: Array on memory type mtype

int CeedVectorRestoreArray(CeedVector vec, CeedScalar **array)
Restore an array obtained using CeedVectorGetArray()
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector to restore
• array: Array of vector data

int CeedVectorRestoreArrayRead(CeedVector vec, const CeedScalar **array)
Restore an array obtained using CeedVectorGetArrayRead()
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector to restore
• array: Array of vector data

int CeedVectorNorm(CeedVector vec, CeedNormType type, CeedScalar *norm)
Get the norm of a CeedVector.
Note: This operation is local to the CeedVector. This functionwill likely not provide the desired results
for the norm of the libCEED portion of a parallel vector or a CeedVector with duplicated or hanging
nodes.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector to retrieve maximum value
• type: Norm type CEED_NORM_1, CEED_NORM_2, or CEED_NORM_MAX
• [out] norm: Variable to store norm value

55

int CeedVectorReciprocal(CeedVector vec)
Take the reciprocal of a CeedVector.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector to take reciprocal
int CeedVectorView(CeedVector vec, const char *fpfmt, FILE *stream)

View a CeedVector.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] vec: CeedVector to view
• [in] fpfmt: Printing format
• [in] stream: Filestream to write to

int CeedVectorGetLength(CeedVector vec, CeedInt *length)
Get the length of a CeedVector.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector to retrieve length
• [out] length: Variable to store length

int CeedVectorDestroy(CeedVector *vec)
Destroy a CeedVector.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector to destroy

Typedefs and Enumerations

typedef int32_t CeedInt
Integer type, used for indexing.

typedef double CeedScalar
Scalar (floating point) type.

enum CeedCopyMode
Conveys ownership status of arrays passed to Ceed interfaces.
Values:
enumerator CEED_COPY_VALUES

Implementation will copy the values and not store the passed pointer.

56

enumerator CEED_USE_POINTER
Implementation can use and modify the data provided by the user, but does not take ownership.

enumerator CEED_OWN_POINTER
Implementation takes ownership of the pointer and will free using CeedFree() when done using
it.
The user should not assume that the pointer remains valid after ownership has been transferred.
Note that arrays allocated using C++ operator new or other allocators cannot generally be freed
using CeedFree(). CeedFree() is capable of freeing any memory that can be freed using free(3).

enum CeedNormType
Denotes type of vector norm to be computed.
Values:
enumerator CEED_NORM_1

L_1 norm: sum_i |x_i|.
enumerator CEED_NORM_2

L_2 norm: sqrt(sum_i |x_i|^2)
enumerator CEED_NORM_MAX

L_Infinity norm: max_i |x_i|.

5.1.3 CeedElemRestriction

A CeedElemRestriction decomposes elements and groups the degrees of freedom (dofs) according to the
different elements they belong to.

5.1.3.1 Expressing element decomposition and degrees of freedom over a mesh

typedef struct CeedElemRestriction_private *CeedElemRestriction
Handle for object describing restriction to elements.

const CeedInt CEED_STRIDES_BACKEND[3] = {}
Indicate that the stride is determined by the backend.

const CeedElemRestriction CEED_ELEMRESTRICTION_NONE = &ceed_elemrestriction_none
Indicate that no CeedElemRestriction is provided by the user.

int CeedElemRestrictionCreate(Ceed ceed, CeedInt nelem, CeedInt elemsize, CeedInt ncomp, Ceed-
Int compstride, CeedInt lsize, CeedMemType mtype, CeedCopyMode
cmode, const CeedInt *offsets, CeedElemRestriction *rstr)

Create a CeedElemRestriction.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedElemRestriction will be created
• nelem: Number of elements described in the offsets array
• elemsize: Size (number of “nodes”) per element
• ncomp: Number of field components per interpolation node (1 for scalar fields)

57

• compstride: Stride between components for the same L-vector “node”. Data for node
i, component j, element k can be found in the L-vector at index offsets[i + k*elemsize] +
j*compstride.

• lsize: The size of the L-vector. This vector may be larger than the elements and fields given
by this restriction.

• mtype: Memory type of the offsets array, see CeedMemType
• cmode: Copy mode for the offsets array, see CeedCopyMode
• offsets: Array of shape [nelem, elemsize]. Row i holds the ordered list of the offsets (into

the input CeedVector) for the unknowns corresponding to element i, where 0 <= i < nelem.
All offsets must be in the range [0, lsize - 1].

• [out] rstr: Address of the variable where the newly created CeedElemRestriction will be
stored

int CeedElemRestrictionCreateStrided(Ceed ceed, CeedInt nelem, CeedInt elemsize, Ceed-
Int ncomp, CeedInt lsize, const CeedInt strides[3],
CeedElemRestriction *rstr)

Create a strided CeedElemRestriction.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedElemRestriction will be created
• nelem: Number of elements described by the restriction
• elemsize: Size (number of “nodes”) per element
• ncomp: Number of field components per interpolation “node” (1 for scalar fields)
• lsize: The size of the L-vector. This vector may be larger than the elements and fields given

by this restriction.
• strides: Array for strides between [nodes, components, elements]. Data for node i,

component j, element k can be found in the L-vector at index i*strides[0] + j*strides[1] +
k*strides[2]. CEED_STRIDES_BACKENDmay be used with vectors created by a Ceed back-
end.

• rstr: Address of the variable where the newly created CeedElemRestriction will be stored
int CeedElemRestrictionCreateBlocked(Ceed ceed, CeedInt nelem, CeedInt elemsize, CeedInt blk-

size, CeedInt ncomp, CeedInt compstride, CeedInt lsize,
CeedMemType mtype, CeedCopyMode cmode, const
CeedInt *offsets, CeedElemRestriction *rstr)

Create a blocked CeedElemRestriction, typically only called by backends.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedElemRestriction will be created.
• nelem: Number of elements described in the offsets array.
• elemsize: Size (number of unknowns) per element
• blksize: Number of elements in a block

58

• ncomp: Number of field components per interpolation node (1 for scalar fields)
• compstride: Stride between components for the same L-vector “node”. Data for node

i, component j, element k can be found in the L-vector at index offsets[i + k*elemsize] +
j*compstride.

• lsize: The size of the L-vector. This vector may be larger than the elements and fields given
by this restriction.

• mtype: Memory type of the offsets array, see CeedMemType
• cmode: Copy mode for the offsets array, see CeedCopyMode
• offsets: Array of shape [nelem, elemsize]. Row i holds the ordered list of the offsets (into

the input CeedVector) for the unknowns corresponding to element i, where 0 <= i < nelem.
All offsets must be in the range [0, lsize - 1]. The backend will permute and pad this array to
the desired ordering for the blocksize, which is typically given by the backend. The default
reordering is to interlace elements.

• rstr: Address of the variable where the newly created CeedElemRestriction will be stored
int CeedElemRestrictionCreateBlockedStrided(Ceed ceed, CeedInt nelem, CeedInt elemsize,

CeedInt blksize, CeedInt ncomp, CeedInt lsize,
const CeedInt strides[3], CeedElemRestric-
tion *rstr)

Create a blocked strided CeedElemRestriction.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedElemRestriction will be created
• nelem: Number of elements described by the restriction
• elemsize: Size (number of “nodes”) per element
• blksize: Number of elements in a block
• ncomp: Number of field components per interpolation node (1 for scalar fields)
• lsize: The size of the L-vector. This vector may be larger than the elements and fields given

by this restriction.
• strides: Array for strides between [nodes, components, elements]. Data for node i,

component j, element k can be found in the L-vector at index i*strides[0] + j*strides[1] +
k*strides[2]. CEED_STRIDES_BACKENDmay be used with vectors created by a Ceed back-
end.

• rstr: Address of the variable where the newly created CeedElemRestriction will be stored
int CeedElemRestrictionCreateVector(CeedElemRestriction rstr, CeedVector *lvec, CeedVector

*evec)
Create CeedVectors associated with a CeedElemRestriction.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• lvec: The address of the L-vector to be created, or NULL

59

• evec: The address of the E-vector to be created, or NULL
int CeedElemRestrictionApply(CeedElemRestriction rstr, CeedTransposeMode tmode, CeedVector u,

CeedVector ru, CeedRequest *request)
Restrict an L-vector to an E-vector or apply its transpose.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• tmode: Apply restriction or transpose
• u: Input vector (of size lsizewhen tmode=CEED_NOTRANSPOSE)
• ru: Output vector (of shape [nelem * elemsize] when tmode=CEED_NOTRANSPOSE). Or-

dering of the e-vector is decided by the backend.
• request: Request or CEED_REQUEST_IMMEDIATE

int CeedElemRestrictionApplyBlock(CeedElemRestriction rstr, CeedInt block, CeedTransposeMode
tmode, CeedVector u, CeedVector ru, CeedRequest *request)

Restrict an L-vector to a block of an E-vector or apply its transpose.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• block: Block number to restrict to/from, i.e. block=0 will handle elements [0 : blksize] and

block=3 will handle elements [3*blksize : 4*blksize]
• tmode: Apply restriction or transpose
• u: Input vector (of size lsizewhen tmode=CEED_NOTRANSPOSE)
• ru: Output vector (of shape [blksize * elemsize] when tmode=CEED_NOTRANSPOSE). Or-

dering of the e-vector is decided by the backend.
• request: Request or CEED_REQUEST_IMMEDIATE

int CeedElemRestrictionGetCompStride(CeedElemRestriction rstr, CeedInt *compstride)
Get the L-vector component stride.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] compstride: Variable to store component stride

int CeedElemRestrictionGetNumElements(CeedElemRestriction rstr, CeedInt *numelem)
Get the total number of elements in the range of a CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

60

• rstr: CeedElemRestriction
• [out] numelem: Variable to store number of elements

int CeedElemRestrictionGetElementSize(CeedElemRestriction rstr, CeedInt *elemsize)
Get the size of elements in the CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] elemsize: Variable to store size of elements

int CeedElemRestrictionGetLVectorSize(CeedElemRestriction rstr, CeedInt *lsize)
Get the size of the l-vector for a CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] numnodes: Variable to store number of nodes

int CeedElemRestrictionGetNumComponents(CeedElemRestriction rstr, CeedInt *numcomp)
Get the number of components in the elements of a CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] numcomp: Variable to store number of components

int CeedElemRestrictionGetNumBlocks(CeedElemRestriction rstr, CeedInt *numblock)
Get the number of blocks in a CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] numblock: Variable to store number of blocks

int CeedElemRestrictionGetBlockSize(CeedElemRestriction rstr, CeedInt *blksize)
Get the size of blocks in the CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] blksize: Variable to store size of blocks

61

int CeedElemRestrictionGetMultiplicity(CeedElemRestriction rstr, CeedVector mult)
Get the multiplicity of nodes in a CeedElemRestriction.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] mult: Vector to store multiplicity (of size lsize)

int CeedElemRestrictionView(CeedElemRestriction rstr, FILE *stream)
View a CeedElemRestriction.
User Functions
Return Error code: 0 - success, otherwise - failure
Parameters

• [in] rstr: CeedElemRestriction to view
• [in] stream: Stream to write; typically stdout/stderr or a file

int CeedElemRestrictionDestroy(CeedElemRestriction *rstr)
Destroy a CeedElemRestriction.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction to destroy

5.1.4 CeedBasis

A CeedBasis defines the discrete finite element basis and associated quadrature rule.

5.1.4.1 Discrete element bases and quadrature

typedef struct CeedBasis_private *CeedBasis
Handle for object describing discrete finite element evaluations.

const CeedBasis CEED_BASIS_COLLOCATED = &ceed_basis_collocated
Indicate that the quadrature points are collocated with the nodes.

int CeedBasisCreateTensorH1(Ceed ceed, CeedInt dim, CeedInt ncomp, CeedInt P1d, CeedInt Q1d,
const CeedScalar *interp1d, const CeedScalar *grad1d, const
CeedScalar *qref1d, const CeedScalar *qweight1d, CeedBasis *basis)

Create a tensor-product basis for H^1 discretizations.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedBasis will be created
• dim: Topological dimension

62

• ncomp: Number of field components (1 for scalar fields)
• P1d: Number of nodes in one dimension
• Q1d: Number of quadrature points in one dimension
• interp1d: Row-major (Q1d * P1d) matrix expressing the values of nodal basis functions at

quadrature points
• grad1d: Row-major (Q1d * P1d) matrix expressing derivatives of nodal basis functions at

quadrature points
• qref1d: Array of length Q1d holding the locations of quadrature points on the 1D reference

element [-1, 1]
• qweight1d: Array of length Q1d holding the quadrature weights on the reference element
• [out] basis: Address of the variable where the newly created CeedBasis will be stored.

int CeedBasisCreateTensorH1Lagrange(Ceed ceed, CeedInt dim, CeedInt ncomp, CeedInt P,CeedInt
Q, CeedQuadMode qmode, CeedBasis *basis)

Create a tensor-product Lagrange basis.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedBasis will be created
• dim: Topological dimension of element
• ncomp: Number of field components (1 for scalar fields)
• P: Number of Gauss-Lobatto nodes in one dimension. The polynomial degree of the resulting

Q_k element is k=P-1.
• Q: Number of quadrature points in one dimension.
• qmode: Distribution of theQ quadrature points (affects order of accuracy for the quadrature)
• [out] basis: Address of the variable where the newly created CeedBasis will be stored.

int CeedBasisCreateH1(Ceed ceed, CeedElemTopology topo, CeedInt ncomp, CeedInt nnodes, CeedInt
nqpts, const CeedScalar *interp, const CeedScalar *grad, const CeedScalar
*qref, const CeedScalar *qweight, CeedBasis *basis)

Create a non tensor-product basis for H^1 discretizations.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedBasis will be created
• topo: Topology of element, e.g. hypercube, simplex, ect
• ncomp: Number of field components (1 for scalar fields)
• nnodes: Total number of nodes
• nqpts: Total number of quadrature points
• interp: Row-major (nqpts * nnodes) matrix expressing the values of nodal basis functions

at quadrature points

63

• grad: Row-major (nqpts * dim * nnodes) matrix expressing derivatives of nodal basis func-
tions at quadrature points

• qref: Array of length nqpts holding the locations of quadrature points on the reference
element [-1, 1]

• qweight: Array of length nqpts holding the quadrature weights on the reference element
• [out] basis: Address of the variable where the newly created CeedBasis will be stored.

int CeedBasisView(CeedBasis basis, FILE *stream)
View a CeedBasis.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis to view
• stream: Stream to view to, e.g., stdout

int CeedBasisApply(CeedBasis basis, CeedInt nelem, CeedTransposeMode tmode, CeedEvalMode emode,
CeedVector u, CeedVector v)

Apply basis evaluation from nodes to quadrature points or vice versa.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis to evaluate
• nelem: The number of elements to apply the basis evaluation to; the backend will specify

the ordering in CeedElemRestrictionCreateBlocked()
• tmode: CEED_NOTRANSPOSE to evaluate from nodes to quadrature points,

CEED_TRANSPOSE to apply the transpose, mapping from quadrature points to nodes
• emode: CEED_EVAL_NONE to use values directly, CEED_EVAL_INTERP to use interpo-

lated values, CEED_EVAL_GRAD to use gradients, CEED_EVAL_WEIGHT to use quadrature
weights.

• [in] u: Input CeedVector
• [out] v: Output CeedVector

int CeedBasisGetDimension(CeedBasis basis, CeedInt *dim)
Get dimension for given CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] dim: Variable to store dimension of basis

int CeedBasisGetTopology(CeedBasis basis, CeedElemTopology *topo)
Get topology for given CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure

64

Parameters
• basis: CeedBasis
• [out] topo: Variable to store topology of basis

int CeedBasisGetNumComponents(CeedBasis basis, CeedInt *numcomp)
Get number of components for given CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] numcomp: Variable to store number of components of basis

int CeedBasisGetNumNodes(CeedBasis basis, CeedInt *P)
Get total number of nodes (in dim dimensions) of a CeedBasis.
Utility Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] P: Variable to store number of nodes

int CeedBasisGetNumNodes1D(CeedBasis basis, CeedInt *P1d)
Get total number of nodes (in 1 dimension) of a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] P1d: Variable to store number of nodes

int CeedBasisGetNumQuadraturePoints(CeedBasis basis, CeedInt *Q)
Get total number of quadrature points (in dim dimensions) of a CeedBasis.
Utility Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] Q: Variable to store number of quadrature points

int CeedBasisGetNumQuadraturePoints1D(CeedBasis basis, CeedInt *Q1d)
Get total number of quadrature points (in 1 dimension) of a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] Q1d: Variable to store number of quadrature points

65

int CeedBasisGetQRef(CeedBasis basis, const CeedScalar **qref)
Get reference coordinates of quadrature points (in dim dimensions) of a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] qref: Variable to store reference coordinates of quadrature points

int CeedBasisGetQWeights(CeedBasis basis, const CeedScalar **qweight)
Get quadrature weights of quadrature points (in dim dimensions) of a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] qweight: Variable to store quadrature weights

int CeedBasisGetInterp(CeedBasis basis, const CeedScalar **interp)
Get interpolation matrix of a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] interp: Variable to store interpolation matrix

int CeedBasisGetInterp1D(CeedBasis basis, const CeedScalar **interp1d)
Get 1D interpolation matrix of a tensor product CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] interp1d: Variable to store interpolation matrix

int CeedBasisGetGrad(CeedBasis basis, const CeedScalar **grad)
Get gradient matrix of a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] grad: Variable to store gradient matrix

int CeedBasisGetGrad1D(CeedBasis basis, const CeedScalar **grad1d)
Get 1D gradient matrix of a tensor product CeedBasis.
Backend Developer Functions

66

Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] grad1d: Variable to store gradient matrix

int CeedBasisDestroy(CeedBasis *basis)
Destroy a CeedBasis.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis to destroy
int CeedGaussQuadrature(CeedInt Q, CeedScalar *qref1d, CeedScalar *qweight1d)

Construct a Gauss-Legendre quadrature.
Utility Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• Q: Number of quadrature points (integrates polynomials of degree 2*Q-1 exactly)
• [out] qref1d: Array of length Q to hold the abscissa on [-1, 1]
• [out] qweight1d: Array of length Q to hold the weights

int CeedLobattoQuadrature(CeedInt Q, CeedScalar *qref1d, CeedScalar *qweight1d)
Construct a Gauss-Legendre-Lobatto quadrature.
Utility Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• Q: Number of quadrature points (integrates polynomials of degree 2*Q-3 exactly)
• [out] qref1d: Array of length Q to hold the abscissa on [-1, 1]
• [out] qweight1d: Array of length Q to hold the weights

int CeedQRFactorization(Ceed ceed, CeedScalar *mat, CeedScalar *tau, CeedInt m, CeedInt n)
Return QR Factorization of a matrix.
Utility Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed context for error handling
• [inout] mat: Row-major matrix to be factorized in place
• [inout] tau: Vector of length m of scaling factors
• m: Number of rows
• n: Number of columns

67

int CeedSymmetricSchurDecomposition(Ceed ceed, CeedScalar *mat, CeedScalar *lambda, CeedInt
n)

Return symmetric Schur decomposition of the symmetric matrix mat via symmetric QR factorization.
Utility Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed context for error handling
• [inout] mat: Row-major matrix to be factorized in place
• [out] lambda: Vector of length n of eigenvalues
• n: Number of rows/columns

int CeedSimultaneousDiagonalization(Ceed ceed, CeedScalar *matA, CeedScalar *matB, Ceed-
Scalar *x, CeedScalar *lambda, CeedInt n)

Return Simultaneous Diagonalization of two matrices.
This solves the generalized eigenvalue problem A x = lambda B x, where A and B are symmetric and
B is positive definite. We generate the matrix X and vector Lambda such that X^T A X = Lambda and
X^T B X = I. This is equivalent to the LAPACK routine ‘sygv’ with TYPE = 1.
Utility Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed context for error handling
• [in] matA: Row-major matrix to be factorized with eigenvalues
• [in] matB: Row-major matrix to be factorized to identity
• [out] x: Row-major orthogonal matrix
• [out] lambda: Vector of length n of generalized eigenvalues
• n: Number of rows/columns

Typedefs and Enumerations

enum CeedTransposeMode
Denotes whether a linear transformation or its transpose should be applied.
Values:
enumerator CEED_NOTRANSPOSE

Apply the linear transformation.
enumerator CEED_TRANSPOSE

Apply the transpose.
enum CeedEvalMode

Basis evaluation mode.
Modes can be bitwise ORed when passing to most functions.
Values:
enumerator CEED_EVAL_NONE

Perform no evaluation (either because there is no data or it is already at quadrature points)

68

enumerator CEED_EVAL_INTERP
Interpolate from nodes to quadrature points.

enumerator CEED_EVAL_GRAD
Evaluate gradients at quadrature points from input in a nodal basis.

enumerator CEED_EVAL_DIV
Evaluate divergence at quadrature points from input in a nodal basis.

enumerator CEED_EVAL_CURL
Evaluate curl at quadrature points from input in a nodal basis.

enumerator CEED_EVAL_WEIGHT
Using no input, evaluate quadrature weights on the reference element.

enum CeedQuadMode
Type of quadrature; also used for location of nodes.
Values:
enumerator CEED_GAUSS

Gauss-Legendre quadrature.
enumerator CEED_GAUSS_LOBATTO

Gauss-Legendre-Lobatto quadrature.
enum CeedElemTopology

Type of basis shape to create non-tensor H1 element basis.
Dimension can be extracted with bitwise AND (CeedElemTopology & 2**(dim + 2)) == TRUE
Values:
enumerator CEED_LINE

Line.
enumerator CEED_TRIANGLE

Triangle - 2D shape.
enumerator CEED_QUAD

Quadralateral - 2D shape.
enumerator CEED_TET

Tetrahedron - 3D shape.
enumerator CEED_PYRAMID

Pyramid - 3D shape.
enumerator CEED_PRISM

Prism - 3D shape.
enumerator CEED_HEX

Hexehedron - 3D shape.

69

5.1.5 CeedQFunction

QFunctions represent the spatial terms of the point-wise functions describing the physics at the quadrature
points.

5.1.5.1 Resolution/space-independent weak forms and quadrature-based opera-
tions

typedef struct CeedQFunction_private *CeedQFunction
Handle for object describing functions evaluated independently at quadrature points.

typedef struct CeedQFunctionContext_private *CeedQFunctionContext
Handle for object describing context data for CeedQFunctions.

const CeedQFunction CEED_QFUNCTION_NONE = &ceed_qfunction_none
int CeedQFunctionCreateInterior(Ceed ceed, CeedInt vlength, CeedQFunctionUser f, const char

*source, CeedQFunction *qf)
Create a CeedQFunction for evaluating interior (volumetric) terms.
See Public API for CeedQFunction for details on the call-back function f’s arguments.
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedQFunction will be created
• vlength: Vector length. Caller must ensure that number of quadrature points is a multiple

of vlength.
• f: Function pointer to evaluate action at quadrature points. See Public API for CeedQFunc-

tion.
• source: Absolute path to source of QFunction, “\abs_path\file.h:function_name”. For sup-

port across all backends, this source must only contain constructs supported by C99, C++11,
and CUDA.

• [out] qf: Address of the variable where the newly created CeedQFunction will be stored
User Functions

int CeedQFunctionCreateInteriorByName(Ceed ceed, const char *name, CeedQFunction *qf)
Create a CeedQFunction for evaluating interior (volumetric) terms by name.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedQFunction will be created
• name: Name of QFunction to use from gallery
• [out] qf: Address of the variable where the newly created CeedQFunction will be stored

int CeedQFunctionCreateIdentity(Ceed ceed, CeedInt size, CeedEvalMode inmode, CeedEvalMode
outmode, CeedQFunction *qf)

Create an identity CeedQFunction.
Inputs are written into outputs in the order given. This is useful for CeedOperators that can be repre-
sented with only the action of a CeedRestriction and CeedBasis, such as restriction and prolongation

70

operators for p-multigrid. Backends may optimize CeedOperators with this CeedQFunction to avoid
the copy of input data to output fields by using the same memory location for both.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedQFunction will be created
• [in] size: Size of the qfunction fields
• [in] inmode: CeedEvalMode for input to CeedQFunction
• [in] outmode: CeedEvalMode for output to CeedQFunction
• [out] qf: Address of the variable where the newly created CeedQFunction will be stored

int CeedQFunctionAddInput(CeedQFunction qf, const char *fieldname, CeedInt size, CeedEvalMode
emode)

Add a CeedQFunction input.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• fieldname: Name of QFunction field
• size: Size of QFunction field, (ncomp * dim) for CEED_EVAL_GRAD or (ncomp * 1) for

CEED_EVAL_NONE and CEED_EVAL_INTERP
• emode: CEED_EVAL_NONE to use values directly, CEED_EVAL_INTERP to use interpolated

values, CEED_EVAL_GRAD to use gradients.
int CeedQFunctionAddOutput(CeedQFunction qf, const char *fieldname, CeedInt size, CeedEvalMode

emode)
Add a CeedQFunction output.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• fieldname: Name of QFunction field
• size: Size of QFunction field, (ncomp * dim) for CEED_EVAL_GRAD or (ncomp * 1) for

CEED_EVAL_NONE and CEED_EVAL_INTERP
• emode: CEED_EVAL_NONE to use values directly, CEED_EVAL_INTERP to use interpolated

values, CEED_EVAL_GRAD to use gradients.
int CeedQFunctionSetContext(CeedQFunction qf, CeedQFunctionContext ctx)

Set global context for a CeedQFunction.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction

71

• ctx: Context data to set
int CeedQFunctionView(CeedQFunction qf, FILE *stream)

View a CeedQFunction.
User Functions
Return Error code: 0 - success, otherwise - failure
Parameters

• [in] qf: CeedQFunction to view
• [in] stream: Stream to write; typically stdout/stderr or a file

int CeedQFunctionApply(CeedQFunction qf, CeedInt Q, CeedVector *u, CeedVector *v)
Apply the action of a CeedQFunction.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• Q: Number of quadrature points
• [in] u: Array of input CeedVectors
• [out] v: Array of output CeedVectors

int CeedQFunctionDestroy(CeedQFunction *qf)
Destroy a CeedQFunction.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction to destroy
int CeedQFunctionContextCreate(Ceed ceed, CeedQFunctionContext *ctx)

Create a CeedQFunctionContext for storing CeedQFunction user context data.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedQFunctionContext will be created
• [out] ctx: Address of the variable where the newly created CeedQFunctionContext will

be stored
int CeedQFunctionContextSetData(CeedQFunctionContext ctx, CeedMemType mtype, CeedCopy-

Mode cmode, size_t size, void *data)
Set the data used by a CeedQFunctionContext, freeing any previously allocated data if applicable.
The backend may copy values to a different memtype, such as during CeedQFunctionApply(). See also
CeedQFunctionContextTakeData().
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

72

• ctx: CeedQFunctionContext
• mtype: Memory type of the data being passed
• cmode: Copy mode for the data
• data: Data to be used

int CeedQFunctionContextGetData(CeedQFunctionContext ctx, CeedMemType mtype, void *data)
Get read/write access to a CeedQFunctionContext via the specified memory type.
Restore access with CeedQFunctionContextRestoreData().
User Functions
Note The CeedQFunctionContextGetData() and CeedQFunctionContextRestoreData() functions provide

access to array pointers in the desired memory space. Pairing get/restore allows the Context to
track access.

Return An error code: 0 - success, otherwise - failure
Parameters

• ctx: CeedQFunctionContext to access
• mtype: Memory type on which to access the data. If the backend uses a different memory

type, this will perform a copy.
• [out] data: Data on memory type mtype

int CeedQFunctionContextRestoreData(CeedQFunctionContext ctx, void *data)
Restore data obtained using CeedQFunctionContextGetData()
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ctx: CeedQFunctionContext to restore
• data: Data to restore

int CeedQFunctionContextView(CeedQFunctionContext ctx, FILE *stream)
View a CeedQFunctionContext.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] ctx: CeedQFunctionContext to view
• [in] stream: Filestream to write to

int CeedQFunctionContextDestroy(CeedQFunctionContext *ctx)
Destroy a CeedQFunctionContext.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ctx: CeedQFunctionContext to destroy

73

Macros

CEED_QFUNCTION(name)
This macro populates the correct function annotations for User QFunction source for code generation
backends or populates default values for CPU backends.

CEED_Q_VLA
Using VLA syntax to reshape User QFunction inputs and outputs can make user code more readable.
VLA is a C99 feature that is not supported by the C++ dialect used by CUDA. This macro allows users
to use the VLA syntax with the CUDA backends.

5.1.6 CeedOperator

A CeedOperator defines the finite/spectral element operator associated to a QFunction. A CeedOperator con-
nects objects of the type CeedElemRestriction, CeedBasis, and CeedQFunction.

5.1.6.1 Discrete operators on user vectors

typedef struct CeedOperator_private *CeedOperator
Handle for object describing FE-type operators acting on vectors.
Given an element restriction E, basis evaluator B, and quadrature function f , a CeedOperator ex-
presses operations of the form $$ E^T B^T f(B E u) $$ acting on the vector u.

int CeedOperatorCreate(Ceed ceed, CeedQFunction qf, CeedQFunction dqf, CeedQFunction dqfT, Cee-
dOperator *op)

Create a CeedOperator and associate a CeedQFunction.
A CeedBasis and CeedElemRestriction can be associated with CeedQFunction fields with CeedOpera-
torSetField.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedOperator will be created
• qf: QFunction defining the action of the operator at quadrature points
• dqf: QFunction defining the action of the Jacobian of qf (or CEED_QFUNCTION_NONE)
• dqfT: QFunction defining the action of the transpose of the Jacobian of qf (or

CEED_QFUNCTION_NONE)
• [out] op: Address of the variable where the newly created CeedOperator will be stored

int CeedCompositeOperatorCreate(Ceed ceed, CeedOperator *op)
Create an operator that composes the action of several operators.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedOperator will be created

74

• [out] op: Address of the variable where the newly created Composite CeedOperator will
be stored

int CeedOperatorSetField(CeedOperator op, const char *fieldname, CeedElemRestriction r, CeedBa-
sis b, CeedVector v)

Provide a field to a CeedOperator for use by its CeedQFunction.
This function is used to specify both active and passive fields to a CeedOperator. For passive fields, a
vector

• v must be provided. Passive fields can inputs or outputs (updated in-place when operator is
applied).

Active fields must be specified using this function, but their data (in a CeedVector) is passed in Ceed-
OperatorApply(). There can be at most one active input and at most one active output.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator on which to provide the field
• fieldname: Name of the field (to be matched with the name used by CeedQFunction)
• r: CeedElemRestriction
• b: CeedBasis in which the field resides or CEED_BASIS_COLLOCATED if collocated with

quadrature points
• v: CeedVector to be used by CeedOperator or CEED_VECTOR_ACTIVE if field is active or

CEED_VECTOR_NONE if using CEED_EVAL_WEIGHT in the QFunction
int CeedCompositeOperatorAddSub(CeedOperator compositeop, CeedOperator subop)

Add a sub-operator to a composite CeedOperator.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [out] compositeop: Composite CeedOperator
• subop: Sub-operator CeedOperator

int CeedOperatorLinearAssembleQFunction(CeedOperator op, CeedVector *assembled, CeedElem-
Restriction *rstr, CeedRequest *request)

Assemble a linear CeedQFunction associated with a CeedOperator.
This returns a CeedVector containing a matrix at each quadrature point providing the action of the
CeedQFunction associatedwith theCeedOperator. The vector ‘assembled’ is of shape [num_elements,
num_input_fields, num_output_fields, num_quad_points] and contains column-major matrices rep-
resenting the action of the CeedQFunction for a corresponding quadrature point on an element. Inputs
and outputs are in the order provided by the user when adding CeedOperator fields. For example, a
CeedQFunction with inputs ‘u’ and ‘gradu’ and outputs ‘gradv’ and ‘v’, provided in that order, would
result in an assembled QFunction that consists of (1 + dim) x (dim + 1) matrices at each quadrature
point acting on the input [u, du_0, du_1] and producing the output [dv_0, dv_1, v].
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

75

• op: CeedOperator to assemble CeedQFunction
• [out] assembled: CeedVector to store assembled CeedQFunction at quadrature points
• [out] rstr: CeedElemRestriction for CeedVector containing assembled CeedQFunction
• request: Address of CeedRequest for non-blocking completion, else

CEED_REQUEST_IMMEDIATE
int CeedOperatorLinearAssembleDiagonal(CeedOperator op, CeedVector assembled, CeedRequest

*request)
Assemble the diagonal of a square linear CeedOperator.
This overwrites a CeedVector with the diagonal of a linear CeedOperator.
Note: Currently only non-composite CeedOperators with a single field and composite CeedOperators
with single field sub-operators are supported.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator to assemble CeedQFunction
• [out] assembled: CeedVector to store assembled CeedOperator diagonal
• request: Address of CeedRequest for non-blocking completion, else

CEED_REQUEST_IMMEDIATE
int CeedOperatorLinearAssembleAddDiagonal(CeedOperator op, CeedVector assembled, Cee-

dRequest *request)
Assemble the diagonal of a square linear CeedOperator.
This sums into a CeedVector the diagonal of a linear CeedOperator.
Note: Currently only non-composite CeedOperators with a single field and composite CeedOperators
with single field sub-operators are supported.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator to assemble CeedQFunction
• [out] assembled: CeedVector to store assembled CeedOperator diagonal
• request: Address of CeedRequest for non-blocking completion, else

CEED_REQUEST_IMMEDIATE
int CeedOperatorLinearAssemblePointBlockDiagonal(CeedOperator op, CeedVector assem-

bled, CeedRequest *request)
Assemble the point block diagonal of a square linear CeedOperator.
This overwrites a CeedVector with the point block diagonal of a linear CeedOperator.
Note: Currently only non-composite CeedOperators with a single field and composite CeedOperators
with single field sub-operators are supported.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

76

• op: CeedOperator to assemble CeedQFunction
• [out] assembled: CeedVector to store assembled CeedOperator point block diagonal,

provided in row-major form with an ncomp * ncomp block at each node. The dimensions
of this vector are derived from the active vector for the CeedOperator. The array has shape
[nodes, component out, component in].

• request: Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

int CeedOperatorLinearAssembleAddPointBlockDiagonal(CeedOperator op, CeedVector as-
sembled, CeedRequest *request)

Assemble the point block diagonal of a square linear CeedOperator.
This sums into a CeedVector with the point block diagonal of a linear CeedOperator.
Note: Currently only non-composite CeedOperators with a single field and composite CeedOperators
with single field sub-operators are supported.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator to assemble CeedQFunction
• [out] assembled: CeedVector to store assembled CeedOperator point block diagonal,

provided in row-major form with an ncomp * ncomp block at each node. The dimensions
of this vector are derived from the active vector for the CeedOperator. The array has shape
[nodes, component out, component in].

• request: Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

int CeedOperatorMultigridLevelCreate(CeedOperator opFine, CeedVector PMultFine, CeedElem-
Restriction rstrCoarse, CeedBasis basisCoarse, CeedOper-
ator *opCoarse, CeedOperator *opProlong, CeedOperator
*opRestrict)

Create a multigrid coarse operator and level transfer operators for a CeedOperator, creating the pro-
longation basis from the fine and coarse grid interpolation.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] opFine: Fine grid operator
• [in] PMultFine: L-vector multiplicity in parallel gather/scatter
• [in] rstrCoarse: Coarse grid restriction
• [in] basisCoarse: Coarse grid active vector basis
• [out] opCoarse: Coarse grid operator
• [out] opProlong: Coarse to fine operator
• [out] opRestrict: Fine to coarse operator

77

int CeedOperatorMultigridLevelCreateTensorH1(CeedOperator opFine, CeedVector PMultFine,
CeedElemRestriction rstrCoarse, CeedBasis
basisCoarse, const CeedScalar *interpCtoF,
CeedOperator *opCoarse, CeedOperator *op-
Prolong, CeedOperator *opRestrict)

Create a multigrid coarse operator and level transfer operators for a CeedOperator with a tensor basis
for the active basis.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] opFine: Fine grid operator
• [in] PMultFine: L-vector multiplicity in parallel gather/scatter
• [in] rstrCoarse: Coarse grid restriction
• [in] basisCoarse: Coarse grid active vector basis
• [in] interpCtoF: Matrix for coarse to fine interpolation
• [out] opCoarse: Coarse grid operator
• [out] opProlong: Coarse to fine operator
• [out] opRestrict: Fine to coarse operator

int CeedOperatorMultigridLevelCreateH1(CeedOperator opFine, CeedVector PMultFine,
CeedElemRestriction rstrCoarse, CeedBasis basis-
Coarse, const CeedScalar *interpCtoF, CeedOperator
*opCoarse, CeedOperator *opProlong, CeedOperator
*opRestrict)

Create a multigrid coarse operator and level transfer operators for a CeedOperator with a non-tensor
basis for the active vector.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] opFine: Fine grid operator
• [in] PMultFine: L-vector multiplicity in parallel gather/scatter
• [in] rstrCoarse: Coarse grid restriction
• [in] basisCoarse: Coarse grid active vector basis
• [in] interpCtoF: Matrix for coarse to fine interpolation
• [out] opCoarse: Coarse grid operator
• [out] opProlong: Coarse to fine operator
• [out] opRestrict: Fine to coarse operator

int CeedOperatorCreateFDMElementInverse(CeedOperator op, CeedOperator *fdminv, Cee-
dRequest *request)

Build a FDM based approximate inverse for each element for a CeedOperator.
This returns a CeedOperator and CeedVector to apply a Fast Diagonalization Method based approxi-
mate inverse. This function obtains the simultaneous diagonalization for the 1D mass and Laplacian
operators, M = V^T V, K = V^T S V. The assembled QFunction is used to modify the eigenvalues

78

from simultaneous diagonalization and obtain an approximate inverse of the form V^T S^hat V. The
CeedOperator must be linear and non-composite. The associated CeedQFunction must therefore also
be linear.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator to create element inverses
• [out] fdminv: CeedOperator to apply the action of a FDM based inverse for each element
• request: Address of CeedRequest for non-blocking completion, else

CEED_REQUEST_IMMEDIATE
int CeedOperatorView(CeedOperator op, FILE *stream)

View a CeedOperator.
User Functions
Return Error code: 0 - success, otherwise - failure
Parameters

• [in] op: CeedOperator to view
• [in] stream: Stream to write; typically stdout/stderr or a file

int CeedOperatorApply(CeedOperator op, CeedVector in, CeedVector out, CeedRequest *request)
Apply CeedOperator to a vector.
This computes the action of the operator on the specified (active) input, yielding its (active) output.
All inputs and outputs must be specified using CeedOperatorSetField().
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator to apply
• [in] in: CeedVector containing input state orCEED_VECTOR_NONE if there are no active

inputs
• [out] out: CeedVector to store result of applying operator (must be distinct from in) or

CEED_VECTOR_NONE if there are no active outputs
• request: Address of CeedRequest for non-blocking completion, else

CEED_REQUEST_IMMEDIATE
int CeedOperatorApplyAdd(CeedOperator op, CeedVector in, CeedVector out, CeedRequest *request)

Apply CeedOperator to a vector and add result to output vector.
This computes the action of the operator on the specified (active) input, yielding its (active) output.
All inputs and outputs must be specified using CeedOperatorSetField().
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator to apply
• [in] in: CeedVector containing input state or NULL if there are no active inputs

79

• [out] out: CeedVector to sum in result of applying operator (must be distinct from in) or
NULL if there are no active outputs

• request: Address of CeedRequest for non-blocking completion, else
CEED_REQUEST_IMMEDIATE

int CeedOperatorDestroy(CeedOperator *op)
Destroy a CeedOperator.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator to destroy

5.2 Backend API

These functions are intended to be used by backend developers of libCEED and can generally be found in
ceed-backend.h.

5.2.1 Ceed

void CeedDebugImpl(const Ceed ceed, const char *format, ...)
Print Ceed debugging information.
Backend Developer Functions
Return None
Parameters

• ceed: Ceed context
• format: Printing format

void CeedDebugImpl256(const Ceed ceed, const unsigned char color, const char *format, ...)
Print Ceed debugging information in color.
Backend Developer Functions
Return None
Parameters

• ceed: Ceed context
• color: Color to print
• format: Printing format

int CeedMallocArray(size_t n, size_t unit, void *p)
Allocate an array on the host; use CeedMalloc()
Memory usage can be tracked by the library. This ensures sufficient alignment for vectorization and
should be used for large allocations.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
See CeedFree()

80

Parameters
• n: Number of units to allocate
• unit: Size of each unit
• p: Address of pointer to hold the result.

int CeedCallocArray(size_t n, size_t unit, void *p)
Allocate a cleared (zeroed) array on the host; use CeedCalloc()
Memory usage can be tracked by the library.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
See CeedFree()
Parameters

• n: Number of units to allocate
• unit: Size of each unit
• p: Address of pointer to hold the result.

int CeedReallocArray(size_t n, size_t unit, void *p)
Reallocate an array on the host; use CeedRealloc()
Memory usage can be tracked by the library.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
See CeedFree()
Parameters

• n: Number of units to allocate
• unit: Size of each unit
• p: Address of pointer to hold the result.

int CeedFree(void *p)
Free memory allocated using CeedMalloc() or CeedCalloc()

Parameters
• p: address of pointer to memory. This argument is of type void* to avoid needing a cast, but

is the address of the pointer (which is zeroed) rather than the pointer.

int CeedRegister(const char *prefix, int (*init))const char*, Ceed
, unsigned int priorityRegister a Ceed backend.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• prefix: Prefix of resources for this backend to respond to. For example, the reference back-
end responds to “/cpu/self”.

• init: Initialization function called by CeedInit() when the backend is selected to drive the
requested resource.

81

• priority: Integer priority. Lower values are preferred in case the resource requested by
CeedInit() has non-unique best prefix match.

int CeedIsDebug(Ceed ceed, bool *isDebug)
Return debugging status flag.
Bcakend
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context to get debugging flag
• isDebug: Variable to store debugging flag

int CeedGetParent(Ceed ceed, Ceed *parent)
Retrieve a parent Ceed context.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context to retrieve parent of
• [out] parent: Address to save the parent to

int CeedGetDelegate(Ceed ceed, Ceed *delegate)
Retrieve a delegate Ceed context.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context to retrieve delegate of
• [out] delegate: Address to save the delegate to

int CeedSetDelegate(Ceed ceed, Ceed delegate)
Set a delegate Ceed context.
This function allows a Ceed context to set a delegate Ceed context. All backend implementations
default to the delegate Ceed context, unless overridden.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context to set delegate of
• [out] delegate: Address to set the delegate to

int CeedGetObjectDelegate(Ceed ceed, Ceed *delegate, const char *objname)
Retrieve a delegate Ceed context for a specific object type.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context to retrieve delegate of

82

• [out] delegate: Address to save the delegate to
• [in] objname: Name of the object type to retrieve delegate for

int CeedSetObjectDelegate(Ceed ceed, Ceed delegate, const char *objname)
Set a delegate Ceed context for a specific object type.
This function allows a Ceed context to set a delegate Ceed context for a given type of Ceed object.
All backend implementations default to the delegate Ceed context for this object. For example, Ceed-
SetObjectDelegate(ceed, refceed, “Basis”) uses refceed implementations for all CeedBasis backend
functions.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context to set delegate of
• [out] delegate: Address to set the delegate to
• [in] objname: Name of the object type to set delegate for

int CeedGetOperatorFallbackResource(Ceed ceed, const char **resource)
Get the fallback resource for CeedOperators.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context
• [out] resource: Variable to store fallback resource

int CeedSetOperatorFallbackResource(Ceed ceed, const char *resource)
Set the fallback resource for CeedOperators.
The current resource, if any, is freed by calling this function. This string is freed upon the destruction
of the Ceed context.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [out] ceed: Ceed context
• resource: Fallback resource to set

int CeedGetOperatorFallbackParentCeed(Ceed ceed, Ceed *parent)
Get the parent Ceed context associated with a fallback Ceed context for a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context
• [out] parent: Variable to store parent Ceed context

83

int CeedSetDeterministic(Ceed ceed, bool isDeterministic)
Flag Ceed context as deterministic.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed to flag as deterministic
int CeedSetBackendFunction(Ceed ceed, const char *type, void *object, const char *fname, int

(*f))
Set a backend function.
This function is used for a backend to set the function associated with the Ceed objects. For example,
CeedSetBackendFunction(ceed, “Ceed”, ceed, “VectorCreate”, BackendVectorCreate) sets the back-
end implementation of ‘CeedVectorCreate’ and CeedSetBackendFunction(ceed, “Basis”, basis, “Ap-
ply”, BackendBasisApply) sets the backend implementation of ‘CeedBasisApply’. Note, the prefix
‘Ceed’ is not required for the object type (“Basis” vs “CeedBasis”).
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context for error handling
• type: Type of Ceed object to set function for
• [out] object: Ceed object to set function for
• fname: Name of function to set
• f: Function to set

int CeedGetData(Ceed ceed, void *data)
Retrieve backend data for a Ceed context.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context to retrieve data of
• [out] data: Address to save data to

int CeedSetData(Ceed ceed, void *data)
Set backend data for a Ceed context.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: Ceed context to set data of
• data: Address of data to set

84

5.2.2 CeedVector

int CeedVectorGetCeed(CeedVector vec, Ceed *ceed)
Get the Ceed associated with a CeedVector.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector to retrieve state
• [out] ceed: Variable to store ceed

int CeedVectorGetState(CeedVector vec, uint64_t *state)
Get the state of a CeedVector.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector to retrieve state
• [out] state: Variable to store state

int CeedVectorAddReference(CeedVector vec)
Add a reference to a CeedVector.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [out] vec: CeedVector to increment reference counter
int CeedVectorGetData(CeedVector vec, void *data)

Get the backend data of a CeedVector.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• vec: CeedVector to retrieve state
• [out] data: Variable to store data

int CeedVectorSetData(CeedVector vec, void *data)
Set the backend data of a CeedVector.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [out] vec: CeedVector to retrieve state
• data: Data to set

85

5.2.3 CeedElemRestriction

int CeedElemRestrictionGetCeed(CeedElemRestriction rstr, Ceed *ceed)
Get the Ceed associated with a CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] ceed: Variable to store Ceed

int CeedElemRestrictionGetStrides(CeedElemRestriction rstr, CeedInt (*strides)[3])
Get the strides of a strided CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] strides: Variable to store strides array

int CeedElemRestrictionGetOffsets(CeedElemRestriction rstr, CeedMemType mtype, const
CeedInt **offsets)

Get read-only access to a CeedElemRestriction offsets array by memtype.
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction to retrieve offsets
• mtype: Memory type on which to access the array. If the backend uses a different memory

type, this will perform a copy (possibly cached).
• [out] offsets: Array on memory type mtype

int CeedElemRestrictionRestoreOffsets(CeedElemRestriction rstr, const CeedInt **offsets)
Restore an offsets array obtained using CeedElemRestrictionGetOffsets()
User Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction to restore
• offsets: Array of offset data

int CeedElemRestrictionIsStrided(CeedElemRestriction rstr, bool *isstrided)
Get the strided status of a CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction

86

• [out] isstrided: Variable to store strided status, 1 if strided else 0
int CeedElemRestrictionHasBackendStrides(CeedElemRestriction rstr, bool *hasbackend-

strides)
Get the backend stride status of a CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] status: Variable to store stride status

int CeedElemRestrictionGetELayout(CeedElemRestriction rstr, CeedInt (*layout)[3])
Get the E-vector layout of a CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] layout: Variable to store layout array, stored as [nodes, components, elements]. The

data for node i, component j, element k in the E-vector is given by i*layout[0] + j*layout[1]
+ k*layout[2]

int CeedElemRestrictionSetELayout(CeedElemRestriction rstr, CeedInt layout[3])
Set the E-vector layout of a CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• layout: Variable to containing layout array, stored as [nodes, components, elements]. The

data for node i, component j, element k in the E-vector is given by i*layout[0] + j*layout[1]
+ k*layout[2]

int CeedElemRestrictionGetData(CeedElemRestriction rstr, void *data)
Get the backend data of a CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• rstr: CeedElemRestriction
• [out] data: Variable to store data

int CeedElemRestrictionSetData(CeedElemRestriction rstr, void *data)
Set the backend data of a CeedElemRestriction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [out] rstr: CeedElemRestriction

87

• data: Data to set

5.2.4 CeedBasis

int CeedBasisGetCollocatedGrad(CeedBasis basis, CeedScalar *collograd1d)
Return collocated grad matrix.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] collograd1d: Row-major (Q1d * Q1d)matrix expressing derivatives of basis func-

tions at quadrature points
int CeedBasisGetCeed(CeedBasis basis, Ceed *ceed)

Get Ceed associated with a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] ceed: Variable to store Ceed

int CeedBasisIsTensor(CeedBasis basis, bool *istensor)
Get tensor status for given CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] istensor: Variable to store tensor status

int CeedBasisGetData(CeedBasis basis, void *data)
Get backend data of a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] data: Variable to store data

int CeedBasisSetData(CeedBasis basis, void *data)
Set backend data of a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [out] basis: CeedBasis

88

• data: Data to set
int CeedBasisGetTopologyDimension(CeedElemTopology topo, CeedInt *dim)

Get dimension for given CeedElemTopology.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• topo: CeedElemTopology
• [out] dim: Variable to store dimension of topology

int CeedBasisGetTensorContract(CeedBasis basis, CeedTensorContract *contract)
Get CeedTensorContract of a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• basis: CeedBasis
• [out] contract: Variable to store CeedTensorContract

int CeedBasisSetTensorContract(CeedBasis basis, CeedTensorContract *contract)
Set CeedTensorContract of a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [out] basis: CeedBasis
• contract: CeedTensorContract to set

int CeedMatrixMultiply(Ceed ceed, const CeedScalar *matA, const CeedScalar *matB, CeedScalar
*matC, CeedInt m, CeedInt n, CeedInt kk)

Return a reference implementation of matrix multiplication C = A B.
Note, this is a reference implementation for CPU CeedScalar pointers that is not intended for high
performance.
Utility Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed context for error handling
• [in] matA: Row-major matrix A
• [in] matB: Row-major matrix B
• [out] matC: Row-major output matrix C
• m: Number of rows of C
• n: Number of columns of C
• kk: Number of columns of A/rows of B

89

int CeedTensorContractCreate(Ceed ceed, CeedBasis basis, CeedTensorContract *contract)
Create a CeedTensorContract object for a CeedBasis.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ceed: A Ceed object where the CeedTensorContract will be created
• basis: CeedBasis for which the tensor contraction will be used
• [out] contract: Address of the variable where the newly created CeedTensorContract

will be stored.
int CeedTensorContractApply(CeedTensorContract contract,CeedInt A,CeedInt B,CeedInt C,Ceed-

Int J, const CeedScalar *restrict t, CeedTransposeMode tmode,
const CeedInt add, const CeedScalar *restrict u, CeedScalar
*restrict v)

Apply tensor contraction.
Contracts on the middle index NOTRANSPOSE: v_ajc = t_jb u_abc TRANSPOSE: v_ajc = t_bj u_abc
If add != 0, “=” is replaced by “+=”
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• contract: CeedTensorContract to use
• A: First index of u, v
• B: Middle index of u, one index of t
• C: Last index of u, v
• J: Middle index of v, one index of t
• [in] t: Tensor array to contract against
• tmode: Transpose mode for t, CEED_NOTRANSPOSE for t_jb CEED_TRANSPOSE for t_bj
• add: Add mode
• [in] u: Input array
• [out] v: Output array

int CeedTensorContractGetCeed(CeedTensorContract contract, Ceed *ceed)
Get Ceed associated with a CeedTensorContract.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• contract: CeedTensorContract
• [out] ceed: Variable to store Ceed

int CeedTensorContractGetData(CeedTensorContract contract, void *data)
Get backend data of a CeedTensorContract.
Backend Developer Functions

90

Return An error code: 0 - success, otherwise - failure
Parameters

• contract: CeedTensorContract
• [out] data: Variable to store data

int CeedTensorContractSetData(CeedTensorContract contract, void *data)
Set backend data of a CeedTensorContract.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [out] contract: CeedTensorContract
• data: Data to set

int CeedTensorContractDestroy(CeedTensorContract *contract)
Destroy a CeedTensorContract.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• contract: CeedTensorContract to destroy

5.2.5 CeedQFunction

typedef struct CeedQFunctionField_private *CeedQFunctionField
Handle for object describing CeedQFunction fields.

int CeedQFunctionGetCeed(CeedQFunction qf, Ceed *ceed)
Get the Ceed associated with a CeedQFunction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• [out] ceed: Variable to store Ceed

int CeedQFunctionGetVectorLength(CeedQFunction qf, CeedInt *vlength)
Get the vector length of a CeedQFunction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• [out] vlength: Variable to store vector length

int CeedQFunctionGetNumArgs(CeedQFunction qf, CeedInt *numinput, CeedInt *numoutput)
Get the number of inputs and outputs to a CeedQFunction.
Backend Developer Functions

91

Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• [out] numinput: Variable to store number of input fields
• [out] numoutput: Variable to store number of output fields

int CeedQFunctionGetSourcePath(CeedQFunction qf, char **source)
Get the source path string for a CeedQFunction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• [out] source: Variable to store source path string

int CeedQFunctionGetUserFunction(CeedQFunction qf, CeedQFunctionUser *f)
Get the User Function for a CeedQFunction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• [out] f: Variable to store user function

int CeedQFunctionGetContext(CeedQFunction qf, CeedQFunctionContext *ctx)
Get global context for a CeedQFunction.
Note: For QFunctions from the Fortran interface, this function will return the Fortran context CeedQ-
FunctionContext.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• [out] ctx: Variable to store CeedQFunctionContext

int CeedQFunctionGetInnerContext(CeedQFunction qf, CeedQFunctionContext *ctx)
Get true user context for a CeedQFunction Note: For all QFunctions this function will return the user
CeedQFunctionContext and not interface context CeedQFunctionContext, if any such object exists.

Return An error code: 0 - success, otherwise - failure Backend Developer Functions
Parameters

• qf: CeedQFunction
• [out] ctx: Variable to store CeedQFunctionContext

int CeedQFunctionIsIdentity(CeedQFunction qf, bool *isidentity)
Determine if QFunction is identity.
Backend Developer Functions

92

Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• [out] isidentity: Variable to store identity status

int CeedQFunctionGetData(CeedQFunction qf, void *data)
Get backend data of a CeedQFunction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• [out] data: Variable to store data

int CeedQFunctionSetData(CeedQFunction qf, void *data)
Set backend data of a CeedQFunction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [out] qf: CeedQFunction
• data: Data to set

int CeedQFunctionGetFields(CeedQFunction qf, CeedQFunctionField **inputfields, CeedQFunction-
Field **outputfields)

Get the CeedQFunctionFields of a CeedQFunction.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• [out] inputfields: Variable to store inputfields
• [out] outputfields: Variable to store outputfields

int CeedQFunctionFieldGetName(CeedQFunctionField qffield, char **fieldname)
Get the name of a CeedQFunctionField.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qffield: CeedQFunctionField
• [out] fieldname: Variable to store the field name

int CeedQFunctionFieldGetSize(CeedQFunctionField qffield, CeedInt *size)
Get the number of components of a CeedQFunctionField.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure

93

Parameters
• qffield: CeedQFunctionField
• [out] size: Variable to store the size of the field

int CeedQFunctionFieldGetEvalMode(CeedQFunctionField qffield, CeedEvalMode *emode)
Get the CeedEvalMode of a CeedQFunctionField.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qffield: CeedQFunctionField
• [out] emode: Variable to store the field evaluation mode

int CeedQFunctionContextGetCeed(CeedQFunctionContext ctx, Ceed *ceed)
Get the Ceed associated with a CeedQFunctionContext.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ctx: CeedQFunctionContext
• [out] ceed: Variable to store Ceed

int CeedQFunctionContextGetState(CeedQFunctionContext ctx, uint64_t *state)
Get the state of a CeedQFunctionContext.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ctx: CeedQFunctionContext to retrieve state
• [out] state: Variable to store state

int CeedQFunctionContextGetContextSize(CeedQFunctionContext ctx, size_t *ctxsize)
Get data size for a Context.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ctx: CeedQFunctionContext
• [out] ctxsize: Variable to store size of context data values

int CeedQFunctionContextGetBackendData(CeedQFunctionContext ctx, void *data)
Get backend data of a CeedQFunctionContext.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• ctx: CeedQFunctionContext
• [out] data: Variable to store data

94

int CeedQFunctionContextSetBackendData(CeedQFunctionContext ctx, void *data)
Set backend data of a CeedQFunctionContext.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [out] ctx: CeedQFunctionContext
• data: Data to set

5.2.6 CeedOperator

typedef struct CeedOperatorField_private *CeedOperatorField
Handle for object describing CeedOperator fields.

int CeedOperatorGetCeed(CeedOperator op, Ceed *ceed)
Get the Ceed associated with a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator
• [out] ceed: Variable to store Ceed

int CeedOperatorGetNumElements(CeedOperator op, CeedInt *numelem)
Get the number of elements associated with a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator
• [out] numelem: Variable to store number of elements

int CeedOperatorGetNumQuadraturePoints(CeedOperator op, CeedInt *numqpts)
Get the number of quadrature points associated with a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator
• [out] numqpts: Variable to store vector number of quadrature points

int CeedOperatorGetNumArgs(CeedOperator op, CeedInt *numargs)
Get the number of arguments associated with a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator

95

• [out] numargs: Variable to store vector number of arguments
int CeedOperatorIsSetupDone(CeedOperator op, bool *issetupdone)

Get the setup status of a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator
• [out] issetupdone: Variable to store setup status

int CeedOperatorGetQFunction(CeedOperator op, CeedQFunction *qf)
Get the QFunction associated with a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator
• [out] qf: Variable to store QFunction

int CeedOperatorIsComposite(CeedOperator op, bool *iscomposite)
Get a boolean value indicating if the CeedOperator is composite.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator
• [out] iscomposite: Variable to store composite status

int CeedOperatorGetNumSub(CeedOperator op, CeedInt *numsub)
Get the number of suboperators associated with a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator
• [out] numsub: Variable to store number of suboperators

int CeedOperatorGetSubList(CeedOperator op, CeedOperator **suboperators)
Get the list of suboperators associated with a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator
• [out] suboperators: Variable to store list of suboperators

96

int CeedOperatorGetData(CeedOperator op, void *data)
Get the backend data of a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator
• [out] data: Variable to store data

int CeedOperatorSetData(CeedOperator op, void *data)
Set the backend data of a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [out] op: CeedOperator
• data: Data to set

int CeedOperatorSetSetupDone(CeedOperator op)
Set the setup flag of a CeedOperator to True.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator
int CeedOperatorGetFields(CeedOperator op, CeedOperatorField **inputfields, CeedOperatorField

**outputfields)
Get the CeedOperatorFields of a CeedOperator.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator
• [out] inputfields: Variable to store inputfields
• [out] outputfields: Variable to store outputfields

int CeedOperatorFieldGetElemRestriction(CeedOperatorField opfield, CeedElemRestriction
*rstr)

Get the CeedElemRestriction of a CeedOperatorField.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• opfield: CeedOperatorField
• [out] rstr: Variable to store CeedElemRestriction

97

int CeedOperatorFieldGetBasis(CeedOperatorField opfield, CeedBasis *basis)
Get the CeedBasis of a CeedOperatorField.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• opfield: CeedOperatorField
• [out] basis: Variable to store CeedBasis

int CeedOperatorFieldGetVector(CeedOperatorField opfield, CeedVector *vec)
Get the CeedVector of a CeedOperatorField.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• opfield: CeedOperatorField
• [out] vec: Variable to store CeedVector

5.3 Internal Functions

These functions are intended to be used by library developers of libCEED and can generally be found in
ceed-impl.h.

5.3.1 Ceed

5.3.2 CeedVector

5.3.3 CeedElemRestriction

int CeedPermutePadOffsets(const CeedInt *offsets, CeedInt *blkoffsets, CeedInt nblk, CeedInt nelem,
CeedInt blksize, CeedInt elemsize)

Permute and pad offsets for a blocked restriction.
Utility Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• offsets: Array of shape [nelem, elemsize]. Row i holds the ordered list of the offsets (into
the input CeedVector) for the unknowns corresponding to element i, where 0 <= i < nelem.
All offsets must be in the range [0, lsize - 1].

• blkoffsets: Array of permuted and padded offsets of shape [nblk, elemsize, blksize].
• nblk: Number of blocks
• nelem: Number of elements
• blksize: Number of elements in a block
• elemsize: Size of each element

98

5.3.4 CeedBasis

int CeedHouseholderReflect(CeedScalar *A, const CeedScalar *v, CeedScalar b, CeedInt m, CeedInt
n, CeedInt row, CeedInt col)

Compute Householder reflection.
Computes A = (I - b v v^T) A where A is an mxn matrix indexed as A[i*row + j*col]
Library Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [inout] A: Matrix to apply Householder reflection to, in place
• v: Householder vector
• b: Scaling factor
• m: Number of rows in A
• n: Number of columns in A
• row: Row stride
• col: Col stride

int CeedHouseholderApplyQ(CeedScalar *A, const CeedScalar *Q, const CeedScalar *tau, Ceed-
TransposeMode tmode, CeedInt m, CeedInt n, CeedInt k, CeedInt row,
CeedInt col)

Apply Householder Q matrix.
Compute A = Q A where Q is mxm and A is mxn.
Library Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [inout] A: Matrix to apply Householder Q to, in place
• Q: Householder Q matrix
• tau: Householder scaling factors
• tmode: Transpose mode for application
• m: Number of rows in A
• n: Number of columns in A
• k: Number of elementary reflectors in Q, k<m
• row: Row stride in A
• col: Col stride in A

int CeedGivensRotation(CeedScalar *A,CeedScalar c,CeedScalar s,CeedTransposeMode tmode,CeedInt
i, CeedInt k, CeedInt m, CeedInt n)

Compute Givens rotation.
Computes A = GA (or G^T A in transpose mode) where A is an mxn matrix indexed as A[i*n + j*m]
Library Developer Functions
Return An error code: 0 - success, otherwise - failure

99

Parameters
• [inout] A: Row major matrix to apply Givens rotation to, in place
• c: Cosine factor
• s: Sine factor
• tmode: CEED_NOTRANSPOSE to rotate the basis counter-clockwise, which has the effect of

rotating columns of A clockwise; CEED_TRANSPOSE for the opposite rotation
• i: First row/column to apply rotation
• k: Second row/column to apply rotation
• m: Number of rows in A
• n: Number of columns in A

int CeedScalarView(const char *name, const char *fpformat, CeedInt m, CeedInt n, const Ceed-
Scalar *a, FILE *stream)

View an array stored in a CeedBasis.
Library Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] name: Name of array
• [in] fpformat: Printing format
• [in] m: Number of rows in array
• [in] n: Number of columns in array
• [in] a: Array to be viewed
• [in] stream: Stream to view to, e.g., stdout

5.3.5 CeedQFunction

int CeedQFunctionRegister(const char *name, const char *source, CeedInt vlength, CeedQFunc-
tionUser f, int (*init))Ceed, const char*, CeedQFunction

Register a gallery QFunction.
Library Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• name: Name for this backend to respond to
• source: Absolute path to source ofQFunction, “\path\CEED_DIR\gallery\folder\file.h:function_name”
• vlength: Vector length. Caller must ensure that number of quadrature points is a multiple

of vlength.
• f: Function pointer to evaluate action at quadrature points. See Public API for CeedQFunc-

tion.
• init: Initialization function called by CeedQFunctionInit() when the QFunction is selected.

100

int CeedQFunctionFieldSet(CeedQFunctionField *f, const char *fieldname, CeedInt size, CeedE-
valMode emode)

Set a CeedQFunction field, used by CeedQFunctionAddInput/Output.
Library Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• f: CeedQFunctionField
• fieldname: Name of QFunction field
• size: Size of QFunction field, (ncomp * dim) for CEED_EVAL_GRAD or (ncomp * 1) for

CEED_EVAL_NONE, CEED_EVAL_INTERP, and CEED_EVAL_WEIGHT
• emode: CEED_EVAL_NONE to use values directly, CEED_EVAL_INTERP to use interpo-

lated values, CEED_EVAL_GRAD to use gradients, CEED_EVAL_WEIGHT to use quadrature
weights.

int CeedQFunctionFieldView(CeedQFunctionField field, CeedInt fieldnumber, bool in, FILE *stream)
View a field of a CeedQFunction.
Utility Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] field: QFunction field to view
• [in] fieldnumber: Number of field being viewed
• [in] in: true for input field, false for output
• [in] stream: Stream to view to, e.g., stdout

int CeedQFunctionSetFortranStatus(CeedQFunction qf, bool status)
Set flag to determine if Fortran interface is used.
Backend Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• qf: CeedQFunction
• status: Boolean value to set as Fortran status

5.3.6 CeedOperator

int CeedOperatorCreateFallback(CeedOperator op)
Duplicate a CeedOperator with a reference Ceed to fallback for advanced CeedOperator functionality.
Library Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• op: CeedOperator to create fallback for

101

int CeedOperatorCheckReady(Ceed ceed, CeedOperator op)
Check if a CeedOperator is ready to be used.
Library Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] ceed: Ceed object for error handling
• [in] op: CeedOperator to check

int CeedOperatorFieldView(CeedOperatorField field, CeedQFunctionField qffield, CeedInt fieldnumber,
bool sub, bool in, FILE *stream)

View a field of a CeedOperator.
Utility Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] field: Operator field to view
• [in] qffield: QFunction field (carries field name)
• [in] fieldnumber: Number of field being viewed
• [in] sub: true indicates sub-operator, which increases indentation; false for top-level op-

erator
• [in] in: true for an input field; false for output field
• [in] stream: Stream to view to, e.g., stdout

int CeedOperatorSingleView(CeedOperator op, bool sub, FILE *stream)
View a single CeedOperator.
Utility Functions
Return Error code: 0 - success, otherwise - failure
Parameters

• [in] op: CeedOperator to view
• [in] sub: Boolean flag for sub-operator
• [in] stream: Stream to write; typically stdout/stderr or a file

int CeedOperatorGetActiveBasis(CeedOperator op, CeedBasis *activeBasis)
Find the active vector basis for a CeedOperator.
@ ref Developer
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] op: CeedOperator to find active basis for
• [out] activeBasis: Basis for active input vector

int CeedOperatorMultigridLevel_Core(CeedOperator opFine, CeedVector PMultFine, CeedElem-
Restriction rstrCoarse, CeedBasis basisCoarse, CeedBasis
basisCtoF, CeedOperator *opCoarse, CeedOperator *opPro-
long, CeedOperator *opRestrict)

Common code for creating amultigrid coarse operator and level transfer operators for a CeedOperator.

102

Library Developer Functions
Return An error code: 0 - success, otherwise - failure
Parameters

• [in] opFine: Fine grid operator
• [in] PMultFine: L-vector multiplicity in parallel gather/scatter
• [in] rstrCoarse: Coarse grid restriction
• [in] basisCoarse: Coarse grid active vector basis
• [in] basisCtoF: Basis for coarse to fine interpolation
• [out] opCoarse: Coarse grid operator
• [out] opProlong: Coarse to fine operator
• [out] opRestrict: Fine to coarse operator

6 Developer Notes

6.1 Shape

Backends often manipulate tensors of dimension greater than 2. It is awkward to pass fully-specified multi-
dimensional arrays using C99 and certain operations will flatten/reshape the tensors for computational con-
venience. We frequently use comments to document shapes using a lexicographic ordering. For example,
the comment

// u has shape [dim, ncomp, Q, nelem]

means that it can be traversed as

for (d=0; d<dim; d++)
for (c=0; c<ncomp; c++)

for (q=0; q<Q; q++)
for (e=0; e<nelem; e++)

u[((d*ncomp + c)*Q + q)*nelem + e] = ...

This ordering is sometimes referred to as row-major or C-style. Note that flattening such as

// u has shape [dim, ncomp, Q*nelem]

and

// u has shape [dim*ncomp, Q, nelem]

are purely implicit – one just indexes the same array using the appropriate convention.

103

6.2 Internal Layouts

Ceed backends are free to use any E-vector and Q-vector data layout, to include never fully forming these
vectors, so long as the backend passes the t5** series tests and all examples. There are several common
layouts for L-vectors, E-vectors, and Q-vectors, detailed below:

• L-vector layouts
– L-vectors described by a CeedElemRestriction have a layout described by the offsets array and
compstride parameter. Data for node i, component j, element k can be found in the L-vector
at index offsets[i + k*elemsize] + j*compstride.

– L-vectors described by a strided CeedElemRestriction have a layout described by the strides
array. Data for node i, component j, element k can be found in the L-vector at index
i*strides[0] + j*strides[1] + k*strides[2].

• E-vector layouts
– If possible, backends should use CeedElemRestrictionSetELayout() to use the t2** tests.
If the backend uses a strided E-vector layout, then the data for node i, component j, element k
in the E-vector is given by i*layout[0] + j*layout[1] + k*layout[2].

– Backends may choose to use a non-strided E-vector layout; however, the t2** tests will not func-
tion correctly in this case and the tests will need to be whitelisted for the backend to pass the test
suite.

• Q-vector layouts
– When the size of a CeedQFunction field is greater than 1, data for quadrature point i component
j can be found in the Q-vector at index i + Q*j. Backends are free to provide the quadrature
points in any order.

– When the CeedQFunction field has emode CEED_EVAL_GRAD, data for quadrature point i, com-
ponent j, derivative k can be found in the Q-vector at index i + Q*j + Q*size*k.

– Note that backend developers must take special care to ensure that the data in theQ-vectors for a
fieldwith emode CEED_EVAL_NONE is properly orderedwhen the backend uses different layouts
for E-vectors and Q-vectors.

6.3 Backend Inheritance

There are three mechanisms by which a Ceed backend can inherit implementation from another Ceed back-
end. These options are set in the backend initialization routine.

1. Delegation - Developers may use CeedSetDelegate() to set a backend that will provide the imple-
mentation of any unimplemented Ceed objects.

2. Object delegation - Developers may use CeedSetObjectDelegate() to set a backend that will pro-
vide the implementation of a specific unimplemented Ceed object. Object delegation has higher prece-
dence than delegation.

3. Operator fallback - Developers may use CeedSetOperatorFallbackResource() to set a Ceed re-
source that will provide the implementation of unimplemented CeedOperator methods. A fallback
Ceed with this resource will only be instantiated if a method is called that is not implemented by the
parent Ceed. In order to use the fallback mechanism, the parent Ceed and fallback resource must use
compatible E-vector and Q-vector layouts.

104

6.4 Clang-tidy

Please check your code for common issues by running
make tidy

which uses the clang-tidy utility included in recent releases of Clang. This tool is much slower than
actual compilation (make -j8 parallelism helps). To run on a single file, use
make interface/ceed.c.tidy

for example. All issues reported by make tidy should be fixed.

7 libCEED: How to Contribute

Contributions to libCEED are encouraged.
Please make your commits well-organized and atomic, using git rebase --interactive as needed.
Check that tests (including “examples”) pass using make prove-all. If adding a new feature, please add
or extend a test so that your new feature is tested.
In typical development, every commit should compile, be covered by the test suite, and pass all tests. This
improves the efficiency of reviewing and facilitates use of git bisect.
Open an issue or RFC (request for comments) pull request to discuss any significant changes before investing
time. It is useful to create a WIP (work in progress) pull request for any long-running development so that
others can be aware of your work and help to avoid creating merge conflicts.
Write commit messages for a reviewer of your pull request and for a future developer (maybe you) that
bisects and finds that a bug was introduced in your commit. The assumptions that are clear in your mind
while committing are likely not in themind ofwhomever (possibly you) needs to understand it in the future.
Give credit where credit is due using tags such as Reported-by: Helpful User
<helpful@example.com> or Co-authored-by: Snippet Mentor <code.by@comment.com>.
Please use a real name and email for your author information (git config user.name and user.
email). If your author information or email becomes inconsistent (look at git shortlog -se), please
edit .mailmap to obtain your preferred name and email address.
When contributors make a major contribution and support it, their names are included in the automatically
generated user-manual documentation.
Please avoid “merging from upstream” (like merging ‘main’ into your feature branch) unless there is a
specific reason to do so, in which case you should explain why in the merge commit. Rationale from Junio
and Linus.
You can use make style to help conform to coding conventions of the project, but try to avoid mixing
whitespace or formatting changes with content changes (see atomicity above).
By submitting a pull request, you are affirming the following.

105

https://en.wikipedia.org/wiki/Atomic_commit#Atomic_commit_convention
https://git-scm.com/docs/git-bisect
https://help.github.com/en/github/committing-changes-to-your-project/creating-a-commit-with-multiple-authors#creating-co-authored-commits-on-the-command-line
https://lwn.net/Articles/328436/
https://gitster.livejournal.com/42247.html
http://yarchive.net/comp/linux/git_merges_from_upstream.html

7.1 Developer’s Certificate of Origin 1.1

By making a contribution to this project, I certify that:
(a) The contribution was created in whole or in part by me and I have the right to submit it under the open
source license indicated in the file; or
(b) The contribution is based upon previous work that, to the best of my knowledge, is covered under an
appropriate open source license and I have the right under that license to submit that work with modifica-
tions, whether created in whole or in part byme, under the same open source license (unless I am permitted
to submit under a different license), as indicated in the file; or
(c) The contribution was provided directly to me by some other person who certified (a), (b) or (c) and I
have not modified it.
(d) I understand and agree that this project and the contribution are public and that a record of the contribu-
tion (including all personal information I submit with it, including my sign-off) is maintained indefinitely
and may be redistributed consistent with this project or the open source license(s) involved.

7.2 Authorship

libCEED contains components authored by many individuals. It is important that contributors receive ap-
propriate recognition through informal and academically-recognized credit systems such as publications.
Status as a named author on the users manual and libCEED software publications will be granted for those
who

1. make significant contributions to libCEED (in implementation, documentation, conceptualization, re-
view, etc.) and

2. maintain and support those contributions.
Maintainers will do their best to notice when contributions reach this level and add your name to AUTHORS,
but please email or create an issue if you believe your contributions have met these criteria and haven’t yet
been acknowledged.
Authors of publications about libCEEDas awhole, includingDOI-bearing archives, shall offer co-authorship
to all individuals listed in the AUTHORS file. Authors of publications claiming specific libCEED contributions
shall evaluate those listed in AUTHORS and offer co-authorship to those who made significant intellectual
contributions to the work.
Note that there is no co-authorship expectation for those publishing about use of libCEED (versus creation
of new features in libCEED), but see the citing section and use your judgment regarding significance of
support/advice you may have received in developing your use case and interpreting results.

8 libCEED Code of Conduct

8.1 Our Pledge

We asmembers, contributors, and leaders pledge tomake participation in our community a harassment-free
experience for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex character-
istics, gender identity and expression, level of experience, education, socio-economic status, nationality,
personal appearance, race, religion, or sexual identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy
community.

106

https://libceed.readthedocs.io/en/latest/gettingstarted/#how-to-cite

8.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:
• Demonstrating empathy and kindness toward other people
• Being respectful of differing opinions, viewpoints, and experiences
• Giving and gracefully accepting constructive feedback
• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the

experience
• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:
• The use of sexualized language or imagery, and sexual attention or advances of any kind
• Trolling, insulting or derogatory comments, and personal or political attacks
• Public or private harassment
• Publishing others’ private information, such as a physical or email address, without their explicit per-

mission
• Other conduct which could reasonably be considered inappropriate in a professional setting

8.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and
will take appropriate and fair corrective action in response to any behavior that they deem inappropriate,
threatening, offensive, or harmful.
Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code,
wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, and will communi-
cate reasons for moderation decisions when appropriate.

8.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially
representing the community in public spaces. Examples of representing our community include using an
official e-mail address, posting via an official social media account, or acting as an appointed representative
at an online or offline event.

8.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community
leaders responsible for enforcement at jed@jedbrown.org, valeria.barra@colorado.edu, or tzanio@llnl.gov.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the reporter of any incident.

107

8.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for
any action they deem in violation of this Code of Conduct:

8.6.1 1. Correction

Community Impact: Use of inappropriate language or other behavior deemedunprofessional or unwelcome
in the community.
Consequence: A private, written warning from community leaders, providing clarity around the nature of
the violation and an explanation ofwhy the behaviorwas inappropriate. Apublic apologymaybe requested.

8.6.2 2. Warning

Community Impact: A violation through a single incident or series of actions.
Consequence: A warning with consequences for continued behavior. No interaction with the people in-
volved, including unsolicited interaction with those enforcing the Code of Conduct, for a specified period
of time. This includes avoiding interactions in community spaces as well as external channels like social
media. Violating these terms may lead to a temporary or permanent ban.

8.6.3 3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate be-
havior.
Consequence: A temporary ban from any sort of interaction or public communication with the community
for a specified period of time. No public or private interaction with the people involved, including unso-
licited interaction with those enforcing the Code of Conduct, is allowed during this period. Violating these
terms may lead to a permanent ban.

8.6.4 4. Permanent Ban

Community Impact: Demonstrating a pattern of violation of community standards, including sustained
inappropriate behavior, harassment of an individual, or aggression toward or disparagement of classes of
individuals.
Consequence: A permanent ban from any sort of public interaction within the community.

8.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.
For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-
covenant.org/faq. Translations are available at https://www.contributor-covenant.org/translations.

108

https://www.contributor-covenant.org
https://github.com/mozilla/diversity

9 Changes/Release Notes

On this page we provide a summary of the main API changes, new features and examples for each release
of libCEED.

9.1 Current Main

The current main (formerly called master) branch contains bug fixes and interfaces changes.

9.1.1 Interface changes

9.1.2 New features

9.1.3 Performance improvements

9.1.4 Examples

9.2 v0.7 (Sep 29, 2020)

9.2.1 Interface changes

• Replace limited CeedInterlaceMode with more flexible component stride compstride in
CeedElemRestriction constructors. As a result, the indices parameter has been replaced with
offsets and the nnodes parameter has been replaced with lsize. These changes improve support
for mixed finite element methods.

• Replace various uses of Ceed*Get*Status with Ceed*Is* in the backend API to match common
nomenclature.

• ReplaceCeedOperatorAssembleLinearDiagonalwithCeedOperatorLinearAssembleDiagonal()
for clarity.

• Linear Operators can be assembled as point-block diagonal matrices with
CeedOperatorLinearAssemblePointBlockDiagonal(), provided in row-major form in a
ncomp by ncomp block per node.

• Diagonal assemble interface changed to accept aCeedVector instead of a pointer to aCeedVector to reduce
memory movement when interfacing with calling code.

• AddedCeedOperatorLinearAssembleAddDiagonal() andCeedOperatorLinearAssembleAddPointBlockDiagonal()
for improved future integration with codes such as MFEM that compose the action of CeedOperators
external to libCEED.

• Added CeedVectorTakeAray() to sync and remove libCEED read/write access to an allo-
cated array and pass ownership of the array to the caller. This function is recommended over
CeedVectorSyncArray() when the CeedVector has an array owned by the caller that was set
by CeedVectorSetArray().

• Added CeedQFunctionContext object to manage user QFunction context data and reduce copies
between device and host memory.

• AddedCeedOperatorMultigridLevelCreate(), CeedOperatorMultigridLevelCreateTensorH1(),
and CeedOperatorMultigridLevelCreateH1() to facilitate creation of multigrid prolongation,
restriction, and coarse grid operators using a common quadrature space.

109

9.2.2 New features

• New HIP backend: /gpu/hip/ref.
• CeedQFunction support for user “CUfunction“s in some backends

9.2.3 Performance improvements

• OCCA backend rebuilt to facilitate future performance enhancements.
• Petsc BPs suite improved to reduce noise due to multiple calls to mpiexec.

9.2.4 Examples

• Solid mechanics elasticity mini-app example updated with strain energy computation and more flexible
boundary conditions.

9.2.5 Deprecated backends

• The /gpu/cuda/reg backend has been removed, with its core features moved into /gpu/cuda/ref
and /gpu/cuda/shared.

9.3 v0.6 (Mar 29, 2020)

libCEED v0.6 contains numerous new features and examples, as well as expanded documentation in this
new website.

9.3.1 New features

• NewPython interface using CFFI provides a nearly 1-1 correspondencewith the C interface, plus some
convenience features. For instance, data stored in the CeedVector structure are available without
copy as numpy.ndarray. Short tutorials are provided in Binder.

• Linear QFunctions can be assembled as block-diagonal matrices (per quadrature
point, CeedOperatorAssembleLinearQFunction()) or to evaluate the diagonal
(CeedOperatorAssembleLinearDiagonal()). These operations are useful for preconditioning
ingredients and are used in the libCEED’s multigrid examples.

• The inverse of separable operators can be obtainedusingCeedOperatorCreateFDMElementInverse()
and applied with CeedOperatorApply(). This is a useful preconditioning ingredient, especially
for Laplacians and related operators.

• New functions: CeedVectorNorm(), CeedOperatorApplyAdd(), CeedQFunctionView(),
CeedOperatorView().

• Make public accessors for various attributes to facilitate writing composable code.
• New backend: /cpu/self/memcheck/serial.
• QFunctions using variable-length array (VLA) pointer constructs can be used with CUDA backends.

(Single source is coming soon for OCCA backends.)
• Fix some missing edge cases in CUDA backend.

110

https://libceed.readthedocs.io
https://libceed.readthedocs.io
https://cffi.readthedocs.io/
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://mybinder.org/v2/gh/CEED/libCEED/main?urlpath=lab/tree/examples/tutorials/

9.3.2 Performance Improvements

• MAGMA backend performance optimization and non-tensor bases.
• No-copy optimization in CeedOperatorApply().

9.3.3 Interface changes

• ReplaceCeedElemRestrictionCreateIdentity andCeedElemRestrictionCreateBlocked
with more flexible CeedElemRestrictionCreateStrided() and
CeedElemRestrictionCreateBlockedStrided().

• Add arguments to CeedQFunctionCreateIdentity().
• Replace ambiguous uses of CeedTransposeMode for L-vector identification with
CeedInterlaceMode. This is now an attribute of the CeedElemRestriction (see
CeedElemRestrictionCreate()) and no longer passed as lmode arguments to
CeedOperatorSetField() and CeedElemRestrictionApply().

9.3.4 Examples

libCEED-0.6 contains greatly expanded examples with new documentation. Notable additions include:
• Standalone Ex2-Surface (examples/ceed/ex2-surface): compute the area of a domain in 1, 2, and

3 dimensions by applying a Laplacian.
• PETSc Area (examples/petsc/area.c): computes surface area of domains (like the cube and

sphere) by direct integration on a surface mesh; demonstrates geometric dimension different from
topological dimension.

• PETSc Bakeoff problems and generalizations:
– examples/petsc/bpsraw.c (formerly bps.c): transparent CUDA support.
– examples/petsc/bps.c (formerly bpsdmplex.c): performance improvements and trans-
parent CUDA support.

– Bakeoff problems on the cubed-sphere (examples/petsc/bpssphere.c): generalizations of all
CEED BPs to the surface of the sphere; demonstrates geometric dimension different from topo-
logical dimension.

• Multigrid (examples/petsc/multigrid.c): new p-multigrid solver with algebraic multigrid
coarse solve.

• Compressible Navier-Stokes mini-app (examples/fluids/navierstokes.c; formerly examples/
navier-stokes): unstructured grid support (using PETSc’s DMPlex), implicit time integration,
SU/SUPG stabilization, free-slip boundary conditions, and quasi-2D computational domain support.

• Solid mechanics elasticity mini-app (examples/solids/elasticity.c): new solver for linear elas-
ticity, small-strain hyperelasticity, and globalized finite-strain hyperelasticity using p-multigrid with
algebraic multigrid coarse solve.

111

9.4 v0.5 (Sep 18, 2019)

For this release, several improvements were made. Two new CUDA backends were added to the family of
backends, of which, the new cuda-gen backend achieves state-of-the-art performance using single-source
CeedQFunction. From this release, users can define Q-Functions in a single source code independently of the
targeted backend with the aid of a new macro CEED QFUNCTION to support JIT (Just-In-Time) and CPU
compilation of the user providedCeedQFunction code. To allow a unified declaration, theCeedQFunctionAPI
has undergone a slight change: the QFunctionField parameter ncomp has been changed to size. This
change requires setting the previous value of ncomp to ncomp*dimwhen adding a QFunctionFieldwith
eval mode CEED EVAL GRAD.
Additionally, new CPU backends were included in this release, such as the /cpu/self/opt/* backends
(which are written in pure C and use partial E-vectors to improve performance) and the /cpu/self/ref/
memcheck backend (which relies upon the Valgrind Memcheck tool to help verify that user CeedQFunction
have no undefined values). This release also included various performance improvements, bug fixes, new
examples, and improved tests. Among these improvements, vectorized instructions for CeedQFunction code
compiled for CPUwere enhanced by usingCeedPragmaSIMD instead of CeedPragmaOMP, implementation
of a CeedQFunction gallery and identity Q-Functions were introduced, and the PETSc benchmark problems
were expanded to include unstructured meshes handling were. For this expansion, the prior version of
the PETSc BPs, which only included data associated with structured geometries, were renamed bpsraw,
and the new version of the BPs, which can handle data associated with any unstructured geometry, were
called bps. Additionally, other benchmark problems, namely BP2 and BP4 (the vector-valued versions of
BP1 and BP3, respectively), and BP5 and BP6 (the collocated versions—for which the quadrature points
are the same as the Gauss Lobatto nodes—of BP3 and BP4 respectively) were added to the PETSc examples.
Furthermoew, another standalone libCEED example, called ex2, which computes the surface area of a given
mesh was added to this release.
Backends available in this release:

CEED resource (-ceed) Backend
/cpu/self/ref/serial Serial reference implementation
/cpu/self/ref/blocked Blocked reference implementation
/cpu/self/ref/memcheck Memcheck backend, undefined value checks
/cpu/self/opt/serial Serial optimized C implementation
/cpu/self/opt/blocked Blocked optimized C implementation
/cpu/self/avx/serial Serial AVX implementation
/cpu/self/avx/blocked Blocked AVX implementation
/cpu/self/xsmm/serial Serial LIBXSMM implementation
/cpu/self/xsmm/blocked Blocked LIBXSMM implementation
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels
/ocl/occa OpenCL OCCA kernels
/gpu/cuda/ref Reference pure CUDA kernels
/gpu/cuda/reg Pure CUDA kernels using one thread per element
/gpu/cuda/shared Optimized pure CUDA kernels using shared memory
/gpu/cuda/gen Optimized pure CUDA kernels using code generation
/gpu/magma CUDAMAGMA kernels

Examples available in this release:

112

http://valgrind.org/

User code Example
ceed

• ex1 (volume)
• ex2 (surface)

mfem
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

petsc
• BP1 (scalar mass operator)
• BP2 (vector mass operator)
• BP3 (scalar Laplace operator)
• BP4 (vector Laplace operator)
• BP5 (collocated scalar Laplace operator)
• BP6 (collocated vector Laplace operator)
• Navier-Stokes

nek5000
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

9.5 v0.4 (Apr 1, 2019)

libCEEDv0.4wasmade again publicly available in the second full CEED software distribution, releaseCEED
2.0. This release contained notable features, such as four new CPU backends, two new GPU backends, CPU
backend optimizations, initial support for operator composition, performance benchmarking, and a Navier-
Stokes demo. The new CPU backends in this release came in two families. The /cpu/self/*/serial
backends process one element at a time and are intended for meshes with a smaller number of high order
elements. The /cpu/self/*/blocked backends process blocked batches of eight interlaced elements and
are intended for meshes with higher numbers of elements. The /cpu/self/avx/* backends rely upon
AVX instructions to provide vectorized CPU performance. The /cpu/self/xsmm/* backends rely upon
the LIBXSMMpackage to provide vectorized CPUperformance. The /gpu/cuda/* backends provide GPU
performance strictly using CUDA. The /gpu/cuda/ref backend is a reference CUDA backend, providing
reasonable performance for most problem configurations. The /gpu/cuda/reg backend uses a simple
parallelization approach, where each thread treats a finite element. Using just in time compilation, provided
by nvrtc (NVidia Runtime Compiler), and runtime parameters, this backend unroll loops andmapmemory
address to registers. The /gpu/cuda/reg backend achieve good peak performance for 1D, 2D, and low
order 3D problems, but performance deteriorates very quickly when threads run out of registers.
A new explicit time-stepping Navier-Stokes solver was added to the family of libCEED examples in the
examples/petsc directory (see Compressible Navier-Stokes mini-app). This example solves the time-
dependent Navier-Stokes equations of compressible gas dynamics in a static Eulerian three-dimensional
frame, using structured high-order finite/spectral element spatial discretizations and explicit high-order
time-stepping (available in PETSc). Moreover, the Navier-Stokes example was developed using PETSc, so
that the pointwise physics (defined at quadrature points) is separated from the parallelization andmeshing
concerns.
Backends available in this release:

113

http://github.com/hfp/libxsmm

CEED resource (-ceed) Backend
/cpu/self/ref/serial Serial reference implementation
/cpu/self/ref/blocked Blocked reference implementation
/cpu/self/tmpl Backend template, defaults to /cpu/self/blocked
/cpu/self/avx/serial Serial AVX implementation
/cpu/self/avx/blocked Blocked AVX implementation
/cpu/self/xsmm/serial Serial LIBXSMM implementation
/cpu/self/xsmm/blocked Blocked LIBXSMM implementation
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels
/ocl/occa OpenCL OCCA kernels
/gpu/cuda/ref Reference pure CUDA kernels
/gpu/cuda/reg Pure CUDA kernels using one thread per element
/gpu/magma CUDAMAGMA kernels

Examples available in this release:

User code Example
ceed ex1 (volume)
mfem

• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

petsc
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)
• Navier-Stokes

nek5000
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

9.6 v0.3 (Sep 30, 2018)

Notable features in this release include active/passive field interface, support for non-tensor bases, backend
optimization, and improved Fortran interface. This release also focused on providing improved continuous
integration, and many new tests with code coverage reports of about 90%. This release also provided a
significant change to the public interface: a CeedQFunction can take any number of named input and out-
put arguments while CeedOperator connects them to the actual data, which may be supplied explicitly to
CeedOperatorApply() (active) or separately via CeedOperatorSetField() (passive). This interface
change enables reusable libraries of CeedQFunctions and composition of block solvers constructed using
CeedOperator. A concept of blocked restriction was added to this release and used in an optimized CPU
backend. Although this is typically not visible to the user, it enables effective use of arbitrary-length SIMD
while maintaining cache locality. This CPU backend also implements an algebraic factorization of tensor
product gradients to perform fewer operations than standard application of interpolation and differentia-
tion from nodes to quadrature points. This algebraic formulation automatically supports non-polynomial
and non-interpolatory bases, thus is more general than the more common derivation in terms of Lagrange
polynomials on the quadrature points.
Backends available in this release:

114

CEED resource (-ceed) Backend
/cpu/self/blocked Blocked reference implementation
/cpu/self/ref Serial reference implementation
/cpu/self/tmpl Backend template, defaults to /cpu/self/blocked
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels
/ocl/occa OpenCL OCCA kernels
/gpu/magma CUDAMAGMA kernels

Examples available in this release:

User code Example
ceed ex1 (volume)
mfem

• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

petsc
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

nek5000
• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

9.7 v0.21 (Sep 30, 2018)

AMAGMA backend (which relies upon the MAGMA package) was integrated in libCEED for this release.
This initial integration set up the framework of using MAGMA and provided the libCEED functionality
throughMAGMAkernels as one of libCEED’s computational backends. As any other backend, theMAGMA
backend provides extended basic data structures for CeedVector, CeedElemRestriction, and CeedOperator, and
implements the fundamental CEED building blocks to work with the new data structures. In general, the
MAGMA-specific data structures keep the libCEED pointers to CPU data but also add corresponding device
(e.g., GPU) pointers to the data. Coherency is handled internally, and thus seamlessly to the user, through
the functions/methods that are provided to support them.
Backends available in this release:

CEED resource (-ceed) Backend
/cpu/self Serial reference implementation
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels
/ocl/occa OpenCL OCCA kernels
/gpu/magma CUDAMAGMA kernels

Examples available in this release:

115

https://bitbucket.org/icl/magma

User code Example
ceed ex1 (volume)
mfem

• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

petsc BP1 (scalar mass operator)
nek5000 BP1 (scalar mass operator)

9.8 v0.2 (Mar 30, 2018)

libCEED was made publicly available the first full CEED software distribution, release CEED 1.0. The dis-
tribution was made available using the Spack package manager to provide a common, easy-to-use build
environment, where the user can build the CEED distribution with all dependencies. This release included
a new Fortran interface for the library. This release also contained major improvements in the OCCA back-
end (including a new /ocl/occa backend) and new examples. The standalone libCEED example was
modified to compute the volume volume of a given mesh (in 1D, 2D, or 3D) and placed in an examples/
ceed subfolder. A new mfem example to perform BP3 (with the application of the Laplace operator) was
also added to this release.
Backends available in this release:

CEED resource (-ceed) Backend
/cpu/self Serial reference implementation
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels
/ocl/occa OpenCL OCCA kernels

Examples available in this release:

User code Example
ceed ex1 (volume)
mfem

• BP1 (scalar mass operator)
• BP3 (scalar Laplace operator)

petsc BP1 (scalar mass operator)
nek5000 BP1 (scalar mass operator)

9.9 v0.1 (Jan 3, 2018)

Initial low-level API of the CEED project. The low-level API provides a set of Finite Elements kernels and
components for writing new low-level kernels. Examples include: vector and sparse linear algebra, element
matrix assembly over a batch of elements, partial assembly and action for efficient high-order operators like
mass, diffusion, advection, etc. The main goal of the low-level API is to establish the basis for the high-level
API. Also, identifying such low-level kernels and providing a reference implementation for them serves as
the basis for specialized backend implementations. This release contained several backends: /cpu/self,
and backends which rely upon the OCCA package, such as /cpu/occa, /gpu/occa, and /omp/occa. It
also included several examples, in theexamples folder: A standalone code that shows the usage of libCEED
(with no external dependencies) to apply the Laplace operator, ex1; an mfem example to perform BP1 (with

116

http://github.com/libocca/occa

the application of the mass operator); and a petsc example to perform BP1 (with the application of the
mass operator).
Backends available in this release:

CEED resource (-ceed) Backend
/cpu/self Serial reference implementation
/cpu/occa Serial OCCA kernels
/gpu/occa CUDA OCCA kernels
/omp/occa OpenMP OCCA kernels

Examples available in this release:

User code Example
ceed ex1 (scalar Laplace operator)
mfem BP1 (scalar mass operator)
petsc BP1 (scalar mass operator)

10 Bibliography

11 Indices and tables

• genindex
• search

References

[AB93] EllenMArruda andMary C Boyce. A three-dimensional constitutive model for the large stretch
behavior of rubber elastic materials. Journal of the Mechanics and Physics of Solids, 41(2):389–412,
1993.

[GRL10] F. X. Giraldo, M. Restelli, and M. Läuter. Semi-implicit formulations of the navier–stokes equa-
tions: application to nonhydrostatic atmospheric modeling. SIAM Journal on Scientific Comput-
ing, 32(6):3394–3425, 2010. doi:10.1137/090775889.

[Hol00] Gerhard Holzapfel. Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chich-
ester New York, 2000. ISBN 978-0-471-82319-3.

[HST10] Thomas J R Hughes, Guglielmo Scovazzi, and Tayfun E Tezduyar. Stabilized methods for com-
pressible flows. Journal of Scientific Computing, 43:343–368, 2010. doi:10.1007/s10915-008-9233-5.

[Hug12] Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

[PMK92] TC Papanastasiou, N Malamataris, and Ellwood K. A new outflow boundary condition. Inter-
national Journal for Numerical Methods in Fluids, 14:587–608, 03 1992. doi:10.1002/fld.1650140506.

[SWW+93] Jerry M Straka, Robert B Wilhelmson, Louis J Wicker, John R Anderson, and Kelvin K
Droegemeier. Numerical solutions of a non-linear density current: a benchmark solution
and comparisons. International Journal for Numerical Methods in Fluids, 17(1):1–22, 1993.
doi:10.1002/fld.1650170103.

117

https://doi.org/10.1137/090775889
https://doi.org/10.1007/s10915-008-9233-5
https://doi.org/10.1002/fld.1650140506
https://doi.org/10.1002/fld.1650170103

[WWP09] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: an insightful visual per-
formance model for multicore architectures. Communications of the ACM, 52(4):65–76, 2009.

[Brown10] J. Brown. Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D. Journal of
Scientific Computing, October 2010. doi:10.1007/s10915-010-9396-8.

118

https://doi.org/10.1007/s10915-010-9396-8

Index
C
Ceed (C type), 49
CEED_BASIS_COLLOCATED (C var), 62
CEED_ELEMRESTRICTION_NONE (C var), 57
CEED_Q_VLA (C macro), 74
CEED_QFUNCTION (C macro), 74
CEED_QFUNCTION_NONE (C var), 70
CEED_REQUEST_IMMEDIATE (C var), 49
CEED_REQUEST_ORDERED (C var), 49
CEED_STRIDES_BACKEND (C var), 57
CEED_VECTOR_ACTIVE (C var), 53
CEED_VECTOR_NONE (C var), 53
CeedBasis (C type), 62
CeedBasisApply (C function), 64
CeedBasisCreateH1 (C function), 63
CeedBasisCreateTensorH1 (C function), 62
CeedBasisCreateTensorH1Lagrange (C func-

tion), 63
CeedBasisDestroy (C function), 67
CeedBasisGetCeed (C function), 88
CeedBasisGetCollocatedGrad (C function), 88
CeedBasisGetData (C function), 88
CeedBasisGetDimension (C function), 64
CeedBasisGetGrad (C function), 66
CeedBasisGetGrad1D (C function), 66
CeedBasisGetInterp (C function), 66
CeedBasisGetInterp1D (C function), 66
CeedBasisGetNumComponents (C function), 65
CeedBasisGetNumNodes (C function), 65
CeedBasisGetNumNodes1D (C function), 65
CeedBasisGetNumQuadraturePoints (C func-

tion), 65
CeedBasisGetNumQuadraturePoints1D (C

function), 65
CeedBasisGetQRef (C function), 65
CeedBasisGetQWeights (C function), 66
CeedBasisGetTensorContract (C function), 89
CeedBasisGetTopology (C function), 64
CeedBasisGetTopologyDimension (C func-

tion), 89
CeedBasisIsTensor (C function), 88
CeedBasisSetData (C function), 88
CeedBasisSetTensorContract (C function), 89
CeedBasisView (C function), 64
CeedCallocArray (C function), 81
CeedCompositeOperatorAddSub (C function),

75
CeedCompositeOperatorCreate (C function),

74
CeedCopyMode (C enum), 56

CeedCopyMode.CEED_COPY_VALUES (C enumera-
tor), 56

CeedCopyMode.CEED_OWN_POINTER (C enumera-
tor), 57

CeedCopyMode.CEED_USE_POINTER (C enumera-
tor), 56

CeedDebugImpl (C function), 80
CeedDebugImpl256 (C function), 80
CeedDestroy (C function), 51
CeedElemRestriction (C type), 57
CeedElemRestrictionApply (C function), 60
CeedElemRestrictionApplyBlock (C func-

tion), 60
CeedElemRestrictionCreate (C function), 57
CeedElemRestrictionCreateBlocked (C func-

tion), 58
CeedElemRestrictionCreateBlockedStrided

(C function), 59
CeedElemRestrictionCreateStrided (C func-

tion), 58
CeedElemRestrictionCreateVector (C func-

tion), 59
CeedElemRestrictionDestroy (C function), 62
CeedElemRestrictionGetBlockSize (C func-

tion), 61
CeedElemRestrictionGetCeed (C function), 86
CeedElemRestrictionGetCompStride (C func-

tion), 60
CeedElemRestrictionGetData (C function), 87
CeedElemRestrictionGetELayout (C func-

tion), 87
CeedElemRestrictionGetElementSize (C

function), 61
CeedElemRestrictionGetLVectorSize (C

function), 61
CeedElemRestrictionGetMultiplicity (C

function), 61
CeedElemRestrictionGetNumBlocks (C func-

tion), 61
CeedElemRestrictionGetNumComponents (C

function), 61
CeedElemRestrictionGetNumElements (C

function), 60
CeedElemRestrictionGetOffsets (C func-

tion), 86
CeedElemRestrictionGetStrides (C func-

tion), 86
CeedElemRestrictionHasBackendStrides (C

function), 87
CeedElemRestrictionIsStrided (C function),

119

86
CeedElemRestrictionRestoreOffsets (C

function), 86
CeedElemRestrictionSetData (C function), 87
CeedElemRestrictionSetELayout (C func-

tion), 87
CeedElemRestrictionView (C function), 62
CeedElemTopology (C enum), 69
CeedElemTopology.CEED_HEX (C enumerator),

69
CeedElemTopology.CEED_LINE (C enumerator),

69
CeedElemTopology.CEED_PRISM (C enumera-

tor), 69
CeedElemTopology.CEED_PYRAMID (C enumera-

tor), 69
CeedElemTopology.CEED_QUAD (C enumerator),

69
CeedElemTopology.CEED_TET (C enumerator),

69
CeedElemTopology.CEED_TRIANGLE (C enumer-

ator), 69
CeedError (C macro), 52
CeedErrorAbort (C function), 51
CeedErrorExit (C function), 51
CeedErrorImpl (C function), 51
CeedErrorReturn (C function), 51
CeedErrorStore (C function), 51
CeedEvalMode (C enum), 68
CeedEvalMode.CEED_EVAL_CURL (C enumera-

tor), 69
CeedEvalMode.CEED_EVAL_DIV (C enumerator),

69
CeedEvalMode.CEED_EVAL_GRAD (C enumera-

tor), 69
CeedEvalMode.CEED_EVAL_INTERP (C enumera-

tor), 69
CeedEvalMode.CEED_EVAL_NONE (C enumera-

tor), 68
CeedEvalMode.CEED_EVAL_WEIGHT (C enumera-

tor), 69
CeedFree (C function), 81
CeedGaussQuadrature (C function), 67
CeedGetData (C function), 84
CeedGetDelegate (C function), 82
CeedGetErrorMessage (C function), 52
CeedGetObjectDelegate (C function), 82
CeedGetOperatorFallbackParentCeed (C

function), 83
CeedGetOperatorFallbackResource (C func-

tion), 83
CeedGetParent (C function), 82
CeedGetPreferredMemType (C function), 50
CeedGetResource (C function), 50

CeedGivensRotation (C function), 99
CeedHouseholderApplyQ (C function), 99
CeedHouseholderReflect (C function), 99
CeedInit (C function), 50
CeedInt (C type), 56
CeedIsDebug (C function), 82
CeedIsDeterministic (C function), 50
CeedLobattoQuadrature (C function), 67
CeedMallocArray (C function), 80
CeedMatrixMultiply (C function), 89
CeedMemType (C enum), 53
CeedMemType.CEED_MEM_DEVICE (C enumera-

tor), 53
CeedMemType.CEED_MEM_HOST (C enumerator),

53
CeedNormType (C enum), 57
CeedNormType.CEED_NORM_1 (C enumerator), 57
CeedNormType.CEED_NORM_2 (C enumerator), 57
CeedNormType.CEED_NORM_MAX (C enumerator),

57
CeedOperator (C type), 74
CeedOperatorApply (C function), 79
CeedOperatorApplyAdd (C function), 79
CeedOperatorCheckReady (C function), 101
CeedOperatorCreate (C function), 74
CeedOperatorCreateFallback (C function), 101
CeedOperatorCreateFDMElementInverse (C

function), 78
CeedOperatorDestroy (C function), 80
CeedOperatorField (C type), 95
CeedOperatorFieldGetBasis (C function), 97
CeedOperatorFieldGetElemRestriction (C

function), 97
CeedOperatorFieldGetVector (C function), 98
CeedOperatorFieldView (C function), 102
CeedOperatorGetActiveBasis (C function), 102
CeedOperatorGetCeed (C function), 95
CeedOperatorGetData (C function), 96
CeedOperatorGetFields (C function), 97
CeedOperatorGetNumArgs (C function), 95
CeedOperatorGetNumElements (C function), 95
CeedOperatorGetNumQuadraturePoints (C

function), 95
CeedOperatorGetNumSub (C function), 96
CeedOperatorGetQFunction (C function), 96
CeedOperatorGetSubList (C function), 96
CeedOperatorIsComposite (C function), 96
CeedOperatorIsSetupDone (C function), 96
CeedOperatorLinearAssembleAddDiagonal

(C function), 76
CeedOperatorLinearAssembleAddPointBlockDiagonal

(C function), 77
CeedOperatorLinearAssembleDiagonal (C

function), 76

120

CeedOperatorLinearAssemblePointBlockDiagonal
(C function), 76

CeedOperatorLinearAssembleQFunction (C
function), 75

CeedOperatorMultigridLevel_Core (C func-
tion), 102

CeedOperatorMultigridLevelCreate (C func-
tion), 77

CeedOperatorMultigridLevelCreateH1 (C
function), 78

CeedOperatorMultigridLevelCreateTensorH1
(C function), 77

CeedOperatorSetData (C function), 97
CeedOperatorSetField (C function), 75
CeedOperatorSetSetupDone (C function), 97
CeedOperatorSingleView (C function), 102
CeedOperatorView (C function), 79
CeedPermutePadOffsets (C function), 98
CeedPragmaSIMD (C macro), 52
CeedQFunction (C type), 70
CeedQFunctionAddInput (C function), 71
CeedQFunctionAddOutput (C function), 71
CeedQFunctionApply (C function), 72
CeedQFunctionContext (C type), 70
CeedQFunctionContextCreate (C function), 72
CeedQFunctionContextDestroy (C function),

73
CeedQFunctionContextGetBackendData (C

function), 94
CeedQFunctionContextGetCeed (C function),

94
CeedQFunctionContextGetContextSize (C

function), 94
CeedQFunctionContextGetData (C function),

73
CeedQFunctionContextGetState (C function),

94
CeedQFunctionContextRestoreData (C func-

tion), 73
CeedQFunctionContextSetBackendData (C

function), 94
CeedQFunctionContextSetData (C function),

72
CeedQFunctionContextView (C function), 73
CeedQFunctionCreateIdentity (C function),

70
CeedQFunctionCreateInterior (C function),

70
CeedQFunctionCreateInteriorByName (C

function), 70
CeedQFunctionDestroy (C function), 72
CeedQFunctionField (C type), 91
CeedQFunctionFieldGetEvalMode (C func-

tion), 94

CeedQFunctionFieldGetName (C function), 93
CeedQFunctionFieldGetSize (C function), 93
CeedQFunctionFieldSet (C function), 100
CeedQFunctionFieldView (C function), 101
CeedQFunctionGetCeed (C function), 91
CeedQFunctionGetContext (C function), 92
CeedQFunctionGetData (C function), 93
CeedQFunctionGetFields (C function), 93
CeedQFunctionGetInnerContext (C function),

92
CeedQFunctionGetNumArgs (C function), 91
CeedQFunctionGetSourcePath (C function), 92
CeedQFunctionGetUserFunction (C function),

92
CeedQFunctionGetVectorLength (C function),

91
CeedQFunctionIsIdentity (C function), 92
CeedQFunctionRegister (C function), 100
CeedQFunctionSetContext (C function), 71
CeedQFunctionSetData (C function), 93
CeedQFunctionSetFortranStatus (C func-

tion), 101
CeedQFunctionView (C function), 72
CeedQRFactorization (C function), 67
CeedQuadMode (C enum), 69
CeedQuadMode.CEED_GAUSS (C enumerator), 69
CeedQuadMode.CEED_GAUSS_LOBATTO (C enu-

merator), 69
CeedReallocArray (C function), 81
CeedRegister (C function), 81
CeedRequest (C type), 49
CeedRequestWait (C function), 50
CeedResetErrorMessage (C function), 52
CeedScalar (C type), 56
CeedScalarView (C function), 100
CeedSetBackendFunction (C function), 84
CeedSetData (C function), 84
CeedSetDelegate (C function), 82
CeedSetDeterministic (C function), 83
CeedSetErrorHandler (C function), 52
CeedSetObjectDelegate (C function), 83
CeedSetOperatorFallbackResource (C func-

tion), 83
CeedSimultaneousDiagonalization (C func-

tion), 68
CeedSymmetricSchurDecomposition (C func-

tion), 67
CeedTensorContractApply (C function), 90
CeedTensorContractCreate (C function), 89
CeedTensorContractDestroy (C function), 91
CeedTensorContractGetCeed (C function), 90
CeedTensorContractGetData (C function), 90
CeedTensorContractSetData (C function), 91
CeedTransposeMode (C enum), 68

121

CeedTransposeMode.CEED_NOTRANSPOSE (C
enumerator), 68

CeedTransposeMode.CEED_TRANSPOSE (C enu-
merator), 68

CeedVector (C type), 53
CeedVectorAddReference (C function), 85
CeedVectorCreate (C function), 53
CeedVectorDestroy (C function), 56
CeedVectorGetArray (C function), 54
CeedVectorGetArrayRead (C function), 55
CeedVectorGetCeed (C function), 85
CeedVectorGetData (C function), 85
CeedVectorGetLength (C function), 56
CeedVectorGetState (C function), 85
CeedVectorNorm (C function), 55
CeedVectorReciprocal (C function), 55
CeedVectorRestoreArray (C function), 55
CeedVectorRestoreArrayRead (C function), 55
CeedVectorSetArray (C function), 53
CeedVectorSetData (C function), 85
CeedVectorSetValue (C function), 54
CeedVectorSyncArray (C function), 54
CeedVectorTakeArray (C function), 54
CeedVectorView (C function), 56
CeedView (C function), 51

122

	Introduction
	Getting Started
	Building
	Testing
	Backends
	Examples
	Benchmarks
	Install
	pkg-config

	Contact
	How to Cite
	Copyright

	Interface Concepts
	Theoretical Framework
	Finite Element Operator Decomposition
	Terminology and Notation
	Partial Assembly
	Parallel Decomposition

	API Description
	Gallery of QFunctions
	Interface Principles and Evolution

	Examples
	Common notation
	Standalone libCEED
	Ex1-Volume
	Ex2-Surface

	PETSc demos and BPs
	Area
	Cube
	Sphere

	Bakeoff problems and generalizations
	Bakeoff problems on the cubed-sphere

	Multigrid

	CEED Bakeoff Problems
	Mass Operator
	Laplace’s Operator

	Compressible Navier-Stokes mini-app
	Advection
	Density Current

	Solid mechanics elasticity mini-app
	Running the mini-app
	On algebraic solvers
	Nondimensionalization
	Diagnostic Quantities

	Linear Elasticity
	Constitutive modeling

	Hyperelasticity at Small Strain
	Newton linearization

	Hyperelasticity at Finite Strain
	Constitutive modeling
	Weak form
	Newton linearization

	API Documentation
	Public API
	Ceed
	Base library resources

	CeedVector
	Basic vector operations

	CeedElemRestriction
	Expressing element decomposition and degrees of freedom over a mesh

	CeedBasis
	Discrete element bases and quadrature

	CeedQFunction
	Resolution/space-independent weak forms and quadrature-based operations

	CeedOperator
	Discrete operators on user vectors

	Backend API
	Ceed
	CeedVector
	CeedElemRestriction
	CeedBasis
	CeedQFunction
	CeedOperator

	Internal Functions
	Ceed
	CeedVector
	CeedElemRestriction
	CeedBasis
	CeedQFunction
	CeedOperator

	Developer Notes
	Shape
	Internal Layouts
	Backend Inheritance
	Clang-tidy

	libCEED: How to Contribute
	Developer’s Certificate of Origin 1.1
	Authorship

	libCEED Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	Changes/Release Notes
	Current Main
	Interface changes
	New features
	Performance improvements
	Examples

	v0.7 (Sep 29, 2020)
	Interface changes
	New features
	Performance improvements
	Examples
	Deprecated backends

	v0.6 (Mar 29, 2020)
	New features
	Performance Improvements
	Interface changes
	Examples

	v0.5 (Sep 18, 2019)
	v0.4 (Apr 1, 2019)
	v0.3 (Sep 30, 2018)
	v0.21 (Sep 30, 2018)
	v0.2 (Mar 30, 2018)
	v0.1 (Jan 3, 2018)

	Bibliography
	Indices and tables
	References
	Index

