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ABSTRACT 
Ultrasonic inspection of complex structural parts made of carbon fibre reinforced plastic 

(CFRP) typically includes a set of tedious time-consuming manual tasks. The data acquisition 

process is difficult to adapt to varying geometries of specimens and different test equipment. 

Furthermore, automatic data evaluation is challenging. In order to increase the degree of 

automation for robot-based ultrasonic inspection, a set of practical problems needs to be 

addressed: automatic part localization, inspection path planning, robot motion generation, fast 

data processing, and automatic defect detection and classification. We introduce an integrated 

workflow that copes with the above challenges. We present a highly automated robotic work 

cell for ultrasonic inspection. Results and limits of the system are discussed for a set of 

challenging sample parts. 

 
Figure 1: Overview about the workflow of robotic ultrasonic inspection presented in this paper: 1) vision system 

for part localization, 2) coverage path planning, 3) data acquisition, and 4) defect detection. 

1. INTRODUCTION 

Progress in production processes enables the realization of structural carbon fibre reinforced 

polymer (CFRP) parts with more and more complex geometries. Usage of safety-critical CFRP 

parts requires a seamless inspection of each individual product [1]. Conventional ultrasonic 

testing involves time consuming manual tasks in order to gather ultrasonic data. Further, 

domain experts typically evaluate the gathered ultrasonic data manually. Thus, inspection 

results highly depend on the judgment of the inspector. Therefore, automation has not only the 

potential of enormous time and cost savings, but can also reduce the variation of results. In the 

scope of the project SonicScan1 we are developing methods for immersion testing with an 

articulated industrial robot. The focus is thereby put on the automation of the complete 

                                                 
1 http://sonicscan.eu 
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inspection process. Figure 1 shows the main steps in the proposed workflow: part localization, 

coverage planning, robotic scanning, and defect detection.  

Coverage planning refers to the determination of a robot path, which covers a surface or volume 

of interest without collisions. This problem needs to be solved for a wide variety of robotic 

systems, for example cleaning or demining robots. A common approach for this type of systems 

is to split the surface into cells, which can be covered by meander-shaped paths [2]. However, 

improvement of the state of the art is still required since conventional methods typically only 

address planar surfaces, which are not directly portable to inspection problems regarding 

industrial robots. Our approach builds upon this idea of subdividing a complex surface into 

smaller cells that can be handled more easily.  

Coverage planning for more complex two-dimensional surfaces embedded in the three-

dimensional space is for example addressed in the motion planning of underwater structure 

inspection, painting and bush trimming robots [2, 3, 4]. Ultrasonic scanning requires to move 

the sensor along a path which maintains a specific distance to the surface. An existing approach 

is based upon generating an offset surface, i.e. a surface with a defined and constant distance 

to the target surface [4]. This allows to apply conventional algorithms on that virtual surface. 

In our method, we deploy a process model which contains the requirements for relative 

placement with respect to the part surface (distance, angle).  

Over the past years, impressive classification performance of deep convolutional neural 

networks has been demonstrated for a number of hard computer vision problems (ImageNet, 

PASCAL Visual Object Classes). We aim at making use of these methods for quality control 

based on ultrasound measurements. An elegant neural network architecture, which was 

originally proposed for segmentation of 2-dimensional histological images, is the so called U-

Net [5]. It consists of a set of encoding layers followed by a set of decoding layers. Additional 

direct connections from encoding layers to decoding layers of equal spatial resolution support 

the efficient use of local features in combination with global context information. By replacing 

2D convolutions with 3D convolutions, the original U-Net architecture can be modified so that 

it accepts volume data as input. This 3D version of the U-Net outputs volumetric segmentation 

masks. Here, we apply the U-Net architecture to ultrasonic inspection data. 

This paper is organized according to figure 1. In section 2 we outline a vision system for 

localizing the part to be inspected inside the work space of the robot. In section 3 we present 

an algorithm for automatic planning of the robot motion that is needed to acquire ultrasonic 

inspection data. In section 4 we briefly outline our approach for synchronization of robot 

motion and ultrasound signal acquisition using time stamps. A method for automatic analysis 

of volumetric ultrasound data is outlined in section 5 and conclusions and future work are 

provided in section 6. 

2. AUTOMATIC PART LOCALIZATION 

A very basic step for doing robot-based inspection is to localize the part within the workspace 

of the robot. In simple scenarios, this is done manually using a measurement tip on the robot. 

When different parts are to be inspected or the position of parts changes frequently, manual 

calibration can become very time-consuming and tedious. In the workflow that we consider 

here, the part to be inspected is not fixed within the workspace. It is simply placed inside a 

water basin on a supporting table. The great advantage is that no underwater fixture mechanism 

is required and the process of inserting the part into the workcell can either be done manually 

or automatically (e.g. by the inspection robot equipped with a tool-changer). This can be done 
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without taking much care of the accurate positioning of the part. Exact localization is done in 

a separate step as outlined in the following.  

We propose the use of a stereo vision setup. The advantage of such a system is that it works 

contact-less and can be implemented with low costs for hardware. Basically, only a camera 

together with image processing software is required. The single camera is mounted on the 

inspection robot and images of the workspace are taken at different robot positions. Individual 

points on the surface of the inspected parts are then localized via triangulation. An important 

difference to standard stereo vision systems is that refraction needs to be taken into account. 

We follow an approach based on explicit modeling of the refraction of light rays [6]. 

 

Figure 2: Stereo vision for under-water object localization. See text for details. 

Figure 2 illustrates how 3D points are triangulated using the proposed method. The robot moves 

the camera to different positions (e.g. positions (a) and (b). An image is taken at each of these 

positions. Unique points on the part surface are identified in the stereo images. According to 

the calibration parameters of the camera, view rays are calculated (r1 and r2). However, their 

intersection provides a wrong position q. Refraction needs to be taken into account to get the 

correct position p of a point on the part. With at least three points on the part surface it is then 

possible to calculate the correct alignment of part coordinate frame and robot work space. 

3. COVERAGE AND PATH PLANNING 

For coverage and path planning, we propose the usage of a process model, which maps a 

surface point to a sensor position and orientation. Dependent on the local thickness of the 

specimen, the sensor needs to be positioned in a certain distance to the surface. In addition, to 

obtain an ideal sound coupling, the wave vector needs to be perpendicular to the specimen's 

surface. The rotation about the surface normal has no impact on the inspection process and is 

used as a degree of freedom for path planning. The following section addresses the problem of 

finding a path that meets these requirements. We assume that each inspection position needs to 

be passed exactly once. 

 



  

  4 

 

Figure 3: A slicing plane sweeps over the specimen (a). At locations where the connectivity changes, additional 

cells are introduced leading to three cells in (b). In (c) the graph representing the white cell from (b) together with 

their connectivity is shown. Connections (edges) between vertices exist if their spatial distance and local curvature 

is small. 

Hereinafter, path planning consists of three steps: (i) the surface is segmented into connected 

regions, which – without regarding collision avoidance – can be captured with meander-shaped 

movements, (ii) valid paths in the robot's joint space are calculated and (iii) the order of 

individual segments is optimized by finding a solution to the associated traveling salesman 

problem.  

3.1 Segmentation  

As a starting point, we use a cellular decomposition [2], which allows the decomposition of the 

specimen's surface into cells, which can be covered individually by meander-shaped Cartesian 

paths. These Cartesian paths are generated by sweeping a slicing plane over the specimen. At 

points where the connectivity changes (e.g. forking), the surface is split into new cells (see 

Figure 3(a) and (b)). 

Ideally, inspected points should be spatially close to each other, whereas the sensor orientations 

should be similar in order to keep joint movements small. We construct an undirected graph 

consisting of vertices (p, n) with the position p and the sensor orientation n. An edge eij 

connects two vertices Ki and Kj, if the distance and the inner product of the sensor orientations 

are below certain -to be defined -parameters dmax and cmax (similar to [7], see Fig. 3(c)): 

 

For the resulting segments formed by connected vertices, we plan paths by utilizing the method 

described in the following subchapter. 

3.2 Path Planning 

Path planning is considered for non-redundant six-axis industrial robots with the most common 

architecture consisting of a trunk, shoulder, upper arm, forearm, and wrist. Regular end-effector 

poses of these robots have eight unique inverse kinematics (IK) solutions due to three joint 

singularities. The IK solutions can be grouped by their appearance in the joint space (e.g. 

shoulder right, wrist down, elbow up) referred to as manipulator poses (MP). Moving the robot 

from one MP to another generally requires large joint motions and therefore should be avoided. 

The presented method generates inspection paths, which allow for inspection of segments with 

minimal re-orientations. 
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3.2.1 Problem definition 

The vertex inspection order is predefined by the meander-shaped Cartesian path. Moving from 

one k-th inspection position to the next, ideally causes small robot motions in the configuration 

space. We denote the rotation about the sensor axis at individual positions as φk. 

The rotation about the sensor axis between two consecutive vertices needs to be limited. In 

order to find a solution, the following control problem is defined: 

 

with the control input uk and its box constraints specifying the maximal accepted rotation angle 

about the sensor axis between consecutive vertices, the path constraint c → {0,1} mapping to 

zero if the configuration does not cause any collisions, and the number of vertices N. 

3.2.2 Path construction 

To find a solution, firstly a map m : k × φ → {0,1} with the discrete angles φ ∈ {0, umax, 2umax, 

…, 2π} is generated, which subsequently allows an easy construction of a valid path backwards 

from k = N – 1 to k = 0: 

• For k = 0, the value is set equal to the value of the collision detection m(0, φ) = c(0, φ). 

• For k ≠ 0, the value is set to 0 if c(k, φ) = 0 and an angle φk-1 ∈ {φ – umax, 0, φ + umax} 

exists such that m(k – 1, φk-1) = 0. That means that pairs (k, φ) only map to zero if they 

represent collision free configurations and allow to reach a valid point at time k – 1 in 

compliance with the box constraints of the input variable. 

For every valid terminal point (N – 1, φN-1), i.e. m(N – 1, φN-1) = 0, finally a unique bang-bang 

solution can be found by constructing it backwards in time: 

 

Fig. 4 shows the resulting map and the backwards construction of the path for the right segment 

of Fig. 3(c). 
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Figure 4: Regions where m(k; φ) = 0 are encoded gray. Within that region, we search for a valid path. The 

backwards construction of the path is indicated as a blue arrow. 

3.3 Inspection Plan 

In order to plan motions between segments, collision free paths are generated using the RRT 

implementation of OMPL [8]. The traveling salesman problem associated with finding an 

optimal inspection order of individual regions is solved with a simulated annealing solver using 

an objective function that assesses the path length in the joint space. 

4. ROBOTIC SCANNING 

Ultrasonic scanning is done along with the robot moving the ultrasound head according to the 

previously calculated inspection path. In order to assign the correct positions to individual 

ultrasound signal captures, robot motion and ultrasound signal acquisition need to be 

synchronized. We deploy an approach based on time stamps. Each robot position and 

ultrasound capture is assigned a time stamp from different hardware clocks, i.e. robot controller 

clock and ultrasound acquisition device. Via synchronization of both clocks, the correct 

assignment of positions to ultrasound captures is possible.  

Recorded ultrasound echoes are integrated into a volumetric reconstruction of the inspected 

part. This dense volume representation is the basis for further processing of the data for defect 

detection. 

5. DEFECT DETECTION 

We aim at automatic detection and classification of defects within volumetric ultrasound data. 

This is the last step in the complete inspection workflow. Specifically, we aim for segmentation 

of interesting regions and the assignment of class labels to these regions. We propose the use 

of a deep neural network to achieve this. Our approach builds upon the neural network 

architecture proposed recently for segmentation of medical volume data [9]. This architecture 

can be modified easily to support practically any number of output classes that are suitable for 

the respective application.  
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When using machine learning, it is often difficult to acquire a sufficient amount of training 

data. We tackle this issue by using artificially generated data. To demonstrate the performance 

of our network, we implemented the following classes: "background", "cuboid", and 

"cylinder". We implemented a randomized process that generates volume data randomly 

containing cuboids and cylinders. In order to make it difficult for the neural network to learn 

these shapes, random noise was added. 

 

Figure 5: Application of the neural network to artificial data (a) and real ultrasonic scan data (b). Both, (a) and (b) 

show 4 columns that represent neural network input (left column) and neural network output for classes 

"background", "cuboid", and "cylinder" (remaining columns).  

Figure 5 shows the output of the network for artificial data that includes a cuboid (a) and real 

data with a cylindrical hole (b). Rows in Figure 5 represent individual slices of the volumes. 

The columns show the input to the neural network and output maps for the three different 

classes: "background", "cuboid", and "cylinder". Brightness in the output maps represents the 

probability of individual voxels to belong to the respective classes. For example, white pixels 

in the second column represent a high probability for this voxel to belong to the background. 

In Figure 5(b) the brightness of most pixels in the "cylinder" mask is significantly higher than 

in the "cuboid" mask. This indicates that the U-Net correctly classifies the respective voxels to 

be part of a cylinder. 

While our current implementation focuses on differing between "cuboid"-shaped and 

"cylinder"-shaped defects, it is relatively straight-forward to adapt to other defect types. To do 

so, the neural network only needs to be modified with respect to the number of output classes. 

The training process itself is very much the same, no matter which defects need to be detected. 

If available, also real annotated data can be used for training. This makes the method quite 

flexible and adaptable to varying requirements and scenarios. 

6. CONCLUSIONS AND FUTURE WORK 

We outlined an approach for a highly automated robotic workcell for ultrasonic inspection of 

complex CFRP parts. Our approach includes a novel path planning algorithm. We use a deep 

neural network for defect detection and classification of ultrasonic test data of CFRP parts.  

In future work we plan to improve the complete workflow by iterative refinement of the 

different algorithms involved. For coverage planning, we will work with increasingly complex 
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shapes. With respect to defect detection and classification we will evaluate more scan data to 

determine the limits when using artificial training data for neural network training.  
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