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Abstract5

Establishing robust methods and metrics to evaluate habitat quality is critical for the recov­6

ery of endangered Pacific salmonids. A variety of modeling approaches are used for status7

and trend monitoring of anadromous species throughout the Pacific Northwest, USA, but cur­8

rent methods may fail to capture the complex relationship between fish and habitat and are9

often limited in predictive power beyond specific watersheds. Further, the focus on species10

distribution and abundance is not easily manipulated to predict carrying capacity and tradi­11

tional stock­recruitment analyses are reliant on long­term data which are not always available.12

In this study, we developed a quantile random forest (QRF) model to provide estimates of13

habitat carrying capacity for Chinook salmon parr during the summer months, at both the site14

and watershed scale. QRF models allow for the consideration of noisy data, correlated vari­15

ables, and non­linear relationships: common features in fish­habitat datasets. We leveraged16

Columbia Habitat Monitoring Program (CHaMP) data to select habitat co­variates and predict17

capacity at those sites. We also identified a set of globally available attributes to extrapolate18

capacity estimate predictions throughout wadeable streams within the Columbia River basin.19

Total capacity estimates for watersheds closely matched estimates from alternative fish produc­20

tivity models. Carrying capacity estimates based on QRF, like those presented here, provide21

managers a framework to guide the identification, prioritization, and development of habitat22

1



rehabilitation actions to recover salmon populations.23
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Introduction26

The decline of anadromous Pacific salmonids (Oncorhynchus spp.) across the Pacific Northwest,27

USA has prompted numerous actions aimed at reversing that trend. These actions are often catego­28

rized into four H’s: harvest modification, hatchery practices, hydrosystem operations, and habitat29

rehabilitation. Problematically, there is substantial uncertainty regarding the degree of change that30

can be exerted across and within these categories, and what combination of changes will most cost­31

effectively and sustainably reduce mortality. Freshwater habitat capacity deficits have recently32

been identified as a major factor directly impacting population abundance which has been largely33

overlooked in Columbia Basin salmonids (Bond et al. 2018, Hinrichsen and Paulsen 2020, NOAA34

Fisheries 2020). Specifically, restoring salmonid carrying capacity through tributary rehabilitation35

actions has been identified as a key component of recovery efforts for salmon and steelhead (O.36

mykiss) in the Pacific Northwest, USA (NOAA Fisheries 2016a, 2016b). Efforts have included in­37

creasing and improving existing habitat for both spawning adults and rearing juveniles. However,38

estimating habitat carrying capacity (both historic and contemporary) for various life­stages of Pa­39

cific salmon, as well as identifying important habitat characteristics that influence capacity, has40

been an ongoing but necessary challenge (Bond et al. 2018, Hinrichsen and Paulsen 2020, NOAA41

Fisheries 2020). Reliable methods to better understand fish­habitat relationships and estimate ca­42

pacity are necessary to identify those salmon and steelhead life­stages that are limited by habitat43

capacity to better direct tributary rehabilitation efforts.44

When it comes to estimating carrying capacity, spawner­recruit models are the gold standard (Mous­45

salli and Hilborn 1986, Myers et al. 1999). However, such models require a long time­series of ac­46
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curate estimates of abundance for adults and juveniles, with variation in the number of adults. Such47

data are unavailable in most watersheds (Cramer and Ackerman 2009), and they do not necessarily48

allow one to link capacity to habitat characteristics, except perhaps at the watershed scale. Bioen­49

ergetics approaches, such as the net rate of energy intake (NREI) have been applied to salmonids50

to estimate capacity on the 200 ­ 600 m reach scale (Wall et al. 2016). However, there are some51

potential issues with how the food supply (i.e. invertebrate drift) is measured with these methods52

that could lead to biases in capacity estimates (Dodrill and Yackulic 2016) as well as difficulty53

in properly constraining drift depletion and inter­species competition, and computational and spa­54

tial limitation of this modelling approach (Wall et al. 2016, Carmichael et al. 2020). In addition,55

those authors did not take the step of scaling the capacity predictions at the reach scale to entire56

watersheds. In contrast, Sweka and Mackey (2010) estimated carrying capacity of Atlantic salmon57

(Salmo salar) parr at the watershed scale, using a quantile regression approach, but the only habitat58

covariate they included was cumulative drainage area. Estimates of salmonid carrying capacity59

that leverage fish­habitat relationships are lacking at the watershed scale in the Pacific Northwest.60

Most studies that have investigated fish­habitat relationships focus on predicting a species’ distri­61

bution (presence / absence) or the average abundance or density: neither of which can be easily62

manipulated to predict carrying capacity. Further, many of these studies focus on only one or63

two measures of habitat. Fausch et al. (1988) conducted a thorough review of attempts to predict64

the abundance of fish from measurable habitat covariates from 1950 to 1985 and found that the65

vast majority of multiple linear regression models failed to detect a significant fish­habitat signal.66

Since that review, there has been progress in identifying some fish­habitat relationships for several67

salmonid species. Nickelson et al. (1992) demonstrated that juvenile coho salmon (O. kisutch)68

were found in higher densities within pool habitat on the Oregon coast. Similarly, pool and pond69

densities were good predictors of coho smolt densities in westernWashington (Sharma and Hilborn70

2001). Bryant and Woodsmith (2009) found that juvenile coho abundance was positively related71

to large wood at the reach scale; however their results demonstrated a negative relationship be­72

tween abundance and the number of pools. Braun and Reynolds (2011) similarly found positive73

3



associations between spawner densities of sockeye salmon (O. nerka) in the Fraser River and large74

wood, in addition to positive relationships to percent undercuts and percent pools. Densities of75

adult spawning coho were also higher in forested areas compared to urban or agricultural areas in76

the Snohomish River watershed (Pess et al. 2002). Mossop and Bradford (2006) examined juvenile77

Chinook salmon (O. tshawytscha) in the Yukon River and found positive correlations between the78

log of fish density and several metrics related to residual pool dimensions and large woody debris79

abundance as well as a negative correlation between fish density and gradient. These studies were80

focused on predicting observed fish densities, not necessarily capacity, and for most of them the81

predictive extent is limited to a particular watershed. In addition, they all assumed some form of82

linear fish­habitat relationship which often results in weak predictive power.83

A number of studies have used other modeling approaches to elicit fish­habitat relationships. Dun­84

ham et al. (2002) used a quantile regression approach to show a negative relationship between85

cutthroat trout (O. clarkii) densities and the width:depth ratio of a stream for the upper quantiles of86

trout density. The same approach was also used to map the potential extent of sole (Solea solea)87

in the English Channel and southern North Sea (Eastwood et al. 2003). Machine learning models88

such as boosted regression trees and random forests have been used to examine species biomass,89

diversity, and distribution for a number of different species (Pittman et al. 2009, Knudby et al.90

2010, Compton et al. 2012). The results from these studies highlight the importance and effective­91

ness of using techniques that can accommodate non­linear fish­habitat relationships and provide92

motivation for furthering research in this realm.93

For the purposes of this paper, we define carrying capacity as the maximum number of individu­94

als that can be supported given the quantity and quality of habitat available at a given life­stage.95

We assume that higher observed relative densities within a given life stage are a function of habitat96

quantity and quality. Furthermore, we assert that observed fish density is a poor proxy of habitat ca­97

pacity owing to both a paucity of individuals, especially for threatened or endangered species, and98

the existence of unmeasured variables that may serve to limit capacity. To address this, we have99
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developed a model to estimate juvenile rearing capacity for Pacific salmon in wadeable streams100

based on quantile random forest (QRF) (Meinshausen 2006) models using measurements of fish101

abundance and density and habitat characteristics. QRF models combine the theory and justifica­102

tion of quantile regression modeling (Koenker and Bassett Jr 1978, Cade and Noon 2003) with the103

flexibility and framework of random forest models (Breiman 2001). They account for unmeasured104

variables and can be used to describe the entire distribution of predicted fish densities for a given set105

of habitat conditions, not just the mean expected density. Random forest models have been shown106

to outperformmore standard parametric models in predicting fish­habitat relationships in other con­107

texts (Knudby et al. 2010). Quantile random forests share many of the benefits of random forest108

models, such as the ability to capture non­linear relationships between independent and dependent109

variables, naturally incorporate interactions between covariates, and work with untransformed data110

while being robust to outliers (Prasad et al. 2006). In addition, quantile regression models have111

been used in a variety of ecological systems to estimate the effect of limiting factors (Terrell et al.112

1996, Cade and Noon 2003).113

The fish abundance/density and habitat data used to fit the QRF model presented here were avail­114

able from seven watersheds within the interior Columbia River basin, Pacific Northwest, USA.115

Within the interior Columbia River basin two major runs of Chinook salmon occur, stream­type116

(i.e., spring/summer run) and ocean­type (i.e., fall run), each characterized by different life history117

characteristics. Stream­type Chinook salmon adults enter freshwater from the ocean earlier in the118

year, spawn in the upper reaches of a watershed, and the juveniles rear for up to 16 months in fresh­119

water before entering the ocean as smolts. Ocean­type Chinook salmon adults enter freshwater later120

(e.g., fall or winter) spawn lower in the watershed, and the juveniles may spend between several121

weeks and six months in freshwater before migrating to the ocean as subyearlings. Here, we focus122

on stream­type Chinook salmon, and in particular the juvenile summer rearing period during low123

flow, during which juveniles are often termed parr, referring to the camouflage markings that occur124

on their sides during this life­stage. Data presented here are from Chinook salmon populations in125

the Upper Columbia River spring­run and Snake River spring/summer­run Evolutionary Significant126
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Units (ESU). The Upper Columbia spring­run ESU is listed as endangered under the Endangered127

Species Act, the Snake River spring/summer­run is listed as threatened (NOAA Fisheries 2016a,128

2016b). Hereafter, we refer to both ESUs simply as Chinook salmon.129

In this study, we developed a QRF model to:130

• identify measured habitat characteristics that are most strongly associated with observed Chi­131

nook salmon parr abundance and density,132

• elicit fish­habitat relationships for those habitat characteristics identified as important for133

determining fish abundance and density, using paired fish and habitat measurements,134

• predict contemporary habitat carrying capacity at all sites where the important habitat char­135

acteristics are measured,136

• extrapolate capacity predictions at measured habitat sites across a watershed using globally137

available attribute data to estimate the Chinook salmon parr capacity of that watershed, and138

• validate estimates of carrying capacity from our approach across multiple watersheds using139

independent estimates of capacity (e.g., spawner­recruit relationships).140

Our study incorporates multiple measures of stream habitat to estimate fish­habitat relationships141

that encompass the collinear nature of most stream habitat metrics and can be used to predict carry­142

ing capacity. Our approach moves across several spatial scales, inferring fish­habitat relationships143

from detailed, localized habitat data and extrapolating capacity predictions across wide swaths of144

unsampled locations. Additionally, this approach for estimating life­stage specific habitat­based145

carrying capacity can be used to quantitatively identify the magnitude of tributary habitat rehabil­146

itation necessary to support de­listing. Given the multitude of (often correlated) habitat metrics147

and the potentially non­linear fish­habitat relationships that define capacity as a function of habitat,148

we explore the application of QRF modeling to habitat capacity estimation, validated using data149

from Columbia River Chinook salmon. For perhaps the first time, the necessity of tributary habitat150

rehabilitation can be demonstrated, and the magnitude of required change can be placed in context151

with the other “H’s.”152
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Methods153

Study Site154

Habitat data used in our study were collected from eleven watersheds within the interior Columbia155

River basin, Pacific Northwest, USA (Figure 1). The Columbia River basin covers more than156

668,000 km2 draining large portions of Idaho, Oregon, and Washington, and smaller portions of157

Montana, Nevada, Utah, and Wyoming, as well as the southeastern portion of British Columbia.158

The habitat data used to populate the QRF model were collected by the Columbia Habitat Monitor­159

ing Program (CHaMP) (Volk et al. 2017) and were downloaded from https://www.champmonitorin160

g.org. Data from the following eleven CHaMP watersheds were used in this study: Asotin, Entiat,161

John Day, Lemhi, Methow, Minam, South Fork Salmon, Tucannon, Upper Grande Ronde, We­162

natchee and Yankee Fork. Juvenile density and abundance data were collected in a subset of seven163

watersheds (see Table 1 and Figure 1), at CHaMP survey reaches and were graciously provided by164

a number of agencies and projects, including the Integrated Status and Effectiveness Monitoring165

Project (Volk et al. 2017).166

Data167

CHaMP sites are 200 m to 600 m reaches in wadeable streams across select watersheds within the168

interior Columbia River basin. The sites were selected based on a spatially balanced generalized169

random tesselation stratified sample selection algorithm (Stevens Jr and Olsen 1999, 2004). Habi­170

tat data within CHaMP sites were collected using the CHaMP protocol (CHaMP 2016) which calls171

for field data collection during the low­flow period, typically from June through October. CHaMP172

habitat data include, but are not limited to, measurements describing channel complexity, chan­173

nel units, disturbance, fish cover, large woody debris, riparian cover, stream size (depth, width,174

discharge), substrate, temperature, macroinvertebrate productivity, and water quality.175

Juvenile fish surveys were conducted for Chinook salmon parr during the summer low­flow season176
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at many of the same sites surveyed using the CHaMP protocol. Survey methods included mark­177

recapture, three­pass removal sampling, two­pass removal sampling, single­pass electrofishing,178

and snorkeling. These data were used to estimate Chinook salmon parr abundance at all CHaMP179

sites where fish survey data were available. Three­pass removal estimates used the Carle­Strub180

estimator (Carle and Strub 1978), following advice from Hedger et al. (2013). Two­pass removal181

estimates used the estimator described by Seber (2002). Mark­recapture estimates used Chapman’s182

modified Lincoln­Peterson estimator (Chapman 1951) and were deemed valid if they met the crite­183

ria described in Robson and Regier (1964). These estimates were made using the removal function184

from the FSA package (Ogle et al. 2020) or the closedp.bc function from the Rcapture package185

(Rivest and Baillargeon 2019) in R software (R Core Team 2019). Snorkel counts were trans­186

formed to abundance estimates using paired snorkel­electrofishing sites to calibrate snorkel counts.187

For sites with invalid estimates or that were sampled with a single electrofishing pass, we devel­188

oped an estimate of capture probability based on valid estimates, using a binomial generalized189

linear mixed effects model. Fixed effects were species, wetted width of the site, density of fish190

caught on the first pass and all possible two­way interactions. We included a random effect for fish191

crew/watershed. We used this model to predict abundances based on the number of fish caught on192

the first pass and any other covariates.193

Abundance estimates at all sites were then translated into linear (parr/m) fish densities which were194

paired with the associated CHaMP habitat data. For sites that were sampled in multiple years,195

only the fish and habitat data from the year with the highest observed fish density was retained to196

avoid possible pseudo­replication, while remaining consistent with our goal of estimating carrying197

capacity. After removing duplicate sites, our initial dataset contained 327 unique sites with paired198

fish­habitat data (Table 1). We did explore using areal fish densities (parr/m2) as the response but199

found very similar results so in the interest of brevity we only present results based on linear fish200

densities.201
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Habitat Covariate Selection202

A key step in developing a QRF model to predict fish capacities was selecting the habitat covari­203

ates to include in the model. The CHaMP program generated more than 100 habitat metrics at204

each site, many of which were correlated with each other to one degree or another, as is often the205

case with stream habitat variables. We sought to include a small set of covariates that were not206

overly redundant (i.e., not highly correlated), described many aspects of stream habitat (e.g., sub­207

strate, temperature, complexity, etc.) and were highly associated with the observed fish densities,208

presumably because they contained information about what types of habitat fish sought or avoided.209

Full details of how the twelve covariates used in the QRF model were selected can be found in210

Appendix S1.211

QRF Model Fit212

Using the selected habitat covariates (Table 2), we fit a QRF model to predict habitat rearing ca­213

pacity for Chinook salmon parr during summer months using the natural log of fish densities as214

the response. After constructing a random forest, predictions of the mean response can be made215

by averaging the predictions of all trees, similar to the expected value predictions from a statisti­216

cal regression model. The individual predictions from each tree, viewed collectively, describe the217

entire distribution of the predicted response; therefore, the random forest model can be used in the218

same way as other quantile regression methods to predict any quantile of the response. There were219

missing values for some habitat data; thus, any site visit with more than three missing covariates220

was removed from the dataset and the remaining missing habitat values were imputed using the221

missForest R package (Stekhoven and Bühlmann 2012, Stekhoven 2013). We fit the QRF mod­222

els using the quantregForest function from the quantregForest package (Meinshausen 2017) in R223

software (R Core Team 2019), incorporating data from 327 records (paired fish­habitat data) and224

twelve habitat covariates (27.2 data points per covariate) (Table 2). The 90th quantile of the pre­225

dicted distribution was used as a proxy for carrying capacity following the suggestion of Sweka226

and Mackey (2010), and to avoid higher quantiles that draw from the very upper tails of observed227
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fish density, where the variability of predictions may be influenced by small sample size issues.228

After model fitting, the QRF model was then used to predict capacity at sites with measurements229

of the habitat covariates that were used to fit the model. In our case, this includes all sites within230

CHaMP basins in the interior Columbia River basin. For CHaMP sites that were sampled in multi­231

ple years, we first calculated the mean for each habitat metric among years to make predictions. In232

total, we generated 589 predictions of Chinook salmon parr capacity, during summer months, for233

the following basins: Entiat, Grande Ronde (including Minam), John Day, Lemhi, Methow, South234

Fork Salmon, Tucannon, Wenatchee and Yankee Fork Salmon. CHaMP sampled between 1 and235

28% of the Chinook domain within these watersheds, with an average of 11%.236

Extrapolating to Other Sites237

To predict capacity at larger spatial scales, such as the watershed or population, we developed238

an extrapolation model based on globally available attributes (GAA) which were available for the239

entirety of tributary habitat utilized by a given population. The GAA data used here was taken from240

the list of generalized random tessellation stratified master sample sites that the CHaMP sites were241

originally selected from (Larsen et al. 2008, 2016). Possible covariates included temperature range,242

elevation, watershed, the first principal component of a natural feature classification and human243

disturbance classification (Whittier et al. 2011), the square root of cumulative drainage area, stream244

power, slope, channel type, bankfull width and average August temperature (Table 3). The natural245

log of the CHaMP site capacity predictions (parr/m) was used as the response variable in a multiple246

linear regression model that incorporated the design weights of the CHaMP sites using the svyglm247

function from the survey package (Lumley 2020) in R software (R Core Team 2019). The design248

weights are generated from howmuch of the watershed each site is meant to represent. Because the249

CHaMP sites were selected from strata that usually comprised unequal portions of that watershed,250

these weights must be accounted for to lead to unbiased model coefficients (Nahorniak et al. 2015).251

We fit two different extrapolation models, one that included watershed as a covariate for use in252

predicting capacity within CHaMP watersheds, and one that did not for predicting everywhere253

10



else. We then made predictions of linear capacity at all master sample sites throughout the interior254

Columbia River basin, generally spaced about one kilometer apart. These points do not represent255

specific segments of streams, however, so we needed to do some spatial averaging of capacity256

predictions to generate larger scale capacity estimates.257

To summarize capacity at larger scales, the mean linear capacity (e.g., parr/m) of the master sample258

points along a particular tributary is multiplied by the length of that tributary. We first restricted259

the upstream limit of master sample points and lengths of streams to those within the domain of260

spring/summer­run Chinook salmon, as defined by StreamNet (http://www.streamnet.org) or261

using expert opinion from local biologists, and the downstream limit by when streams were no262

longer wadeable (often determined by some combination of estimated bankfull width and cumula­263

tive drainage area). The capacities of various tributaries could then be summed to estimate capacity264

at almost any spatial scale. A conceptual diagram showing the data and modeling framework of265

the QRF and extrapolation models is shown in Figure 2.266

Model Validation267

Spawner­recruit data from several watersheds within the interior Columbia River basin were com­268

piled to validate the extrapolated QRF estimates of Chinook salmon parr capacity. Some water­269

sheds had direct estimates of parr, while some had estimates of pre­smolts and smolts (i.e., fall and270

spring emigrants) from rotary screw traps. For the latter, estimates of parr were calculated using271

estimates of over­winter survival to back­calculate parr from smolt estimates, and then adding that272

to pre­smolt estimates. A series of spawner­recruit functions were then fit to this data including273

Beverton­Holt, Ricker, and hockey stick (Froese 2008), using the FSA package (Ogle et al. 2020)274

in R. Estimates of capacity from each of these spawner­recruit curves were compared with QRF275

estimates of capacity for the same regions.276

All code and data for the analyses presented here can be found in a GitHub repository277

((https://github.com/KevinSee/QRFpaper)).278
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Results279

Habitat Covariate Selection280

We categorized 165 habitat measurements collected using the CHaMP habitat protocol (CHaMP281

2016) into eleven habitat categories, and for each habitat covariate the Maximal Information Crite­282

ria (MIC) value was calculated based on the strength of association between the habitat covariate283

and the response variable, parr density (parr/m) (See Appendix S1 for further details). We chose284

the following twelve CHaMP habitat covariates to fit the QRF model: wetted width, observed dis­285

charge, average August temperature, wetted width:depth ratio, percent fines less than 6 mm, total286

percent fish cover, channel unit frequency, standard deviation of the wetted depth, frequency of287

large wood in pools, percent riparian canopy cover, lower quantile of substrate size (D16) and288

braidedness (Table 2).289

QRF Model290

A QRF model was fit using those metrics and the quantregForest package (Meinshausen 2006) in291

R (R Core Team 2019) and the 90th quantile of the predicted distribution was used as a proxy for292

carrying capacity. After model fit, we examined the relative importance of each habitat covariate293

included in the model (Figure 3), quantified by the average decrease in residual sum of squares294

for splits on that variable amidst the trees in the random forest, implemented by the importance295

function from the randomForest package (Liaw and Wiener 2002). Moreover, QRF models allow296

one to visually examine the marginal effect of each habitat covariate on the quantile of interest297

using partial dependence plots. These plots show the marginal effect of changing a single habitat298

covariate while maintaining all other covariates at their mean values (Figure 4). However, given299

that many habitat metrics are somewhat correlated, these marginal effects are often not independent300

of one another and care should be takenwhen interpreting them. After model fitting, the QRFmodel301

was used to predict habitat capacity at all CHaMP sites within the interior Columbia River basin.302
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Extrapolating to Other Sites303

We fit a linear regression extrapolation using QRF­based predictions of capacity at all CHaMP304

sites as the response, and various GAAs as the independent variables. The coefficients for the305

extrapolation model can be found in Table 3 and the summary of the model fit in Table 4. From306

this, we calculated estimates of capacity at every master sample point in the Columbia River basin,307

each representing roughly one kilometer of stream length.308

Model Validation309

Estimates of Chinook salmon parr capacity from the QRF and extrapolation models were compa­310

rable to independent estimates from spawner­recruit data (Table 5, Figure 5). QRF estimates had311

overlapping confidence intervals with one or more of the Beverton­Holt, Ricker, or hockey stick312

model estimates in each of the nine locations where comparisons were possible (Figure 5). Poten­313

tial additional uncertainty was not accounted for in estimates of spawners­per­redd or spawners­314

per­parr, which would increase the confidence intervals around spawner­recruit estimates and the315

overlap among estimates. Correlations between parr capacity estimates from the QRF model and316

spawner­recruit models ranged from 0.710 (Beverton­Holt) to 0.966 (Ricker). This favorable com­317

parison provides strong validation as the spawner­recruit estimates of Chinook salmon parr capacity318

were developed from completely independent datasets and using entirely different methods.319

Discussion320

A Tool to Estimate Habitat Capacity321

In this study, we developed a novel approach to estimate the capacity of habitat to support Chinook322

salmon parr during summer months and in wadeable streams. Our model can be used to quantify323

juvenile rearing capacity in Chinook salmon watersheds or populations and, in turn, quantify the324

magnitude of tributary habitat rehabilitation that may be necessary to support Endangered Species325
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Act delisting. The QRF and extrapolation models presented here provide useful tools towards the326

prioritization, implementation, and evaluation of habitat rehabilitation actions to recover depleted327

salmon populations. Moreover, these models can be applied to multiple stages within the life cycle328

(e.g., parr, smolt, adult). Estimates of habitat carrying capacity for multiple life stages will allow329

biologists and managers to identify what life­stages and/or specific habitat patches may be limiting.330

As an example, QRF models and associated extrapolation models may demonstrate that habitat331

for a given population is sufficient to support adult spawning required to achieve delisting targets,332

but that juvenile rearing capacity may not be sufficient to support the target abundance. In such a333

case, habitat rehabilitation actions may be most cost­effectively and sustainably directed towards334

improving juvenile rearing habitat. Models to estimate habitat carrying capacity for multiple life335

stages will help to better direct habitat restoration actions and help guide not only the type of action,336

but also the location at which an action is performed.337

The favorable comparison between QRF estimates of carrying capacity and the spawner­recruit338

based estimates in select watersheds helps support and validate this approach. Although built from339

completely different data, when these multiple lines of evidence converge it lends credence to the340

QRF capacity prediction results.341

There are two aspects that make this approach “data hungry”, meaning a large dataset is needed to342

fit a QRF model like this. First, random forest models generally require more data than parametric343

models, due to the lack of parametric distribution assumptions and the lack of an assumed form of344

the relationship between dependent and independent variables. Second, it takes larger data sets to345

accurately predict the lower and higher quantiles in a quantile regression framework. For example,346

if a data set consisted of thousands, rather than hundreds, of data points, a researcher might feel347

comfortable using the 95th or the 98th quantile as a proxy for capacity, rather than the 90th. Our348

data set consisted of 327 sites, across a variety of habitats and years, providing contrast in all the349

habitat covariates and presumably satisfying the data hungriness of a QRF model, based on our350

validation with spawner­recruit data.351
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Biological Expectations from QRF Model352

The results of the QRF parr capacity model for Chinook salmon meet many biological expectations.353

Focusing on the partial dependence plots (Figure 4), the QRF model predicts capacity to increase354

when the wetted width, discharge and the width:depth ratio grow, when temperatures are cooler355

(Brett 1952, Raleigh et al. 1986, Bjornn and Reiser 1991), when there is less fine sediment (Hillman356

et al. 1987, Bjornn andReiser 1991, Allen 2000), when there ismore fish cover (Hillman et al. 1987,357

Bjornn and Reiser 1991, Holecek et al. 2009), when channel unit frequency increases and when358

the standard deviation of the wetted depth (a proxy for streambed complexity) increases. These are359

all patterns that emerged from the fish­habitat data, and where available, match those fish­habitat360

relationships identified qualitatively in other studies (Mossop and Bradford 2006).361

The biggest driver of capacity identified in this study is stream size, whether measured by wetted362

width or discharge, which should be unsurprising since we are using fish per meter as our response.363

In many ways, these metrics define habitat quantity; however, other metrics used in our QRFmodel364

help define habitat quality, such as cooler temperatures in August, less pool­tail fine sediment, and365

higher channel unit frequencies (a measure of habitat complexity and surrogate for the number of366

pool­riffle sequences or potential sheer areas providing feeding zones), and fish cover. Metrics367

that describe habitat quantity set some bounds around possible capacity estimates, while metrics368

describing habitat quality refine those estimates to better match conditions at that site.369

Extrapolation Model370

Fish are mobile creatures and determining the appropriate spatial scale to estimate how their capac­371

ity may be determined by habitat characteristics is important. In the summer, for Chinook salmon372

parr, our fish data clearly shows movement between multiple channel units (e.g., pool, riffle, run),373

suggesting that fish are utilizing habitat at a larger scale than the channel unit. However, it is un­374

likely that they are moving up and down the entire watershed and we believe the 200 ­ 600 m375

reaches used in this study are an appropriate scale to capture the fish­habitat relationships that de­376
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fine carrying capacity. At the same time, we acknowledge that managers, life­cycle modelers, and377

others are often interested in capacity estimates at larger spatial scales. While our QRF model can378

provide site­specific estimates of carrying capacity derived from paired fish­habitat data, our ex­379

trapolation model allows for estimates at larger spatial extents, such as watershed and population380

levels. This is an efficient technique to leverage existing relationships for meaningful management381

decisions.382

Our extrapolation model was focused on extrapolating to other master sample points, because that383

is the dataset available to us, but the methodology could be improved. Extrapolating to reaches384

on a stream network, as opposed to points on the landscape, could improve the interpretability of385

the results. This would require a stream network with relevant attributes attached to each reach,386

similar to the GAAs we used. Another approach could be to move towards sampling habitat in a387

more spatially continuous fashion, covering most or all of a watershed, and building a QRF model388

from that dataset. Even if the fish data were not collected continuously, estimates of capacity could389

be made directly from the QRF model across the entire stream network without the need for an390

extrapolation model.391

One of the potential downsides to the extrapolation approach used here is that the GAAs generally392

do not change through time, and therefore may not reflect the dynamic nature of changing stream393

habitat. While the QRF model itself uses habitat characteristics that can be observed to change394

over the course of several years, most GAAs are static, generally derived remotely or from another395

model. This is the nature of extrapolating to such large spatial extents; it can be impossible to gather396

actual habitat data on such a scale, but with improvements in remote sensing, spatially continuous397

data (modeled or measured) may be on the horizon (Tonina et al. 2019).398

The Future: Improving Habitat Data399

Given the cost/extent of data necessary for QRF extrapolation in watersheds outside of the400

Columbia River basin, there is a pressing need to develop new tools for habitat analyses. Un­401
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manned Aerial Systems (UAS or drones, commonly) are gaining popularity in wildlife and402

ecosystem monitoring for their ease of use, safety, accessibility, and cost­efficiency (Jones403

IV et al. 2006, Chabot and Bird 2015). UAS produce high­resolution, permanent data at a404

fraction of the cost of on­the­ground habitat sampling. Advances in imaging techniques (e.g.,405

multispectral imaging) and post­processing (e.g., automation of data collection from imagery) are406

already demonstrating increase in the efficiency and accuracy of data collection (Whitehead and407

Hugenholtz 2014, LeCun et al. 2015, Weinstein 2018). Further, developments in Light Detection408

and Ranging (LiDAR) technology have allowed for the characterization of watershed scale409

geomorphologic and hydraulic variables not previously possible (McKean et al. 2008, Tonina et410

al. 2019).411

Development of a standardized protocol to incorporate remotely sensed data (LiDAR, aerial im­412

agery) into the collection of habitat metrics would greatly increase the broadscale application of413

QRF. Rapid advances in drone technology further improve upon traditional habitat data collection414

by leveraging 1) sub­meter global navigation satellite system (GNSS) receivers; 2) cost­effective415

drone imagery collection, image stitching, and photogrammetry; and 3) semi­automated to auto­416

mated data post­processing. All data collection efforts would be georeferenced and topologically417

compatible to increase repeatability of methods and data collection locations; a primary criticism of418

previous CHaMP survey efforts. The implementation of such a protocol would circumvent the need419

to extrapolate by collecting data for individual channel units in a rapid manner using remote sens­420

ing technologies, thereby reducing labor, providing a cost­effective tool for habitat data collection421

supporting status and trend evaluation and model products to better inform habitat rehabilitation422

prioritization and planning.423

Conclusions and Next Steps424

If a species’ carrying capacity is defined or constrained, at least in part, by the habitat in which425

it lives, then illuminating statistically how such habitat impacts carrying capacity can lead to un­426

derstanding how a species interacts with its environment. This understanding could be of crucial427
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importance in the realm of conservation when dealing with an endangered or threatened species,428

but species/habitat interactions are a core element of ecological studies more generally. We have429

demonstrated how a quantile regression approach, coupled with a random forest framework, can be430

used to estimate these relationships, and predict a habitat’s capacity. As large ecological datasets431

become more accessible, and the ability to measure large swaths of habitat more feasible, we be­432

lieve this approach has many potential applications, from the North American breeding bird survey433

to groundfish trawl surveys. The framework could also be applied to depleted, non­migratory, and434

isolated populations (e.g., desert pupfishCyprinodonmacularius) to identify limiting factors in pop­435

ulations and/or determine whether a given habitat patch could support a viable population if limiting436

factors were addressed. Capacity estimates could also be used to evaluate potential translocation437

sites to determine if those sites could support an abundance considered viable before investing in438

translocation efforts.439
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Tables601

Table 1: The number of unique sites, by watershed, with paired fish­habitat data used to populate

the spring/summer­run Chinook salmon parr capacity QRF model

Watershed n Sites Percent

Entiat 61 18.7%
John Day 75 22.9%
Lemhi 33 10.1%
Minam 20 6.1%
South Fork Salmon 30 9.2%
Upper Grande Ronde 86 26.3%
Wenatchee 22 6.7%
Total 327 100.0%
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Table 2: Habitat metrics and descriptions of metrics included in the QRF model to predict

spring/summer­run Chinook salmon parr capacity. Metrics are ranked in order of relative impor­

tance.

Rank Metric Metric Category Description

1 Wetted Width Size Average width of the wetted polygon for a
site.

2 Discharge Size The sum of station discharge across all
stations. Station discharge is calculated as
depth x velocity x station increment for all
stations except first and last. Station
discharge for first and last station is 0.5 x
station width x depth x velocity.

3 Avg. August Temp. Temperature Average predicted daily August temperature
from NorWest, averaged across the years
2002­2011.

4 Width:Depth Ratio Complexity Average width to depth ratio of the wetted
channel measured from cross­sections.
Depths represent an average of depths along
each cross­section.

5 Fines Substrate Average percentage of pool tail substrates
comprised of sediment <6 mm.

6 Fish Cover Cover Percent of wetted area with the following
types of cover: aquatic vegetation, artificial,
woody debris, and terrestrial vegetation.

7 Channel Unit Frequency ChannelUnit Number of channel units per 100 meters.
8 Depth Complexity Complexity Standard Deviation of water depths within

the wetted channel.
9 Large Wood Freq. in Pools Wood Total volume of large wood pieces within the

wetted channel and Slow Water/Pool channel
units, scaled by site length.

10 Riparian Canopy Riparian Percent of riparian canopy with some
vegetation.

11 Substrate: D16 Substrate Diameter of the 16th percentile particle
derived from pebble counts.

12 Braidedness Complexity Ratio of the total length of the wetted
mainstem channel plus side channels and the
length of the mainstem channel.
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Table 3: Globally available attribute (GAA) habitat covariates used to extrapolate quantile random

forest (QRF) model predictions of spring/summer­run Chinook parr capacity to a larger scale (e.g.,

watershed, population), with their coefficients and standard errors.

Covariate Units Spatial Scale Estimate Std. Error

Temeprature Range C Reach­2km ­0.044 0.081
Elevation m Site­300m ­0.243 0.155
CHaMP Watershed ­ Region ­ ­
Natural Class PCA 1 ­ Watershed­HUC12 ­0.092 0.070
Disturbance Class PCA 1 ­ Watershed­HUC12 ­0.064 0.064
Drainage Area (sqrt) km2 (square root) Reach­2km ­0.141 0.077
Stream Power ­ Reach­2km 0.049 0.033
Slope m/m Reach­2km ­0.513 0.100
Channel Type ­ Site­300m ­ ­
Bankfull Width ­ modeled m Site­300m 0.216 0.099
NorWeST Aug. Temperature C Reach­2km ­0.149 0.119
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Table 4: Summary of extrapolation model fits, split by whether the extrapolation model used

CHaMP watershed as a covariate or not.

Model Response 𝑟2 Adjusted 𝑟2

CHaMP fish/m 0.481 0.454
non­CHaMP fish/m 0.360 0.339
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Table 5: Estimates of parr capacity from both spawner­recruit data (Beverton­Holt, Ricker, hockey

stick) and from extrapolated estimates of parr capacity from the quantile random forest (QRF)

model. Numbers in parentheses are coefficients of variation.

Population n Yrs Adult Data Parr Data Beverton
Holt

Ricker Hockey
Stick

QRF

Catherine
Creek

20 Spawners RST 135,387
(0.269)

103,021
(0.141)

99,921
(0.21)

190,857
(0.162)

Chiwawa
River

20 Spawners Parr Surveys 248,586
(0.24)

166,139
(0.148)

174,216
(0.184)

216,451
(0.363)

Hayden Creek 7 Spawners RST 58,394
(0.244)

65,958
(0.195)

48,351
(0.174)

121,676
(0.202)

Lostine River 17 Redds RST 196,259
(0.24)

146,982
(0.159)

144,415
(0.201)

152,493
(0.316)

Minam River 14 Spawners RST 1,309,223
(2.18)

484,810
(1.444)

662,802
(1.726)

365,338
(0.261)

South Fork
Salmon River

17 Redds RST 87,260
(0.407)

62,456
(0.265)

64,654
(0.317)

221,362
(0.142)

Tucannon
River

27 Redds RST 4,791,131
(13.016)

1,234,653
(8.566)

1,922,692
(10.082)

529,223
(0.196)

Upper Grande
Ronde River

8 Spawners RST 171,607
(0.388)

168,137
(0.298)

127,052
(0.317)

200,228
(0.23)

Upper Lemhi 7 Spawners RST 333,229
(0.322)

229,635
(0.212)

242,637
(0.252)

269,626
(0.217)
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Figures623

Figure 1: Watersheds with CHaMP habitat data. Watersheds in black also contain paired fish data.

Watershed names are: 1 ­ Entiat, 2 ­ John Day, 3 ­ Lemhi, 4 ­ Methow, 5 ­ Minam, 6 ­ Secesh, 7 ­

South Fork Salmon, 8 ­ Tucannon, 9 ­ Upper Grande Ronde, 10 ­ Wenatchee, 11 ­ Yankee Fork.
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Figure 2: Conceptual diagram showing input data sources, modeling decisions, model outputs etc.

for the QRF and extrapolation models.
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Figure 3: Relative importance of each habitat covariate included in the quantile random forest

(QRF) model to predict habitat capacity, during summer months, for spring/summer­run Chinook

salmon parr
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Figure 4: Partial dependence plots for the spring/summer­run Chinook salmon parr capacity quan­

tile random forest (QRF) model, depicting how parr capacity shifts as each habitat metric changes,

assuming all other habitat metrics remain at their mean values. Tick marks along the X­axis depict

observed values.
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Figure 5: Spawner­recruit data from nine watersheds. Solid lines are the spawner­recruit curve,

dashed lines are the estimated capacity, and shaded polygons depict the 95% confidence intervals

of capacity. Red corresponds to Beverton­Holt models, purple to Ricker models, blue to hockey

stick models, and green to QRF estimates. The QRF solid curve is a Beverton­Holt model with

the capacity parameter fixed to the QRF estimate of capacity. A few curves with high capacity

estimates were not plotted to improve readability.
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