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ABSTRACT

This paper brings together two main perspectives on algo-
rithmic pattern. First, the writing of musical patterns in
live coding performance, and second, the weaving of pat-
terns in textiles. In both cases, algorithmic pattern is an
interface between the human and the outcome, where small
changes have far-reaching impact on the results.

By bringing contemporary live coding and ancient textile
approaches together, we reach a common view of pattern
as algorithmic movement (e.g. looping, shifting, reflecting,
interfering) in the making of things. This works beyond
the usual definition of pattern used in musical interfaces, of
mere repeating sequences. We conclude by considering the
place of algorithmic pattern in a wider activity of making.
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1. DEFINING ALGORITHMIC PATTERN
This paper explores the world of algorithmic pattern, and
the ways in which it offers an interface to the computer mu-
sician. To introduce this topic, let’s first look at the words
pattern and algorithm separately, before putting them to-
gether.

Patterns are present everywhere, certainly in textiles,
choreography, mathematics, design and music. However, at
first glance, the use of the word pattern in music seems com-
paratively impoverished, at least in the West. At the time
of writing, the English language Wikipedia page on pattern
has no mention of music, and when musicians talk about
pattern, they usually mean any sequence that repeats. The
word can even take on a pejorative sense in music, for exam-
ple in a conference paper on transdisciplinary collaboration
Hugill recounts how (and I paraphrase) mathematicians de-
vote their careers to searching for patterns, whereas many
composers will be seriously offended if you accuse them of
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making patterns.1

This paper compares patterns in music with those in tex-
tiles. The textile arts and crafts are alive with composi-
tional patterning techniques, not only repetitions but re-
flections and symmetries, and generative structural compo-
sitions. Once you scratch the surface of music, it is of course
also fully alive with patterns. As just one example, consider
canon structures, where one voice imitates another, played
over the top with a delay - an example of rotational or
glide symmetry. So it seems that the difference here is the
way words are used; in music, a canon contains patterns,
whereas in textiles, such a structure would itself be referred
to as the pattern.

So what is a Pattern? Grünbaum and Shephard [12] de-
fine patterns as “designs repeating some motif in a more
or less systematic manner.” They write in the context of
geometric tilings, but the same definition largely holds in
music fields; a sequence becomes a pattern, once it is re-
peated. However, in music we too often focus on the repeti-

tion, and not the systematic manner in which it is repeated.
For a pattern to be interesting, we need to do more than
repeat it; the repetition only provides the metrical ground
on which the pattern acts. Looking around the room you
are in now, you will likely see patterns of repetition, but
also of reflection, rotation, interference/moire, and glitches
or deviations from those patterns. The textiles around (or
on) you may well have a visual pattern arising not from the
colour of threads alone, but from computational interference
between colour and structure.

Accordingly, in the present paper, pattern is taken to refer
to a whole family of techniques for working with regularities
in the world. Such patterns allow us to perceive repetition,
reflection and interference in a material. In other words,
the way we perceive pattern is inextricably linked with the
structured movements of its making. And, once we are deal-
ing with ‘structured movements of making’, we are in the
world of algorithms.

An algorithm is a step-by-step set of instructions. Some-
times it is assumed that by a step-by-step set, we mean a
sequence of instructions, but this is not the case; indeed
the notion of an algorithm has been formalised as lambda
calculus, which may involve recursive steps into a function
declaration, rather than stepping down a stateful sequence
of statements. This clarification becomes important later
in this paper, when we address TidalCycles, a live coding
environment embedded in the Haskell language, which is
itself based on lambda calculus.

There is some sense that as used in this paper the words
algorithm and pattern are synonyms; they both refer to

1Hugill’s paper is unpublished but a video of its presen-
tation is available at medias.ircam.fr/x6e2d95 with follow-
on blog andrewhugill.com/blog/?p=3159 (both accessed 30
Jan 2020).
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structured ways of making. Therefore the phrase “algo-
rithmic pattern” seems to be a tautology. The phrase is
nonetheless useful for on one hand clarifying that we ad-
dress algorithms not just as software engineering tools, but
as formalised ways of making that can to a large extent be
perceived in end-results. It also clarifies that we are inter-
ested in patterns that are not just simple sequences, but
structural qualities. This builds a perspective on pattern
as a generative and perceptual connection between creation
and reception. In short, I define algorithmic pattern as the
perception of systematic activity.

1.1 Patterns in NIME
From her perspective as a foundational algorithmic com-
poser and technologist, Laurie Spiegel [28] argues (in a pa-
per reaching its 40th anniversary) that patterns should be
central to computer music interface design, a call relevant
to the NIME (New Interfaces for Musical Expression) field.
We will return to Spiegel’s argument later, but as things
stand, how do NIME authors use the word pattern? Ac-
cording to my use of the pdfgrep utility on a corpus of
1,739 NIME papers2, the word ‘pattern’ can be found in
803 papers (46% of the total) of which 315 (18% of the to-
tal) contain the word more than twice. I ranked these by
incidence, and read the top twenty (which ranged from 26
to 150 occurrences per paper), to gain an impression of how
the word is used in the NIME community. Of these twenty
papers, I deemed only one [7] explored pattern as an activ-
ity, in the context of patterns of interaction emerging and
continually changing in motor feedback loops. Of the re-
maining papers, nine discussed transformation of patterns
in some way [5, 13, 14, 16, 19, 24, 31, 33], although all these
referred to patterns as being the end result, rather than as
a generation/transformation process or notation. The re-
maining eleven papers [1, 2, 4, 15, 17, 18, 20, 25, 26, 29, 32]
referred to patterns as fixed sequences. I identified only one
explicit definition of pattern, where Petit et al [25] write “A
pattern can be any part of a score, a MIDI sequence, or a
pre-recorded sound” – too broad a definition to be useful in
the present context.

Wanting to find more examples of papers treating pattern
as activity or behaviour rather than sequence, I searched
again for the gerund patterning. This returned nine papers,
none of which had more than two instances of the word.
However several went beyond passing references: Green [10]
used patterning to refer to the combination of two patterns,
Suiter [30] described musical form as a process and patterns
in terms of how they relate to one another, Gimenes et al
[9] quote Meyer in defining a composer’s style as connect-
ing patterns in human behaviour with patterns in results,
and my own co-authored paper [3] described live coded algo-
rithms as patterned behaviour. I count all of these examples
as fitting the definition of algorithmic pattern presented in
the present paper, as the perception of systematic activity.

1.2 Algorithmic Pattern in Computer Music
Interfaces

Algorithmic and generative music systems often come with
high-minded claims of infinite variation or artificial intel-
ligence. However on closer examination, these systems of-
ten rely upon surprisingly simple systems based on prob-
ability (e.g. Markov chains), arbitrary decisions (random-
ness/chance) and straightforward sequencing, referred to

2 Pdfgrep is available at pdfgrep.org. It was used with -
i and -c parameters, for case-insensitive matching. For
example, the top twenty in terms of number of matches was
found with the following: pdfgrep -i -c pattern *pdf |
sort -n -t: -k2 | tail -n20

as ‘algorithmic’ simply because they are expressed as text
rather than as a graphical piano roll. In her essay “Ma-
nipulations of Musical Patterns” mentioned earlier, Laurie
Spiegel [28] looks beyond such methods, arguing convinc-
ingly for greater focus on pattern transformations in com-
puter music interfaces, naming twelve categories of pattern
transformation which, she argues, should be as central to
computer music interfaces as copy and paste. Many com-
puter music and live coding languages do indeed now fea-
ture such pattern languages, including SuperCollider, ixi-
lang, FoxDot, Gibber and TidalCycles.

Our argument is not that algorithmic pattern is complex
or difficult, but rather that complexity results from sim-
ple parts. In “Notes on Pattern Synthesis”, Mark Fell [8]
reveals the Max patches behind his acclaimed album Mul-

tistability, which embrace simplicity in producing intensive
pattern studies within self-enforced guidelines. This min-
imalist approach results in music with clarity, but which
is nonetheless complex in structure. The usual minimal-
ist examples, such as Reich’s clapping music fit here too,
simple in its patterned construction, but bringing forth as-
tonishing variety of detail in its outcome. This is a core
benefit to using a pattern as an interface; embracing the
simplest ingredients, but transforming them and compos-
ing them together to create complex results. Far from new,
this approach grounds discussion of music generation in a
rich perspective, able to draw from an expansive variety of
cultural practices and artefacts from around the world and
across history.

When we write something as an algorithmic pattern, we
work at least one step removed from the surface of a ‘target
domain’ such as musical notes. By analogy, we don’t hit the
drum, we write about hitting the drum. Not even that, we
write about relationships between drum hits, the structures
that lead to one movement following another. This is a
trade-off, which creates distance between ourselves and an
instrument, thereby losing direct tactile control, but which
also brings us ‘up’ to work on a compositional, structural
level. Here, we lose physical connection to a drum skin, but
instead work in a way where a very small change can create
far reaching, often unexpected changes in the music as it
unfolds. This generative aspect of algorithmic pattern is
what we explore below. Within the limits of this paper, we
are unfortunately unable to explore this expansive world in-
depth, which encompasses the history of all arts and crafts.
Instead we will focus on two examples: first, live coded
patterns in music, and then woven patterns in textiles.

2. ALGORITHMIC PATTERN IN TIDAL-

CYCLES
Work on TidalCycles (commonly Tidal for short) first began
around 2009, and over the past decade has developed into a
comprehensive, free/open source environment for algorith-
mic pattern, mainly in the context of live coding music. At
heart, it is a domain specific language (DSL) and environ-
ment for patterning Open Sound Control network messages,
embedded in the pure functional language Haskell. Tidal is
usually used in tandem with SuperDirt, a hybrid framework
for sample manipulation, synthesis and MIDI, implemented
in SuperCollider. However, Tidal can be applied to any kind
of pattern, and has indeed been used to pattern live chore-
ographic scores [27], woven textiles [23], DMX-controlled
lighting, and VJing. Indeed, in sympathy with the present
medium, all the below examples in this section use Tidal to
create visual rather than musical pattern.

While Tidal has been developed alongside creative prac-
tice, it upholds strong computer scientific principles. Cru-
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cially, a pattern is defined as a pure function, and therefore
may be composed with other patterns flexibly and safely.
As Tidal has developed, its core representation has grown
more succinct, and a recent rewrite resulted in more rigor-
ous understanding of what, as far as Tidal is concerned, a
pattern is.

2.1 Tidal type structure
Tidal’s notion of pattern follows from its representation
within Haskell’s type system, as a pure function of time.
This follows work on pure functional reactive programming
[6], where rather than representing data using lists, be-
haviour is represented with functions. Accordingly, rather
than representing a sequence as a list of events, Tidal rep-
resents it as a function taking a timespan as input, and
then returning all the events that are active during that
timespan. In this way, the idea of a pattern being about
behaviour rather than sequence is embedded in Tidal’s core.

Let’s have a look at the type declarations themselves, de-
scribing each for those unfamiliar with the Haskell language.

data Arc = Arc {start :: Rational, stop :: Rational}

A timespan is expressed as an arc of time, consisting of
a start and end time. Timespans are referred to as arcs, in
sympathy with Tidal’s cyclic notion of time. Importantly,
time is represented by a rational number, thereby allow-
ing time to be arbitrarily subdivided, without any loss of
accuracy (that the more common representations based on
floating point numbers are known for).

data Event a = Event {

whole :: Maybe Arc,

part :: Arc,

value :: a

}

An event contains a value of some type a, and two arcs.
The part arc represents the timespan during which the event
is active. An event may represent part of a larger whole

timespan, which is the second arc. If a whole is not set,
this indicates that the event is continuous; that is, rather
than having a discrete beginning and end, the value is able
to change continuously. When querying a continuous value,
the result is sampled from the midpoint of the query arc.
This approach allows both discrete and continuously vary-
ing events to co-exist in the same pattern.

type Query a = (Arc -> [Event a])

data Pattern a = Pattern {query :: Query a,

controls :: StateMap

}

A query represents the pattern’s behaviour, as a function
from time arcs to events. In particular, a query takes an
arc as input, and returns a set of events which are active
during that arc as output. Event values in a given pattern
must all be of the same type, and the ‘part’ arcs of the
events will be constrained to the query arc. If an event
‘whole’ extends beyond the query, it is returned as-is, but
its ‘part’ is curtailed. In other words, when a query returns
a fragment of an event, the caller is also given the ‘whole’
arc of which the fragment is part.

2.2 Tidal composition
The above definition of pattern does not say much about
Tidal as an interface, but what follows from it is a rich
approach to composition, supported by a large library of

pattern combinators. Composition is meant here in both a
musical and computer scientific sense, in terms of compos-
ing together musical behaviours into new, generally more
complex behaviours. Tidal supports a multitude of ways to
combine patterns together, many based on Tidal’s allowing
patterns to be treated as values; that is, any function that
combines two values, can be used to combine two patterns

of values.3

As a trivial example, let’s combine two tidal patterns
fastcat [1,2,3] and fastcat [4,5]. The first thing to
note is that fastcat combines a list of patterns into a con-
tiguous sequence, of equal durations over a cycle. The met-
rical cycle is in general the reference point in a Tidal op-
eration, rather than a beat or step. Therefore, we need to
combine two patterns with different structures - one has
three events per cycle, and the other has two. We can visu-
alise them like this:

fastcat [1,2,3]

fastcat [4,5]

Patterns continue into infinity, but in the examples here
we visualise just the first metrical cycle. We can combine
these two patterns by adding them together with +:

fastcat [1,2,3] + fastcat [4,5]

In the above, 1 gets added to part of 4, 2 gets split be-
tween 4 and 5, and 3 gets added to part of 5. An alterna-
tive operator, |+, privileges structure on the left. The same
events are matched up, but the resulting events maintain
the ‘wholes’ from the pattern on the left hand side of the
operator:

fastcat [1,2,3] |+ fastcat [4,5]

Event fragments are shown with their active parts shaded
within their original ‘whole’. Conversely, the +| operator
privileges structure from the right hand pattern:

fastcat [1,2,3] +| fastcat [4,5]

Note that when such a pattern structure reaches the
scheduler, only the events that have their onsets intact will
result in an event actually being triggered. That is, the start
of an event’s ‘part’ must be the same as that of its ‘whole’
to result in sound, otherwise it represents a fragment of an
event’s tail, only useful for combining with other events.4

Accordingly, the first example would trigger four sounds,
the second three sounds, and the final one two sounds.

Tidal has a set of such operators for basic arithmetic, but
any function can be used to combine patterns together in
this way by using Haskell’s standard syntax for applicative

3In other words, in functional programming terms, in Tidal
a pattern is an applicative functor.
4Amodel that works beyond trigger messages, allowing con-
tinual varying of a sound’s parameters after it has been trig-
gered, is at working prototype stage.
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functors, with Tidal’s additional nonstandard operators <*
and *> for privileging structure on the left or right. For ex-
ample, to merge two colour patterns using the blend func-
tion, with an additional continuous sine pattern to control
the blend from one pattern to another:

blend

<$> (slow 4 sine)

*> "[blue, pink red grey, darkblue]*20"

<*> "{blue orange, darkgrey yellow pink}*11.5"

Instead of using ‘fastcat’, the above makes straightfor-
ward use of Tidal’s mini-notation for polyrhythmic se-
quences, denoted by double quotes.

It is worth reiterating at this point that all these patterns
are functions, and not data structures. By combining them
in this way we are not computing anything, only creating
a new function composed of other functions, i.e. composing
behaviours. No calculation actually takes place until the
resulting pattern is queried.

2.3 Patterned parameters
TidalCycles has a large library of combinators, but for the
purpose of this paper we will focus on just one, the fast

function, which simply speeds up (or for factors < 1 slows
down) a pattern. Its definition is minimal, taking a time
factor and a target pattern as input, and manipulating the
target pattern’s timeline according to the factor:

fast timepat pat =

innerJoin ((\time -> withResultTime (/ time) $

withQueryTime (* time) pat)

<$> timepat

)

What is interesting in the above is that the time factor
input is itself a pattern. With combined use of the <$>

operator and innerJoin function, we manipulate the target
pattern inside the pattern of time. This higher order magic
uses much the same procedure to combine patterns as the
one described earlier. The result is a highly flexible function
for patterning the speed of a pattern. For example:

fast 4 $ fast "1 2 3" "grey pink red orange"

The above switches between slices of the colour pattern
running at different speeds. An additional fast function is
applied so that you can see four cycles of the result. Once a
few more simple transformations are added, textures begin
to form:

superimpose rev $ superimpose (fast 2)

$ chunk 4 (blend 0.5 red <$>)

$ superimpose rev

$ fast "1 5 3"

$ iter 4 "grey pink red orange"

Again, the above code does not calculate anything on
its own, it composes together into a single function, which
is then passed to the scheduler (or in this case, graphics
renderer) which queries the required time arcs.

2.4 TidalCycles as algorithmic pattern inter-
face

Please refer to tidalcycles.org for further details of Tidal’s
library of combinators, polyrhythmic mini-notation, and in-
dependently patternable effects. But already, we can see
some of the affordances which Tidalcycles offers. Every part
of the above code example is trivial on its own, starting
with a four-step sequence, and adding simple transforma-
tions on top. However, the results quickly become astonish-
ingly complex, with each edit giving results which become
practically impossible to predict. This is because the differ-
ent elements interfere with each other, so that every simple
part has complex influence over the whole.

3. ALGORITHMIC PATTERN IN HAND

WEAVING
Hand weaving is an advanced world of technology, having
developed over thousands of years within diverse cultures of
practice across the world. All weaving is digital technology,
in that it involves discrete crossing points between warp
(vertical) and weft (horizontal) threads. As with Tidal,
a weave involves interference between multiple interacting
systems. In other words, all weavers work with algorithmic
patterns, especially hand weavers, who work without any
machine or computer to do calculations for them, so do it
all themselves.

3.1 Colour and weave
It is difficult to get across the complexities of weave in a
single paper, but one clear example is the family of colour-
and-weave effects, where systems of colour and binary struc-
ture interfere to create the end result [22]. The following
shows an elementary example with a diagonal ‘twill’ struc-
ture. The left shows the weave ‘block’ structure, a binary
grid representing meeting points between warp and weft
threads. A square is black where a weft goes over the warp,
and white where it goes under. The central diagram shows
a simulation of this pattern woven with light weft and dark
warp threads, with the diagonal structure visible in the re-
sults. However, if we weave the same structure with alter-
nating light and dark threads on both the warp and weft, the
result (shown on the right) has the appearance of a diagonal
moving in a different direction. This is a trivial example of
a colour-and-weave effect, which can be exploited to create
a wide range of imagery from the same grid structure.

268

https://tidalcycles.org


3.2 Double weave
Working with weaves as a two dimensional binary struc-
ture is a useful abstraction, but like all abstractions is not
a complete model. The threads of weaves move in three di-
mensions, with the structure of the threads themselves, and
their behaviour under tension, having strong bearing on the
end result. It is therefore a mistake to think that the binary
grid fully represents reality. Such a mistake seems to have
been made by Grünbaum and Shephard [11], who approach
weaving from the point of view of two-dimensional tiling
patterns. Using geometric rules, they prove that the follow-
ing weave structure result in a textile which ‘falls apart’:

When this structure is ‘woven’ using rigid card, this does
appear to be the case; half of the weave lifts off the rest,
resulting in highly unstable structures:

However as can be seen below, if we weave the structure
with warp threads under tension on a loom, we find that
the two layers hold together perfectly. Rather than ‘falling
apart’, the textile simply splits in two. In fact, this tech-
nique of weaving two (or more) layers at once is very well
known by weavers as double (or triple, etc) weave, resulting
in a thick structure, where threads from the two layers can
exchange to create a range of effects.5

5 The weave was itself live coded, on the ‘live loom’ [21]

4. ALGORITHMIC PATTERN AS INTER-

FACE
To conclude, let’s consider the place of algorithmic pattern
as an interface between a musician and their music. We have
seen how the algorithmic patterning of interference patterns
within a two-dimensional grid acts as an interface between
weaver and weave. It allows manipulation of textile at one-
step removed, in terms of higher order structure that can
generate surprising results, including through colour-and-
weave and double weave effects. But when weaving we must
recognise that the block design is only one part of the whole,
and that to weave is both a computational and embodied
experience where abstract algorithmic patterns meet real-
world behaviours. It is not possible to understand a woven
structure without actually weaving it.

The same lesson applies to algorithmic patterns in live
coding. We can work with the pattern as code, but it does
not notate what we hear and feel. Not only do interfer-
ence patterns work inside the computer at scales beyond our
imaginations, but they then leave the computer as sound,
perceived as music in ways which do not exist in the nota-
tion but in our embodied minds. Live coding involves an
improvised movement of pattern across cognition, compu-
tation and perception, a fundamentally experimental activ-
ity, where code is developed in the open-minded and open-
bodied spirit of discovery. Without understanding that the
algorithm is only one step in the creation of music, we might
find that our music simply falls apart.
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