An EU-Canada joint infrastructure
for next-generation multi-Study Heart research

Deliverable D4.4

Bioinformatics Toolbox

Reference

Lead Beneficiary

D4.4_euCanSHare_UKE_30112020
UKE

euCanSHare

Author(s)

Prof. Dr. Tanja Zeller, Dr. Andrej Spiess,
Dr. Anna Lena Engels

Dissemination level

Public

Type

Websites, patents filing, etc.

Official Delivery Date 30.11.2020
Date of validation by the WP Leader 30.11.2020
Date of validation by the Coordinator 30.11.2020

Signature of the Coordinator

j !I'\
P

euCanSHare is funded by the European Union’s H2020 Framework
under Grant Agreement 825903.

Version Log

euCanSHare

Issue Date Version Involved Comments
20/11/2020 1 Andrej Spiess AR i
Katharina Heil, | _. .
23/11/2020 2 Karim Lekadir First review
Andrej Spiess, .
30/11/2020 3 Tanja zeller Included GUI figures of RNAseq toolbox
30/11/2020 Katharina Heil, Final updates and finishing of the deliverable
Karim Lekadir P g
30/11/2020 Final version

Executive Summary

Meaning and purpose of this deliverable is to demonstrate the applicability of a bioinformatical
tool (part of a larger toolbox) that can either analyse external data through an upload
mechanism or offer the automatic analysis of internal server-housed data.

For this initial case, we selected the analysis of RNA sequencing (RNAseq) data, the de facto
standard of today’s gene expression measurement, as it is widely applied in the scientific
community.

We have programmed a tool that (as it currently stands) can analyse differential gene
expression between two groups, based on a provided “raw count” RNAseq matrix and three
additional files containing gene annotation data, group definitions and covariates. All data is
automatically matched and a subsequent extensive analyses of the data is conducted,
including visualizations of expression levels, variance structure analysis by decomposition
(PCA), variance contribution analysis, hierarchical clustering of top differential transcripts,
profile plots, and diagnostic plots (MA plot, Volcano plot). During analysis, the obtained data to
generate these exported plots is also automatically exported and named accordingly. The
differential gene expression is calculated by covariate-adjusted linear models with multiple
testing-corrected p-values. Finally, a large result matrix is generated, with the original count
matrix augmented with annotations, gene names and the complete statistical data and sorted
ascendingly by the corrected p-value, so that the most differential transcripts reside on the top
of the data.

In future, it is envisaged that the user selects RNAseq data deposited alongside clinical
variables and defines the desired grouping of the samples, which then is sufficient to create a
complete analysis output as described above.

euCanSHare

Table of Contents
The (artificial) RNAseq data

Upload, analysis and download structure

The analysis pipeline

Requirements
Outlook

1

2

3

4 Implementation
5

6

5 Requirements
6

o O VU OV o0 o u BpH

Outlook

Acronyms

RNAseq: RNA sequencing

GWAS: Genome-wide association study

PCA: Principal Component Analysis

PVCA: Principal Variance Component Analysis

R: The R language for statistical computing, www.r-project.org

QC: Quality control
FDR: False discovery rate
VRE: Virtual Research Environment

GUI: Graphical User Interface

http://www.r-project.org/

*
*

*®
*
.

euCanSHare

1 The (artificial) RNAseq data

For this initial analysis case, we generated artificial RNAseq data with defined properties, in
order to provide a quality control throughout the pipeline. Specifically, we generated RNAseq
counts for 100 samples and 151,298 transcripts ID’s of the current Ensemble Genes 101
database (https://www.ensembl.org/biomart/martview/). In a first step, a vector RV of size
151298 containing data from an exponential distribution with rate 0.0001 was generated, which
mimics the distribution of transcripts within cells, i.e. many transcripts with low abundance and
less transcripts with moderate to high abundance. Since RNAseq data often contains 0-cells
(sparsity), the data was also zero-inflated with many zero counts (Figure 1).

Histogram of RV

25000 30000

15000 20000

Frequency

10000
|

5000

0
l

[I I I I I 1
0 20000 40000 60000 80000 100000 120000

RV

Figure 1: The underlying distribution of the artificial RNAseq data.

Finally, for each of the exponentially distributed random deviates RV;, 100 further random
numbers from a normal distribution with mean 0 and a standard deviation of 10% were
generated and added, RV; + N(0O, 0.1 * RV)), delivering exponentially distributed data that is
normally distributed throughout the samples.

In a last step, a defined number of artificial differential transcripts was spiked into this matrix,
in detail 800 transcripts in Group 1 (Samples 1-50) and 200 transcripts in Group 2 (Samples 51-
100), where these 1,000 transcripts were 2-fold upregulated (Figure 2). This paradigm was
chosen as to provide a means of following these 1,000 transcripts through the analysis pipeline
and offer an internal QC for the complete procedure.

In a last step, artificial covariates for the linear model were generated, consisting of the two
covariates sex (binomial distribution) and an age group of four classes (binned normal
distribution).

https://www.ensembl.org/biomart/martview/

euCanSHare

15.0
|

log2(Counts)
14.5
l

14.0
|

Index

Figure 2: An artificially generated differential transcript with 2-fold upregulation in Group 2.

2 Upload, analysis and download structure

The user either supplies the RNAseq count matrix or (in the future) it will be fetched from the
server as companion data to the clinical variables. In addition, further files containing the
dichotomous group definition (Samplel => 0, Sample 2 => 0, Sample 3 => 1, etc.) and the
covariates need to be supplied. The data is then ported through a Python skeleton and analysed
within a server-sided R environment. The generated plot file (.pdf) and tabular result file (.xIsx)
is automatically generated and stored in a newly created and project-specific folder,
downloadable by the user (Figure 3).

. Python R-based
B & E -

o Yl

Figure 3: Upload, analysis and download procedure.

3 The analysis pipeline

For this initial case, our synthetic RNAseq dataset containing 1,000 artificial differential
transcripts was supplemented with group definitions and covariates and then imported into the
R environment. Within the analysis pipeline, the following steps were conducted, each of these
delivering figures and tabular output as compiled below (Table 1).

Table 1: Analysis steps and their corresponding output.

Step Analysis Figure Table
1 Import of data
2 Background removal
3 Distribution of Counts | Figure 01
4 PCA of all transcripts Figure 02 Sheet 01
5 PVCA analysis Figure 03 Sheet 02
6 Top 2000 filtering
7 PCA of top 2000 Figure 04 Sheet 03
8 Heatmap of top 200 Figure 05
9 Profile plot of top 10 Figure 06
10 Adjusted linear model
11 MA plot Figure 07
12 Volcano plot Figure 08
13 Final Result Matrix Sheet 04

During the analysis, the R script goes through all 13 steps and generates one .pdf (Figures) and
one .xlsx (statistical analyses) output file. Essentially, the user is supplied with a large data file
containing the original raw count matrix, but supplemented with complete gene annotation
(Ensembl ID, Gene Description, Refseq ID, Gene Symbol, Gene Type) and the statistical results
of the covariate-adjusted linear model analysis, including the corresponding variance value, raw
p-value, adjusted p-value (FDR), and differential expression ratio. The output is ascendingly
sorted by adjusted p-value, so that the user finds the most differential transcripts — based on
the prior group definition — directly on top.

In the end, the pipeline generates 8 Figures in the .pdf and 4 data sheets in the .xlsx file. In both
of these, we can observe that the pipeline has fully unveiled and recovered the set of 1,000
transcripts that was artificially increased in both groups (800 in Group 1, 200 in Group 2): The
two groups (in green and red) are clearly separable by PCA (Figure 4, “Figure 2”) and hierarchical
clustering (Figure 4, “Figure 4”), display a differential profile (Figure 4, “Figure 6”) and are fully
reconstituted from the remaining set of non-differential transcripts (red dots in Figure 4, “Figure
8”). Furthermore, the ratio estimates obtained from the linear model at the top of the exported
result matrix indicate, with ratios ~2 and ~0.5, that we have successfully extracted these from
the pool of 151,298 transcripts (Figure 5, right side).

euCanSHare

log2{Counts)

Figure 1: Boxplot of log2-transformed Read Counts

O

pppppp

-.- ...3- ELE)

........

100

Contribution [%)]

10

log(Rabo)
00

Figure 3:

age_group

Figure 5 Heatmap based on top 200 vaiable transcaipts.

(P e

G = Al
e T e S

-0s
i

-0

Figure 7: MA plot

E"‘"E HELEERIER

33Eﬁﬁfﬁﬁiﬁﬁﬁﬂﬁéﬁi§§§§§§§§§§§§3§§§§3§§3§§§

ion of the

R e i LR

Figure 2: PCA based on all Reads, 4 components

PC1

S sl S50

_* emepae) |

5
P s s o s——

Figure 8: Voleano plot

Figure 4: The eight figures as generated by the RNAseq analysis pipeline.

euCanSHare

Annotation Statistics

Transcript Gene_des Chr RefSeq Transcript Gene_typ Strand Transcript Gene_Syr||log(Estimate) SE t P Var Padj Ratio

ENSTO0000! NADH:ubi'20 NDUFAF5- protein_ct 1 933 NDUFAF5 1.034524549 0.029321 35.28226 2.16E-56 0.298028 2.94E-51 2.048438
ENSTO0000(long inter 10 LINC01517 IncRNA 1 1968 LINC01517 1.0288423 0.0302 34.06783 4.73E-55 0.28302 3E-50 2.040386
ENSTO0000I LDL recep’ CHR_HG1362_PATCH LRP6-214 protein_c -1 10252 LRP6 -1.04826794 0.030887 -33.9386 6.6E-55 0.29044 3E-50 0.483548
ENSTO0000 complem¢ CHR_HSCHR6_MHC_| C4A-216 protein_ci 1 974 C4A -1.019745155 0.030164 -33.8072 9.29E-55 0.283103 3.16E-50 0.493203
ENST0000I G protein CHR_HSCHR6_MHC_| GNL1-228 protein_c -1 774 GNL1 1.050673728 0.031292 33.57644 1.69E-54 0.2958 4.61E-50 2.071497
ENST0000! carnosine 18 CNDP1-20 protein_ci 1 1511 CNDP1 -1.02172667 0.03075 -33.2267 4.24E-54 0.28725 8.25E-50 0.492527
ENST0000i mucin 17, '7 MUC17-2C protein_ct 1 403 MUC17 1.029158923 0.030933 33.27032 3.78E-54 0.286104 8.25E-50 2.040834
ENSTO0000(protein pl’14 PPP2R3C-! protein_ct -1 492 PPP2R3C || -1.060034236 0.032249 -32.8703 1.09E-53 0.299964 1.85E-49 0.479621
ENSTO0000 novel trar 6 AL590428. IncRNA -1 1973 AL590428.|| -1.054772989 0.032184 -32.7728 1.41E-53 0.313582 2.14E-49 0.481373
ENSTO0000!(trans-2,3-w’19 TECR-213 protein_ci 1 508 TECR -0.990502318 0.030367 -32.6173 2.14E-53 0.268959 2.91E-49 0.503303
ENSTO0000 novel trar 4 AC104806. IncRNA -1 409 AC104806|| 1.034162066 0.031776 32.54501 2.59E-53 0.290576 3.21E-49 2.047924
ENSTO0000(LHX1 dive CHR_HSCHR17_7_CT! LHX1-DT-Z IncRNA -1 1462 LHX1-DT -1.008295654 0.031017 -32.5078 2.87E-53 0.273047 3.25E-49 0.497133
ENSTO0000 novel trar 17 AC127521 IncRNA -1 575 AC127521 (] -1.009185952 0.031095 -32.4547 3.31E-53 0.290499 3.34E-49 0.496827
ENSTO000! PRELI dorr 20 PRELID3B- protein_ct -1 612 PRELID3B 1.098386893 0.033859 32.44033 3.44E-53 0.333946 3.34E-49 2.141152
ENST0000! centroson 20 CEP250-2(protein_ci 1 868 CEP250 -1.057453398 0.03265 -32.3878 3.96E-53 0.297663 3.59E-49 0.480479
ENSTO000 MON1 hoi'16 MON1B-2!(protein_ct 1 877 MON1B -1.008236611 0.031158 -32.3594 4.27E-53 0.278312 3.64E-49 0.497154
ENST0000! long inter’3 LINC02037 IncRNA 1 935 LINC02037|| -1.006613471 0.031186 -32.278 5.32E-53 0.279064 4.26E-49 0.497713
ENSTO000! RNA bindi'8 RBPMS-21 protein_ct 1 494 RBPMS -0.998714166 0.031019 -32.1968 6.63E-53 0.278234 5.02E-49 0.500446
ENST0000! armadillo 19 ARMCE-2(protein_ct 1 563 ARMC6 -1.05279531 0.032745 -32.1518 7.49E-53 0.309756 5.37E-49 0.482033
ENSTO000! novel trar 1 AC239809. IncRNA -1 1023 AC239809 || 0.975830742 0.030391 32.10905 8.41E-53 0.256706 5.73E-49 1.966773
ENST0000! calcium bi11 CABP4-20. protein_ci 1 1426 CABP4 1.016428461 0.031772 31.99095 1.16E-52 0.287956 7.51E-49 2.022905
ENSTO000! novel trar7 AC005165. IncRNA -1 658 AC005165 || 1.007254037 0.031502 31.97391 1.21E-52 0.275755 7.51E-49 2.010082
ENST0000I SPOC dom'1 SPOCD1-2 protein_ct -1 563 SPOCD1 1.027429482 0.032235 31.87334 1.6E-52 0.293432 9.45E-49 2.038389
ENSTO0000(novel trarilZ AC008127. IncRNA 1 499 AC008127 || -0.970908594 0.030533 -31.799 1.96E-52 0.261771 1.05E-48 0.510185

Figure 5: The annotated and top differentially sorted result matrix.

4 Implementation

The RNAseq toolbox is part of the VRE Toolbox homepage at

https://vre.eucanshare.bsc.es/vre/tools/RNAseq/input.php?op=0 (Figure 6) and offers a GUl in

which to upload the four mandatory files (expression matrix, group definitions, annotations,
covariates) needed for the analysis (Figure 7).

%

N

machine learning multi-omics radiomics RNA-seq SNP
toolbox network analysis analysis analysis filtering
DICOM 2 NIFTI cardiac image
converter segmentation

Figure 6: The RNAseq toolbox as implemented on the VRE toolbox homepage.

After successful upload, the figures and statistical analyses are started after clicking a
“Compute” button, and then it takes approx. 5-10 minutes to create the two files (pdf, xlIsx)
that are deposited in a result folder for the scientist to download.

euCanSHare

Figure 7: The GUI for uploading the four mandatory files.

5 Requirements

The implementation requires, as depicted in Figure 3, the following infrastructure:

1) Araw RNAseq count matrix, either in a server-sided database, e.g. Opal, or
alternatively for client upload.

2) A GUI for either selecting the database data or uploading data.

3) Animplementation of R version 4.0.3 and the packages “openxlsx”, “Ime4” and
“pheatmap” on the server.

4) The R script Skript-analyze.R on the server.

5) A binding of the GUI and server to R, by Python codelets.

6) Automatically created, project-specific directories on the server, for the output files to
download.

6 Outlook

The tool, as described here, offers an initial inspection on how a more complex bioinformatics
toolbox might be represented. In principle, these should be implemented in a way that either
the user can upload his own data, or alternatively fetch similar data from the server. To date,
the “SNP filtering” tool implemented in the euCanSHare platform VRE is the adequate template
to this approach, with upload buttons for the corresponding data and a “Compute” button to
start the analysis. The underlying R scripts are relatively simple to establish, however the Python-
binding and calculation/export via the server-sided R environment constitutes the most complex
part.

Once this kind of pipeline is established, similar tools can be implemented in a fairly quick
manner. To our opinion, the development approach should be demand-driven, that is, be guided
by the molecular data that will be supplied together with the clinical cohorts. If, for instance,
this will be mainly genetic data, then establishing a more sophisticated tool for filtering and
analysing variant-calling files might be feasible.

The main advantage of these tools is that they provide a simple interface for the bioinformatical
“layman”, such as clinicians or wet-lab biologists. In the approach developed here, we tested
the performance by using artificial data with defined properties, so that we have a priori
knowledge on how the results need to appear, which in turn i) tests the proper performance of
the pipeline and ii) ensures that the implemented method is not of a black box-type.

	1 The (artificial) RNAseq data
	2 Upload, analysis and download structure
	3 The analysis pipeline
	4 Implementation
	5 Requirements
	6 Outlook

