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ABSTRACT 

Exact analytic solutions of Einstein’s equations are difficult because of the high nonlinearity 

of the equations. Many researchers have shown that field equations for static spherically 

symmetric and cylindrically symmetric space-times to get physical solutions. Besides, 

solutions with axial symmetry are less studied.  In this paper, we have demonstrated the 

technique for generating static axially symmetric vacuum solutions from known solutions. 

Using the technique some new realistic solutions is generated.  

 

Keywords:-Space-times, spherically symmetric, cylindrically symmetric, axially symmetric, 
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INTRODUCTION 

Spherically symmetric solutions have attracted attentions of many researchers working in this 

field due to several reasons. Spherically symmetric perfect fluid solutions [1-10] are 

interesting because they are first approximations in finding any realistic solution describing a 

relativistic star. Moreover cylindrical symmetric solutions [11-13] have been shown in the 

literature.  Space-times having symmetries about an axis are said to be axially symmetric. 

Gravitational fields due to rotating sources are represented by axially symmetric space-times. 

When rotation of the source is uniform then the space-time is said to be stationary axially 

symmetric. Static axially symmetric space-times are those for which rotation of the source is 

zero. Weyl-Lewis-Papapetrou [17-18] form of stationary axially symmetric space-time metric 

can be written as 

 ddtkdldzdedtfds 2)( 22222                                               (1)  

 

where ),,( z  are cylindrical-polar-like coordinates and ,,, lkf  are functions of   and z. 

It should be noted that in a curved space in general it is not possible to define cylindrical-

polar coordinates or Cartesian coordinates etc. Here cylindrical-polar-like coordinate means 

that for asymptotically symmetric solutions, at a large distance from the source the metric 

tends to the flat space-time metric  
222222 dzdddtds     

 

in the familiar cylindrical-polar coordinates related to Cartesian coordinates (x, y, z) by 

 cosx ,  siny , z = z. The metric (1) possesses a symmetry about the line 0 , 

called the axis of symmetry.  
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We are interested in vacuum solutions so that Einstein’s equations reduce to 0R . Weyl 

showed that one can use the field equations to impose the following condition on the 

functions f, k and l   
222  kflD                                                                                           (2)  

 

The definition of 2klf   as the new coordinate  simplifies the metric (1) reducing it to 

only three independent metric components instead of four. The metric (1) can be written as  

 ddtkdldzdefdtfds 2)( 2222122                                          (3)  

 

Papapetrou found it convenient to use a function   instead of k, defined by fk  . Using 

this in (2) we obtain  

ffl 221                                                                                                  (4)  

 

With (4), metric (3) reduces to    

])([)( 22222122   ddzdefddtfds                                         (5)  

 

The metric form (5) is called the Papapetrou metric.   

 

Rest of this chapter is organized in the following way. In Section-2 a review of Weyl 

solutions of the field equations for static axially symmetric space-times is provided. In 

Section-3, general static axially symmetric solution is presented in closed form. In Section-4, 

a technique for generating new solutions from known solution is presented. The technique is 

demonstrated by generating some new realistic solutions. Finally in Section-5, some 

concluding remarks are given. 

 

FIELD EQUATIONS FOR STATIC AXIALLY SYMMETRIC VACUUM 

SPACETIMES AND WEYL SOLUTIONS  

In the absence of rotation 0 . Thus in the static case metric (5) reduces to   

])([ 2222),(2),(22),(22  ddzdeedteds zzz                                   (6)   

 

where 2ef  . The metric form (6) is called the Weyl metric. For the metric (6) the 

equations 04

4

3

3  RR , 02

2

1

1  RR , 01

2 R , which are valid for vacuum solutions yield 

respectively   

0
12   


 zz                                                                            (7)  

)( 22

z   , zz  2                                                                     (8)  

 

where 
z

z






 , 




 




  etc. Equations (7) and (8) are the only independent equations for 

the two unknown metric functions ),( z  and ),( z , which are to be solved. Method of 

solving the field equations (7), (8) is as follows.  
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One has to assume a solution of Laplace’s equation (7) in two dimensions which specifies 

),( z . When the equation for ),( z  is satisfied, it ensures that equations (8) will be 

integrable and hence ),( z  will be specified.  

 

A class of exact solutions of equations (7), (8) was found by Weyl and the method of solution 

is as follows.  

 

Let us introduce prelate spheroidal coordinates (x, y) defined by the transformation equations  

2

1

22

1

2 )1()1( yxk  , kxyz                                                                        (9)  

 

where k is an arbitrary constant. From (9), we have  

)( 222222 yxkkz    

])([
1

)( 22

2

2 kz
k

yx     

2

1

22 ])([
1

kz
k

yx                                                                               (10)  

Similarly  

2

1

22 ])([
1

kz
k

yx                                                                                  (11)  

 

From (10) and (11) we get  

 2222 )()(
2

1
kzkz

k
x                                                            (12)  

 2222 )()(
2

1
kzkz

k
y                                                            (13)  

 

In this coordinate system the Laplace operator 2  is given by  

    














































y
y

yx
x

xyx

k 22

22

2
2 11    

 

Hence equation (7) reduces to  

    011 22

22

2
















































y
y

yx
x

xyx

k
                                           (14)  

 

Let us consider the solution of equation (14) that can be written as a product  

)()(),( yvxuyx                                                                                             (15)  

 

If we substitute (15) in (14) we obtain  

 

    



































y

v
y

yvx

u
x

xu
1

1
1

1 22  = n(n+1) = Constant  

 

Thus Laplace’s equation (14) yields the Legendre equations  
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  0)1(12 
















unn

x

u
x

x
  

  0)1(12 
















vnn

y

v
y

y
  

 

Weyl solutions are given by  

)()(
0

yPxQa n

n

nn




   

 

where nP  and nQ  are Legendre polynomials of the first and second kinds. As a special case if 

we let n = 0 then we get     

 

1

1
log

2 




x

x
                  

22

2 1
log

2 yx

x







  

where   is an arbitrary constant. In terms of the coordinates ),( z  we have   

m

m
z

2

2
log

2
),(

21

21









  

1

2log
2 








mz

mz
   

where k = m, 22

1 )( mz    and 22

2 )( mz   .  

 

For 1  this gives the Schwarzschild solution. For 1  we get   

  21

22

21

2 44)(  me     

 

ALL STATIC AXIALLY SYMMETRIC VACUUM SOLUTIONS 
The general axially symmetric static solution of Einstein’s vacuum field equations in closed 

form has been found by Waylen [14] in the canonical coordinates   and z. This general 

solution depends on a single solution generating function. To see how this is done let us note 

that equation (7) is a second order linear partial differential equation for ),( z . Therefore 

general solution of equation (7) contains two arbitrary functions, say f and g. In the following 

we will demonstrate that      

 










0

2

0

}]sin)log{()()([
1

),( dugufz                                               (16)   

 

where  cosizu  , is a solution of (7). Since (16) contains two arbitrary functions f(u) 

and g(u), it is the general solution of (7). Now (16) can be expressed as  

),(),(),( 21 zzz     

where  








0

1 )(
1

),( dufz                                                                                       (17)  

and        
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










0

2

0

2 }sin)log{()(
1

),( dugz                                                               (18)  

We will show that 
1  and 

2  are solutions of equation (7). From (17) we get   

 


 






 0

1 cos)(
1

duf
i

                                                                               (19)  

 


 





0

2

2

1

2

cos)(
1

duf                                                                               (20)  

 


 





02

1

2

)(
1

duf
z

                                                                                          (21)  

 Now  

    



0

2

00
cos)()(cos)( dufdufiduf                                      (22) 

 

Putting (22) in (19) we obtain  

 


 









 0

2

0

1 cos)(
1

)(
11

dufduf                                                    (23)  

 

From (20), (21) and (23) we get  

0
1

2

1

2

1

2

1

2




























z
                                                                                    (24)  

 

Therefore ),(1 z  is a solution of (7).  

 

Again from (18) we get  

 


 













 0
0

02

2 cos)()log()(
11

dug
i

dug   

 



 0

)log(sincos)(
2

dug
i

                                                                       (25)  

 


 















0

2

0
0022

2

2

cos)()log(
1

cos)(
2

)(
1

dugdug
i

dug    

 



 0

2 )log(sincos)(
2

dug      (26)  

 


 












00

0

2

2

2

)log(sin)(
2

)()log(
1

dugdug
z

                                     (27)  

Now  

 






 0

2

0
)log(sinsin)(

2
)log(sincos)(

2
dugdug

i
  

 



 0

cos)(
2

dug
i

                                                                                        (28)  

and  

   














 0

2

0
0

0

sin)()log(
1

cos)()log( dugdug
i

                            (29)  
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From (25) – (29) we get  

0
1

2

2

2

2

2

2

2




























z
   

 

Therefore 
2  is a solution of equation (7). Thus we have demonstrated that  

),(),(),( 21 zzz    

is the general solution of (7). To allow the metric function ),( z  to assume finite values on 

the axis of symmetry   = 0, which lies in the vacuum, we require g(u) to vanish. Hence the 

finite general solution of equation (7) is given by  








0

)(
1

),( dufz                                                                                      (30)  

 

Any specification of f(u) generates a solution of equation (7) through equation (30).  

 

Substituting (30) into the pair of equations (8) we get  





  

2

0

2

02
})({}cos)({



 



 dufduf                                                (31)  

})(}{cos)({
2

002  






 dufduf

i
z                                                            (32)  

 

Integrating (31) with respect to  we obtain                   





 

ddufdufzk   



 

0

2

0

2

02
})({}cos)({

1
)(                                (33)  

 

Differentiating (33) with respect to z we get  





 

ddufdufdufdufzkz   



 

0 00002
)()(cos)(cos)(

2
)(  

                                                                                                                            (34)  

 

From (22) we have  

      





 
00

2

0
cos)(cos)()( duf

i
dufduf                                      (35)  

 

Putting (35) in (34) we obtain  

      

 















d

dufduf

dufdufdufduf
zkz 


























0

00

00

2

00

2

)(cos)(

)(cos)(cos)(cos)(2
)(  

       or,       





ddufduf
i

zkz 



 




  0002

)(cos)(
2

)(  

                        






002

)(cos)(
2

)( dufduf
i

zk                                           (36)  
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(36) accords with (32) if  k(z) = k = constant. Therefore if k = constant, (33) is the solution of 

both the equations (31) and (32). Condition of regularity on the axis of symmetry lying in 

vacuum requires k = 0.   

 

NEW SOLUTIONS FROM KNOWN SOLUTIONS 

In Section-3, it has been shown that the finite general solution of equation (7) can be written 

as  








0

)(
1

),( dufz                                                                                    (37)   

 

where  cosizu   and f(u) is an arbitrary function of u. Now partial differentiation or 

integration of f(u) with respect to z results in function of u. Let us denote partial 

differentiation and integration of f(u) with respect to z by F(u) and F(u)  respectively,    

 











0

)(
1

)( duf
z

uF  and F(u)  =  dzuf )(  

 

Then from (37) we obtain  








0

1 )(
1

),(),( duFzz z                                                                      (38)  

and  








0

2

1
),( dz F(u)                                                                                        (39) 

   

From (38) and (39) we find that if ),( z  is a solution of (7) then ),(1 z and ),(2 z  are 

also solutions of (7) i.e. partial differentiation and integration with respect to z of a solution 

),( z  of equation (7) are also solutions of (7). This gives a way of generating static axially 

symmetric vacuum solutions of Einstein’s equations from known solutions. The technique is 

demonstrated below by generating some new solutions from known solutions.  

 

(1) Let us consider the harmonic function  

22
),(







z

C
z                                                                                       (40)  

from which we get Curzon’s solution [17]. Differentiating (40) with respect to z we obtain  

2

3

22

1

)(

),(),(

z

zC
zz z







                                                                       (41)  

From (41) we obtain  

2

5

22

22

1

)(

)2(

z

zC

z












 and 

2

5

22

1

)(

3

z

zC















                                                    (42)  

 

Putting (42) in equations (8) we obtain  

 



















522

4

322422

2
2

)(

18

)()(

15

z

z

zz

z
C












                                                    (43)  
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














522

2

422

22

)(

3

)(

2
6

z

z

z

z
Cz






                                                                    (44)  

 

From (43) and (44) we get  

  )(
)(4

)8(
)(

)(4

)8(
2422

2222

1422

2222









 k

z

zC
zk

z

zC










                                        (45)   

 

From (45) we conclude that,   kkzk )()( 21   constant. Therefore we have obtained the 

following new solution by partially differentiating Curzon’s solution with respect to z,  

2

3

22

1

)(

),(

z

zC
z







 ,   k
z

zC
z 






422

2222

)(4

)8(
),(




                                         (46)  

Solution (46) has finite values on the axis of symmetry and is asymptotically flat.  

 

It should be noted that, integration of ),(1 z  with respect to z gives Curzon’s solution [19].  

 

(2) Putting C = C1, C2, mzz   in (40) we get the following solutions ),(1 z  and 

),( z of equation (7)   

22

1
1

)(
),(







mz

C
z , 

22

2
2

)(
),(







mz

C
z   

 

Integrating 
1  and 2  with respect to z we get the following solutions of equation (7),  

 





22

11 log



mzmz

Cdz     

 





22

22 log



mzmz

Cdz          

 

Since linear combination of any two solutions of equation (7) is also a solution  

  
   2

1

12

22

22

log),(
C

C
CC

mzmz

mzmz
z













                                            (47)  

is a solution of equation (7). 

 

 For C1 = C2 = 1, (47) reduces to  

 

  22

22

log),(










mzmz

mzmz
z                                                              (48)  

 

Putting (48) in (8) we obtain  

21

22

21

4

4)(
),(






m
z


                                                                                (49) 

where  
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  22

1   mzmz ,   22

2   mzmz  

This is Schwarzschild solution in canonical coordinates  , z.  

 

CONCLUSIONS  

We have shown that partial differentiation or integration with respect to z of a harmonic 

function ),( z  results in a harmonic function. Using these results we have found some new 

solutions by differentiating / integrating Curzon’s solution. The result can be used to classify 

all static axially symmetric vacuum solutions of Einstein’s equations. This in turn may 

provide a way of classifying all stationary axially symmetric vacuum solutions.   
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