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the Year Of Polar Prediction (YOPP) dataset of the European Centre for Medium-Range Weather 
Forecasts (ECMWF) contains initial condition and forecast model output from the operational global, 
coupled numerical weather prediction system. the dataset has been created to support model forecast 
evaluation, predictability studies and model error analyses over polar areas, which are strongly affected 
by climate change with yet unknown feedbacks on global circulation. the dataset complements 
YOPP observation and modeling research activities that represent a key deliverable of the World 
Meteorological Organization’s Polar Prediction Program. The dataset covers the period from mid-2017 
until the end of the MOSAiC field campaign, expected for autumn 2020. Initial conditions and forecasts 
up to day-15 are included for the atmosphere and land surface for the entire period, and for ocean and 
sea-ice model components after June 2019. In addition, tendencies from model dynamics and individual 
physical processes are included for the first two forecast days. These are essential for characterizing 
the contribution of individual processes to model state evolution and, hence, for diagnosing sources of 
model error.

Background & Summary
Given the amplified sensitivity of polar regions to climate change1 and its yet unknown effects on regional and 
even global weather patterns and their impacts on society and economies, there is a substantial need to make a 
concerted investment in polar research at international level. The World Meteorological Organization’s (WMO) 
Polar Prediction Project (PPP) under its World Weather Research Programme (WWRP) coordinates a major 
international polar research effort through its main flagship initiative, the Year of Polar Prediction (YOPP)2,3. 
The core phase of YOPP covered the period from July 2017 to July 2019. YOPP created the synopsis of dedicated 
polar field campaigns, enhanced operational observation programs and numerical experimentation to enhance 
our understanding of the Earth-system processes at high latitudes and to improve the representation of such 
processes in numerical models. Both the synergy between observation programmes and modeling and the focus 
on translating original research to operational benefit represent a significant step beyond the achievements of the 
International Polar Year efforts4 in 2007–2008.

The ongoing consolidation phase of YOPP (July 2019 to July 2023) aims to take advantage of the wealth of 
information gathered in the YOPP core phase to significantly advance the predictive skill of operational weather 
prediction systems and climate projections. The YOPP consolidation phase also overlaps with the MOSAiC field 
campaign5 supported by 17 nations, for which the icebreaker Polarstern drifts through the Arctic ice shield during 
winter 2019–2020 to collect a unique dataset on the physical and chemical properties of the coupled ocean-sea 
ice-atmosphere system under the most extreme conditions.

The YOPP dataset of the European Centre for Medium-Range Weather Forecasts (ECMWF) has been 
designed to (i) make freely available atmosphere, ocean and sea-ice output from the world’s leading global 
medium-range numerical weather prediction system and to (ii) add non-operational output that permits a deeper 
analysis of individual model process contributions to the evolution of state for identifying and characterising key 
sources of model error. The latter is crucial for achieving the overall goal of YOPP, namely the combined use of 
observations and simulations to advance model development and predictive skill from weather to climate scales. 
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The dataset covers the period of the YOPP Core Phase and MOSAiC, i.e. July 2017 to October 2020, allowing to 
study several seasons in consecutive years.

In the past, a similar modelling effort had been made for the period May 2008 - April 2010 in support of the 
Year of Tropical Convection (YOTC)6. Since then, the YOTC dataset has supported a large number of scientific 
studies on tropical convection and its interactions with the large scale circulation, which are essential for enhanc-
ing predictive skill at sub-seasonal to seasonal scale. Following more than 10 years of scientific progress, the 
YOPP dataset makes available the output from a much improved atmosphere-land model that is coupled with an 
ocean and sea-ice model, is run at higher resolution and provides more comprehensive model output with higher 
frequency for detailed process studies. As the output is global the YOPP dataset will equally support research 
focusing on other regions and processes.

The YOPP dataset has been established following the schematic shown in Fig. 1. The data is generated by the 
so-called ‘control’ forecast of the 51-member operational ECMWF ensemble and is the unperturbed, determin-
istic forecast of the ensemble. It contains 3-hourly output until day 7 followed by 6-hourly output until day 15, is 
issued twice per day, uses an 18-km resolution in the atmosphere/land-surface and 1/4 degree resolution in the 
ocean and sea-ice covered areas. A research experiment using the same set-up is run in parallel to the operational 
system and outputs additional fields for the first 48 hours containing tendencies of the atmospheric physical and 
dynamical processes with a 3-hour frequency. As the sum of these tendencies explains the change of state between 
consecutive model output times, the tendencies allow users to break down the overall change of state into the 
contribution from each process. The processes are shown in Table 1. Further details of dataset generation and 
contents are provided in the following section. Ocean and sea-ice model tendencies are not available.

Methods
Model output. The YOPP dataset combines operational forecast output with data from a research experi-
ment using the same initial conditions and forecast set-up for storing model tendencies. The components of the 
operational forecasting system are listed in Table 1. The system consists of the Integrated Forecasting System (IFS) 
for the atmosphere and land-surface, the wave model (WAM), the Nucleus for European Modelling of the Ocean 
(NEMO, version 3.4) and the Louvain-la-Neuve sea-ice model (LIM, version 2).

The IFS is a spectral-transform model with prognostic variables being represented on both a cubic octahedral 
(reduced) Gaussian grid and in spectral space. The spectral representation facilitates gradient and derivative 
computations. Advection of constituents such as water vapour, condensed water, aerosols and trace gases is solved 
in grid-point space, and unresolved processes like convection, cloud microphysics, turbulence, radiation, land 
surface processes and their interaction are represented by parametrisations for each grid point and vertical col-
umn. The atmosphere model is then coupled to a wave model and models for ocean dynamics, physics and sea-ice 
processes allowing for two-way interactions.

The operational ECMWF coupled model evolves along update cycles, through which improvements to 
the representation of physical processes, the generation of the initial conditions and the use of observations 
in data assimilation are implemented. In the past, these improvements have led to a steady enhancement of 

Fig. 1 Schematic of the YOPP dataset production framework: The initial conditions and ensemble forecasts are 
generated by ECMWF’s operational forecasting system based on ensembles of data assimilation and models. 
Atmosphere, land and ocean waves are separate from the ocean and sea-ice circulation in the data assimilation 
system, while the forecasts are fully coupled. Only the unperturbed control experiment output is ingested in the 
YOPP dataset from day 0 to day 15, and complemented by physical process tendency output from day 0 to day 2.
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medium-range predictive skill of about one forecast day per decade7. During the validity period of the YOPP 
dataset, four updates of the forecasting system have been introduced, namely model cycle 43r3 on 11 July 2017, 
45r1 on 5 June 2018, 46r1 on 11 June 2019, and 47r1 on 30 June 2020 (https://www.ecmwf.int/en/forecasts/
documentation-and-support/changes-ecmwf-model). This means that the YOPP dataset includes system 
changes, which can be delineated from the natural variability when compared, for example, to reanalysis datasets8 
for which the prediction system remains unaltered throughout the application period.

The atmospheric component of the YOPP dataset is based on the ensemble (ENS) control forecast and output. 
Fields are gridded on the native octahedral model grid9 using the Meteorological Interpolation and Regridding 
(MIR) software package10.

The dataset is located in ECMWF’s MARS archive and has its own identifiers, namely class = yp, data-
set = yopp using the ensemble control forecasts identifiers stream = enfo and type = cf. The full list of parameters, 
identifiers and units is shown in Table 2. The model tendencies use the identifiers stream = oper and type = fc. 
However, this information is not needed for data access through the interactive website. The data is stored in the 
GRIB-1 format11.

The NEMO and LIM model output is only available since 11 June 2019 as the capability of storing this output 
in the GRIB-1 format was only implemented with ECMWF’s model cycle 46r1. The YOPP dataset contains ocean 
and sea-ice data on a 1-degree latitude-longitude grid. Records of ocean and sea-ice data prior to 12 June 2019 
need to be separately requested from ECMWF and can be made available in the NetCDF format. However, as 
the post-processing involved a different interpolation mechanism before cycle 46r1 these records have not been 
included here.

The relationship between model and pressure level data is explained through a simple relationship that uses 
surface pressure, psfc, which is a prognostic variable of the hydrostatic IFS, such that pi = psfcBi + Ai in units Pa.  

Model component References

Dynamical core 18,34

Shallow, mid-level and deep convection 19–21

Cloud microphysics 22,23

Planetary boundary layer and turbulence 24,25

Orographic gravity wave drag 26,27

Non-orographic gravity wave drag 28

Land surface 29,35

Radiation 30

Ocean waves 31

Ocean dynamics, physics, and sea ice 32,33

Table 1. Main components and literature references for the atmosphere/land model IFS, the wave model WAM 
and ocean and sea-ice models NEMO and LIM. The code documentation can be found at https://www.ecmwf.
int/en/publications/ifs-documentation.

Fig. 2 Mean error as a function of lead time for 700hPa temperature forecasts for 2018 averaged over the Arctic. 
The ECMWF HRES forecast (red) and the ENS control forecast used in the YOPP dataset (black). Verification is 
performed against the operational ECMWF analysis (included as time step 0).
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The coefficients Ai and Bi are static and defined for each set of model levels, here 91 levels (https://confluence.
ecmwf.int/display/UDOC/L91+model+level+definitions). The process tendencies are accumulated values start-
ing at the beginning of the forecasts, respectively. Thus the tendencies at forecast step 24 represent the accumu-
lated tendencies over the first 24 hours of the model integration. This permits easy comparison of tendencies with 
overall state evolution of, for example, temperature between forecast step 0 and step 24 hours. To examine the 
tendencies, and model state evolution, between two consecutive output steps, i.e. 24 and 27, one needs to subtract 
the tendencies at step 24 from those at step 27. Note that the difference between states from consecutive model 
time steps is not exactly equal to the sum of the tendencies due to second order semi-Lagrangian averaging of 
tendencies along the trajectory12; however, given the output time steps are coarser this difference is negligible.

Full parameter lists. The following list shows the complete set of parameters referred to in Table 2:

•	 Model and pressure level parameters, forecasts: divergence, fraction of cloud cover, logarithm of surface pres-
sure, specific cloud ice water content, specific cloud liquid water content, specific humidity, specific rain water 
content, specific snow water content, temperature, vertical velocity, vorticity (relative), ozone mass mixing 
ratio, potential vorticity, relative humidity, stream function, u-component of wind, v-component of wind, 
velocity potential.

•	 Model level parameters, forecast tendencies: divergence, fraction of cloud cover, geopotential, ice precipita-
tion flux from cloud scheme (stratiform), ice precipitation flux from convection, liquid precipitation flux from 
cloud scheme (stratiform), liquid precipitation flux from convection, logarithm of surface pressure, specific 
cloud ice water content, specific cloud liquid water content, specific humidity, specific rain water content, 
specific snow water content, temperature tendency from cloud scheme, temperature tendency from convec-
tion (deep + shallow), temperature tendency from dynamics, temperature tendency from radiation, temper-
ature tendency from subgrid orography, temperature tendency from turbulent diffusion + subgrid orography, 
temperature, u-wind tendency from convection (deep + shallow), u-wind tendency from dynamics, u-wind 
tendency from subgrid orography, u-wind tendency from turbulent diffusion + subgrid orography, v-wind 
tendency from convection (deep + shallow), v-tendency from dynamics, v-wind tendency from subgrid orog-
raphy, v-wind tendency from turbulent diffusion + subgrid orography, vertical velocity, relative vorticity, spe-
cific humifity tendency from cloud scheme, specific humidity tendency from convection (deep + shallow), 
specific humidity tendency from dynamics, specific humidity tendency from turbulent diffusion, ice water 
content tendency from cloud scheme, liquid water tendency from cloud scheme.

•	 Pressure level parameters, forecast tendencies: divergence, geopotential, relative humidity, specific humidity, 
temperature, u-wind component, v-wind component, vertical velocity, relative vorticity.

•	 Surface level parameters, forecasts: 2 metre dewpoint temperature, 2 metre temperature, 10 metre u-wind 
component, 10 metre v-wind component, 10 metre wind gust in the last 3 hours, 10 metre wind gust in the 
last 6 hours, 10 metre wind gust since previous post-processing, 100 metre u-wind component, 100 metre 
v-wind component, accumulated carbon dioxide ecosystem respiration, accumulated carbon dioxide gross 
primary production, accumulated carbon dioxide net ecosystem exchange, accumulated freezing rain, albedo 
boundary layer dissipation, boundary layer height ceiling, Charnock, clear-sky direct solar radiation at surface, 
cloud base height, convective available potential energy, convective available potential energy, shear, convec-
tive inhibition, convective precipitation, convective rain rate, convective snowfall rate water equivalent, direct 
solar radiation, downward UV radiation at the surface, eastward gravity wave surface stress, eastward sea water 
velocity, eastward turbulent surface stress, evaporation, flux of carbon dioxide, ecosystem respiration flux of 

Type and levels Time steps
Data volume per 
month in GBytes

Forecasts atmosphere:  
1 May 2017–31 October 2020 
Model levels: 1 (model top) – 91 
(model bottom)

3-hourly: 0–144 h, 
6-hourly: 150–360 h ∼6,500

Pressure levels: 1, 2, 3, 5, 7, 10, 20, 
30, 50, 70, 100, 150, 200, 250, 300, 
400, 500, 600, 700, 850, 900, 925, 
950, 1000 hPa

3-hourly: 0–144 h, 
6-hourly: 150–360 h ∼1,700

Surface levels: 0–7 cm, 7–21 cm, 
21–72 cm, 72cm-1.82 m

3-hourly: 0–144 h, 
6-hourly: 150–360 h ∼1,800

Forecasts tendencies atmosphere: 
(1 May 2017–31 October 2020) 
Model levels: 1 (model top) – 91 
(model bottom)

3-hourly: 0–48 h ∼3,300

Pressure levels: 1, 2, 3, 5, 7, 10, 20, 
30, 50, 70, 100, 150, 200, 250, 300, 
400, 500, 600, 700, 850, 900, 925, 
950, 1000 hPa

3-hourly: 0–48 h ∼90

Surface levels 3-hourly: 0–48 h ∼156

Forecasts ocean and sea ice:  
12 June 2019–31 October 2020

3-hourly: 0–144 h, 
6-hourly: 144–360 h ∼0.5

Table 2. YOPP dataset content description. The full parameter list and surface layer descriptions are shown at 
the bottom of this paper.
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carbon dioxide, gross primary production flux of carbon dioxide, net ecosystem exchange forecast, albedo fore-
cast, logarithm of surface roughness for heat, forecast surface roughness, geopotential, gravity wave dissipation, 
height of convective cloud top, height of one-degree wet-bulb temperature, height of zero-degree wet-bulb 
temperature, high cloud cover, high vegetation cover, ice temperature layer 1, ice temperature layer 2, ice tem-
perature layer 3, ice temperature layer 4, instantaneous 10 metre wind gust, instantaneous large-scale surface 
precipitation fraction, K index, lake bottom temperature, lake ice depth, lake ice temperature, lake mix-layer 
depth, lake mix-layer temperature, lake shape factor, lake total layer temperature, land-sea mask, large-scale 
rain rate, large-scale snowfall rate water equivalent, large-scale precipitation, low cloud cover, low vegetation 
cover, maximum temperature at 2 metres in the last 3 hours, maximum temperature at 2 metres in the last 
6 hours, maximum temperature at 2 metres since previous post-processing, maximum total precipitation rate 
in the last 3 hours, maximum total precipitation rate in the last 6 hours, maximum total precipitation rate since 
previous post-processing, mean sea level pressure, medium cloud cover, minimum temperature at 2 metres in 
the last 3 hours, minimum temperature at 2 metres in the last 6 hours, minimum temperature at 2 metres since 
previous post-processing, minimum total precipitation rate in the last 3 hours, minimum total precipitation 
rate in the last 6 hours, minimum total precipitation rate since previous post-processing, northward gravity 
wave surface stress, northward sea water velocity, northward turbulent surface stress, potential evaporation, 
precipitation type, runoff sea ice area fraction, sea surface temperature, skin reservoir content, skin temper-
ature, snow albedo, snow density, snow depth, snowfall, soil temperature level 1, soil temperature level 2, soil 
temperature level 3, soil temperature level 4, soil type, sub-surface runoff, sunshine duration, surface latent heat 
flux, surface net solar radiation, surface net solar radiation clear sky surface net thermal radiation, surface pres-
sure, surface roughness, surface runoff, surface sensible heat flux, surface solar radiation downwards, surface 
thermal radiation downwards, temperature of snow layer, top net solar radiation, top net thermal radiation, 
total cloud cover, total column cloud ice water, total column cloud liquid water, total column ozone, total 
column rain water, total column snow water, total column super-cooled liquid water, total column water, total 
column water vapour, total precipitation, total sky direct solar radiation at surface, type of high vegetation, type 
of low vegetation, visibility, volumetric soil water layer 1, volumetric soil water layer 2, volumetric soil water 
layer 3, volumetric soil water layer 4, zero degree level.
Land surface and ice parameter layers are 1: 0–7 cm, 2: 7–21 cm, 3: 21–72 cm, 4: 72cm-1.82 m for volumetric 
soil water, soil temperature and ice temperature layer.

•	 Ocean and sea-ice model parameters, forecasts: average potential temperature in the upper 300 m, average 
salinity in the upper 300 m, depth of 20 C isotherm, eastward sea water velocity, northward sea water velocity, 
sea surface height, sea water practical salinity, sea-ice thickness.

Data Records
The YOPP dataset can be accessed through https://doi.org/10.21957/mqze-0a5313, and its list of contents is shown 
in Table 2 and the Appendix. The data are available for the periods indicated in the table. The operational ENS 
forecasts, from which the YOPP forecasts are extracted, are issued at 0 and 12 UTC every day, respectively. Time 
step 0 represents the initial conditions produced by the analysis and is included in the dataset. The analysis can 
serve for forecast verification as shown in the Validation Section. These analyses are used to initialise both ENS 
and the so-called high-resolution, deterministic forecasts (HRES). The model tendencies are only archived for 
the forecasts starting at 0 UTC. As of April 2020, the total archived volume has reached 472 TBytes with over 285 
million fields.

This paper’s figures are available from the figshare repository14.

technical Validation
It is worth noting the differences between the YOPP dataset described here and the THORPEX Interactive Grand 
Global Ensemble (TIGGE) dataset that includes ensemble output provided by several global modeling centres for 
performance intercomparison and case study research15.

The TIGGE dataset is based on the IFS ENS as well but has much more limited number of parameters (25 sur-
face and 5 atmospheric parameters on 9 pressure levels), and data is only stored in 6-hourly time steps up to day 15  
(https://apps.ecmwf.int/mars-catalogue/?class=tiexpver=prodmodel=globtype=cfyear=2020month=maylev-
type=sfcdate=2020-05-01time=00:00:00).

Example: Forecast errors. Figure 2 shows the mean error for the 700 hPa temperature averaged of the 
Arctic (60 N–90 N) for the full year of 2018. The plot includes the results for the ECMWF HRES (red) and the 
ENS control forecast that is archived in the YOPP data set (black). Both forecasts show a warm bias at this level 
that amplifies throughout the first forecast days. The YOPP forecast has a larger bias than HRES, but the simi-
larities in the error indicates that lessons learnt from this dataset on sources of such errors can also be translated 
to the ECMWF HRES forecasts. We also see that the error has a significant amplitude already at forecast day 1, 
which means that by studying short-range forecast errors we can learn about medium-range errors.

Example: Tendency analysis. Figure 3 shows the time series of model tendencies for temperature (top) 
averaged over 24 hours and the 24-hour forecast errors (bottom), with a 30-day running mean applied. The data 
is averaged inside the box over the Eastern Arctic (75N-85N, 110E-170E), outlined in Fig. 4, and between model 
levels 77 to 81, which roughly corresponds to 500 and 850 hPa or 1 km and 5 km altitude. In the Arctic, this rep-
resents most of the free troposphere.

The top panel also includes a curve for the temperature evolution between two consecutive analyses (=fore-
cast step 0), separated by 24 hours (black-dashed). If the forecast would be perfect, the sum of the tendencies 
(which govern the forecast evolution, grey line) should be the same as the temperature evolution between the 
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two analyses (under the assumption that the analyses are also perfect). The figure shows numerical noise effects, 
which can be locally large (in time and space) but are in general negligible on average over a region/longer 
period16. Neglecting this effect, the difference between the grey and dashed black lines represents the forecast 
error (see grey-dashed line in bottom panel).

For the tendencies, the dynamic tendencies (black) are positive if warmer air is advected into the atmos-
phere segment the averaging is performed for. Generally speaking, air is loosing energy by long-wave radiative 
cooling (purple). Latent heat release through condensation in clouds results in a positive temperature tendency 
(red), which also occurs in convection (blue). If there is a net evaporation of condensed water in the volume, 
the overall tendencies from these schemes are negative. Finally, mixing of air due to turbulence and orographic/
non-orographic gravity waves can contribute to both net heating and cooling. However, these terms are small in 
this example, given that the free-troposphere is largely stably stratified and the selected region is far from moun-
tainous regions.

In the Arctic, the two largest terms are the dynamic and radiative tendencies in the free troposphere because 
warm air is advected into the Arctic, and at the same time experiences radiative cooling. More generally, cloud 
process contributions are strongest in summer. During the autumn when the water is still open, i.e. not covered by 
sea ice, cold air outbreaks from the north can lead to the formation of convective clouds, which amplifies convec-
tion tendencies. The dataset will stimulate detailed analyses of the link between potential sources of model errors 
in individual processes and their impact on predictive skill at local, regional and global scale - which is relevant 
for both weather and climate research2,17.

The mean error in the selected atmospheric volume is positive, with the largest amplitude in late spring/early 
summer. The active processes during the time are the advection by the dynamics and cloud condensation/evap-
oration that have a net warming tendency and the radiation that has a net cooling tendency. One could speculate 
that the radiation effect by the clouds plays a role for the development of the error.

Figure 4 shows the spatial pattern of 24-hour forecast error for July, August and September, averaged between 
850–500hPa heights. The error is calculated as the difference between 24-hour forecasts and the verifying analysis. 

Fig. 3 Time series of model tendencies for temperature averaged over the first 24 forecast hours (top) and 24-
hour temperature forecast errors (bottom), averaged between 850 hPa and 500 hPa. The top panel also includes 
the evolution of the temperature over 24 hours. The bottom panel includes the forecast error calculated from the 
24-hour forecast output (black) and from the sum of the tendencies minus the evolution (grey dashed). A 30-
day running mean is applied to the time-series. All data is averaged inside a box between 75N-85N latitude and 
110E-170E longitude.
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By using the initial conditions for the forecast (the analysis) as ‘truth’, one needs to be aware of the caveats in terms 
of analysis errors and the correlations with short forecast errors.

For this period, the temperature errors are positive over the Arctic basin, which is consistent with the errors 
inside the domain shown in Fig. 3.

Code availability
The IFS forecast model and the Meteorological Archival and Retrieval System (MARS) software are not available 
for public use as the ECMWF Member States are the proprietary owners. However, the YOPP dataset and the 
MARS data extraction features are freely available through the YOPP dataset website’s API (https://apps.ecmwf.
int/datasets/data/yopp/levtype=sfc/type=cf/) following a registration step.
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