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Executive Summary 
Meaning and purpose of this deliverable is to demonstrate the applicability of a bioinformatical 
tool (part of a larger toolbox) that can either analyse external data through an upload 
mechanism or offer the automatic analysis of internal server-housed data.  

For this initial case, we selected the analysis of RNA sequencing (RNAseq) data, the de facto 
standard of today’s gene expression measurement, as it is widely applied in the scientific 
community. 

We have programmed a tool that (as it currently stands) can analyse differential gene 
expression between two groups, based on a provided “raw count” RNAseq matrix and three 
additional files containing gene annotation data, group definitions and covariates. All data is 
automatically matched and a subsequent extensive analyses of the data is conducted, 
including visualizations of expression levels, variance structure analysis by decomposition 
(PCA), variance contribution analysis, hierarchical clustering of top differential transcripts, 
profile plots, and diagnostic plots (MA plot, Volcano plot). During analysis, the obtained data to 
generate these exported plots is also automatically exported and named accordingly. The 
differential gene expression is calculated by covariate-adjusted linear models with multiple 
testing-corrected p-values. Finally, a large result matrix is generated, with the original count 
matrix augmented with annotations, gene names and the complete statistical data and sorted 
ascendingly by the corrected p-value, so that the most differential transcripts reside on the top 
of the data. 

In future, it is envisaged that the user selects RNAseq data deposited alongside clinical 
variables and defines the desired grouping of the samples, which then is sufficient to create a 
complete analysis output as described above.  

 

  



 

3 
 

Table of Contents 
1 The (artificial) RNAseq data 4 

2 Upload, analysis and download structure 5 

3 The analysis pipeline 6 

4   Implementation 8 

5   Requirements 9 

6   Outlook 9 

5 Requirements 9 

6 Outlook 9 

 

 

 

 

Acronyms 
RNAseq: RNA sequencing 

GWAS: Genome-wide association study 

PCA: Principal Component Analysis 

PVCA: Principal Variance Component Analysis 

R: The R language for statistical computing, www.r-project.org 

QC: Quality control 

FDR: False discovery rate 

VRE: Virtual Research Environment 

GUI: Graphical User Interface 

 

  

http://www.r-project.org/
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1 The (artificial) RNAseq data 
For this initial analysis case, we generated artificial RNAseq data with defined properties, in 
order to provide a quality control throughout the pipeline. Specifically, we generated RNAseq 
counts for 100 samples and 151,298 transcripts ID’s of the current Ensemble Genes 101 
database (https://www.ensembl.org/biomart/martview/). In a first step, a vector RV of size 
151298 containing data from an exponential distribution with rate 0.0001 was generated, which 
mimics the distribution of transcripts within cells, i.e. many transcripts with low abundance and 
less transcripts with moderate to high abundance. Since RNAseq data often contains 0-cells 
(sparsity), the data was also zero-inflated with many zero counts (Figure 1). 

 
Figure 1: The underlying distribution of the artificial RNAseq data. 

Finally, for each of the exponentially distributed random deviates RVi, 100 further random 
numbers from a normal distribution with mean 0 and a standard deviation of 10% were 
generated and added, RVi + Ν(0, 0.1 * RVi), delivering exponentially distributed data that is 
normally distributed throughout the samples. 

In a last step, a defined number of artificial differential transcripts was spiked into this matrix, 
in detail 800 transcripts in Group 1 (Samples 1-50) and 200 transcripts in Group 2 (Samples 51-
100), where these 1,000 transcripts were 2-fold upregulated (Figure 2). This paradigm was 
chosen as to provide a means of following these 1,000 transcripts through the analysis pipeline 
and offer an internal QC for the complete procedure. 

In a last step, artificial covariates for the linear model were generated, consisting of the two 
covariates sex (binomial distribution) and an age group of four classes (binned normal 
distribution). 

 

 

https://www.ensembl.org/biomart/martview/
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Figure 2: An artificially generated differential transcript with 2-fold upregulation in Group 2. 

2 Upload, analysis and download structure 
The user either supplies the RNAseq count matrix or (in the future) it will be fetched from the 
server as companion data to the clinical variables. In addition, further files containing the 
dichotomous group definition (Sample1 => 0, Sample 2 => 0, Sample 3 => 1, etc.) and the 
covariates need to be supplied. The data is then ported through a Python skeleton and analysed 
within a server-sided R environment. The generated plot file (.pdf) and tabular result file (.xlsx) 
is automatically generated and stored in a newly created and project-specific folder, 
downloadable by the user (Figure 3). 

 

 

 

 

 

 

Figure 3: Upload, analysis and download procedure. 
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Ensembl_ID Sample_1 Sample_2 Sample_3
ENST00000387314 8915.095262 8715.609822 7271.526939
ENST00000389680 5437.597371 6041.2042 5742.605207
ENST00000387342 14365.59143 11588.55641 10570.8274
ENST00000386347 620.1265996 569.2792491 504.0381427
ENST00000387372 1735.041942 1421.671173 1668.817677
ENST00000387377 25034.14969 28962.13862 33045.09724
ENST00000361453 308.5625094 282.0709694 340.6879814
ENST00000387382 10248.36804 9896.483208 10499.26764
ENST00000387400 2617.033728 2727.055094 3115.081818

Data 
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3 The analysis pipeline 
For this initial case, our synthetic RNAseq dataset containing 1,000 artificial differential 
transcripts was supplemented with group definitions and covariates and then imported into the 
R environment. Within the analysis pipeline, the following steps were conducted, each of these 
delivering figures and tabular output as compiled below (Table 1). 

 

Table 1: Analysis steps and their corresponding output. 

Step Analysis Figure Table 
1 Import of data   
2 Background removal   
3 Distribution of Counts Figure 01  
4 PCA of all transcripts Figure 02 Sheet 01 
5 PVCA analysis Figure 03 Sheet 02 
6 Top 2000 filtering   
7 PCA of top 2000 Figure 04 Sheet 03 
8 Heatmap of top 200 Figure 05  
9 Profile plot of top 10 Figure 06  

10 Adjusted linear model   
11 MA plot Figure 07  
12 Volcano plot Figure 08  
13 Final Result Matrix  Sheet 04 

 

During the analysis, the R script goes through all 13 steps and generates one .pdf (Figures) and  
one .xlsx (statistical analyses) output file. Essentially, the user is supplied with a large data file 
containing the original raw count matrix, but supplemented with complete gene annotation 
(Ensembl ID, Gene Description, Refseq ID, Gene Symbol, Gene Type) and the statistical results 
of the covariate-adjusted linear model analysis, including the corresponding variance value, raw 
p-value, adjusted p-value (FDR), and differential expression ratio. The output is ascendingly 
sorted by adjusted p-value, so that the user finds the most differential transcripts – based on 
the prior group definition – directly on top. 

In the end, the pipeline generates 8 Figures in the .pdf and 4 data sheets in the .xlsx file. In both 
of these, we can observe that the pipeline has fully unveiled and recovered the set of 1,000 
transcripts that was artificially increased in both groups (800 in Group 1, 200 in Group 2): The 
two groups (in green and red) are clearly separable by PCA (Figure 4, “Figure 2”) and hierarchical 
clustering (Figure 4, “Figure 4”), display a differential profile (Figure 4, “Figure 6”) and are fully 
reconstituted from the remaining set of non-differential transcripts (red dots in Figure 4, “Figure 
8”). Furthermore, the ratio estimates obtained from the linear model at the top of the exported 
result matrix indicate, with ratios ~2 and ~0.5, that we have successfully extracted these from 
the pool of 151,298 transcripts (Figure 5, right side). 
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Figure 4: The eight figures as generated by the RNAseq analysis pipeline. 

 

 

 



 

8 
 

 

                                     Annotation                                                              Statistics 

 
Figure 5: The annotated and top differentially sorted result matrix. 

 

4 Implementation 
The RNAseq toolbox is part of the VRE Toolbox homepage at 
https://vre.eucanshare.bsc.es/vre/tools/RNAseq/input.php?op=0 (Figure 6) and offers a GUI in 
which to upload the four mandatory files (expression matrix, group definitions, annotations, 
covariates) needed for the analysis (Figure 7).  

 

 

 

 

 

 

 

 

 

Figure 6: The RNAseq toolbox as implemented on the VRE toolbox homepage. 

After successful upload, the figures and statistical analyses are started after clicking a 
“Compute” button, and then it takes approx. 5-10 minutes to create the two files (pdf, xlsx) 
that are deposited in a result folder for the scientist to download.  

 

 

 

Transcript_Gene_desChr RefSeq Transcript_Gene_typ Strand Transcript_Gene_Sym
ENST00000NADH:ubiq        20 NDUFAF5-protein_co 1 933 NDUFAF5
ENST00000long interg       10 LINC01517lncRNA 1 1968 LINC01517
ENST00000LDL recept      CHR_HG1362_PATCHLRP6-214 protein_co -1 10252 LRP6
ENST00000compleme       CHR_HSCHR6_MHC_MC4A-216 protein_co 1 974 C4A
ENST00000G protein     CHR_HSCHR6_MHC_DGNL1-228 protein_co -1 774 GNL1
ENST00000carnosine    18 CNDP1-20 protein_co 1 1511 CNDP1
ENST00000mucin 17,     7 MUC17-20protein_co 1 403 MUC17
ENST00000protein ph       14 PPP2R3C-2protein_co -1 492 PPP2R3C
ENST00000novel tran6 AL590428. lncRNA -1 1973 AL590428.
ENST00000trans-2,3-e    19 TECR-213 protein_co 1 508 TECR
ENST00000novel tran4 AC104806.lncRNA -1 409 AC104806.
ENST00000LHX1 diver    CHR_HSCHR17_7_CTGLHX1-DT-2lncRNA -1 1462 LHX1-DT
ENST00000novel tran    17 AC127521.lncRNA -1 575 AC127521.
ENST00000PRELI dom     20 PRELID3B- protein_co -1 612 PRELID3B
ENST00000centrosom     20 CEP250-20protein_co 1 868 CEP250
ENST00000MON1 hom       16 MON1B-20protein_co 1 877 MON1B
ENST00000long interg       3 LINC02037lncRNA 1 935 LINC02037
ENST00000RNA bindi       8 RBPMS-21protein_co 1 494 RBPMS
ENST00000armadillo     19 ARMC6-20protein_co 1 563 ARMC6
ENST00000novel tran1 AC239809.lncRNA -1 1023 AC239809.
ENST00000calcium bi     11 CABP4-202protein_co 1 1426 CABP4
ENST00000novel tran7 AC005165.lncRNA -1 658 AC005165.
ENST00000SPOC dom     1 SPOCD1-2 protein_co -1 563 SPOCD1
ENST00000novel tran    12 AC008127.lncRNA 1 499 AC008127.

log(Estimate) SE t P Var Padj Ratio
1.034524549 0.029321 35.28226 2.16E-56 0.298028 2.94E-51 2.048438

1.0288423 0.0302 34.06783 4.73E-55 0.28802 3E-50 2.040386
-1.04826794 0.030887 -33.9386 6.6E-55 0.29044 3E-50 0.483548

-1.019745155 0.030164 -33.8072 9.29E-55 0.283103 3.16E-50 0.493203
1.050673728 0.031292 33.57644 1.69E-54 0.2958 4.61E-50 2.071497
-1.02172667 0.03075 -33.2267 4.24E-54 0.28725 8.25E-50 0.492527
1.029158923 0.030933 33.27032 3.78E-54 0.286104 8.25E-50 2.040834

-1.060034236 0.032249 -32.8703 1.09E-53 0.299964 1.85E-49 0.479621
-1.054772989 0.032184 -32.7728 1.41E-53 0.313582 2.14E-49 0.481373
-0.990502318 0.030367 -32.6173 2.14E-53 0.268959 2.91E-49 0.503303
1.034162066 0.031776 32.54501 2.59E-53 0.290576 3.21E-49 2.047924

-1.008295654 0.031017 -32.5078 2.87E-53 0.273047 3.25E-49 0.497133
-1.009185952 0.031095 -32.4547 3.31E-53 0.290499 3.34E-49 0.496827
1.098386893 0.033859 32.44033 3.44E-53 0.333946 3.34E-49 2.141152

-1.057453398 0.03265 -32.3878 3.96E-53 0.297663 3.59E-49 0.480479
-1.008236611 0.031158 -32.3594 4.27E-53 0.278312 3.64E-49 0.497154
-1.006613471 0.031186 -32.278 5.32E-53 0.279064 4.26E-49 0.497713
-0.998714166 0.031019 -32.1968 6.63E-53 0.278234 5.02E-49 0.500446

-1.05279531 0.032745 -32.1518 7.49E-53 0.309756 5.37E-49 0.482033
0.975830742 0.030391 32.10905 8.41E-53 0.256706 5.73E-49 1.966773
1.016428461 0.031772 31.99095 1.16E-52 0.287956 7.51E-49 2.022905
1.007254037 0.031502 31.97391 1.21E-52 0.275755 7.51E-49 2.010082
1.027429482 0.032235 31.87334 1.6E-52 0.293432 9.45E-49 2.038389

-0.970908594 0.030533 -31.799 1.96E-52 0.261771 1.05E-48 0.510185
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Figure 7: The GUI for uploading the four mandatory files. 

5 Requirements 
The implementation requires, as depicted in Figure 3, the following infrastructure: 

1) A raw RNAseq count matrix, either in a server-sided database, e.g. Opal, or 
alternatively for client upload. 

2) A GUI for either selecting the database data or uploading data. 
3) An implementation of R version 4.0.3 and the packages “openxlsx”, “lme4” and 

“pheatmap” on the server. 
4) The R script Skript-analyze.R on the server. 
5) A binding of the GUI and server to R, by Python codelets. 
6) Automatically created, project-specific directories on the server, for the output files to 

download. 
 

6 Outlook 
The tool, as described here, offers an initial inspection on how a more complex bioinformatics 
toolbox might be represented. In principle, these should be implemented in a way that either 
the user can upload his own data, or alternatively fetch similar data from the server. To date, 
the “SNP filtering” tool implemented in the euCanSHare platform VRE is the adequate template 
to this approach, with upload buttons for the corresponding data and a “Compute” button to 
start the analysis. The underlying R scripts are relatively simple to establish, however the Python-
binding and calculation/export via the server-sided R environment constitutes the most complex 
part.  

Once this kind of pipeline is established, similar tools can be implemented in a fairly quick 
manner. To our opinion, the development approach should be demand-driven, that is, be guided 
by the molecular data that will be supplied together with the clinical cohorts. If, for instance, 
this will be mainly genetic data, then establishing a more sophisticated tool for filtering and 
analysing variant-calling files might be feasible. 

The main advantage of these tools is that they provide a simple interface for the bioinformatical 
“layman”, such as clinicians or wet-lab biologists. In the approach developed here, we tested 
the performance by using artificial data with defined properties, so that we have a priori 
knowledge on how the results need to appear, which in turn i) tests the proper performance of 
the pipeline and ii) ensures that the implemented method is not of a black box-type. 
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