









SYNYO







QUANTIFICATION OF SYNERGIES BETWEEN ENERGY EFFICIENCY FIRST PRINCIPLE AND RENEWABLE ENERGY SYSTEMS

D3.6 Energy efficiency potentials on top of the frozen efficiency scenario



This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement No 846463.

## Project

| Acronym     | sEEnergies                                                                                                              |  |  |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Title       | Quantification of Synergies between Energy Efficiency First Principle and Renewable Energy Systems                      |  |  |  |  |
| Coordinator | Brian vad Mathiesen, Aalborg Universitet                                                                                |  |  |  |  |
| Reference   | 846463                                                                                                                  |  |  |  |  |
| Туре        | Research and Innovation Action (RIA)                                                                                    |  |  |  |  |
| Programme   | HORIZON 2020                                                                                                            |  |  |  |  |
| Торіс       | LC-SC3-EE-14-2018-2019-2020 - Socio-economic research conceptualising and modelling energy efficiency and energy demand |  |  |  |  |
| Start       | 01 September 2019                                                                                                       |  |  |  |  |
| Duration    | 34 months                                                                                                               |  |  |  |  |
| Website     | https://seenergies.eu/                                                                                                  |  |  |  |  |
|             |                                                                                                                         |  |  |  |  |
| Consortium  | Aalborg Universitet (AAU), Denmark                                                                                      |  |  |  |  |
|             | Hogskolan i Halmstad (HU), Sweden                                                                                       |  |  |  |  |
|             | TEP Energy GmbH (TEP), Switzerland                                                                                      |  |  |  |  |
|             | Universiteit Utrecht (UU), Netherlands                                                                                  |  |  |  |  |
|             | Europa-Universität Flensburg (EUF), Germany                                                                             |  |  |  |  |
|             | Katholieke Universiteit Leuven (KULeuven), Belgium                                                                      |  |  |  |  |
|             | Norges Miljø- og Biovitenskapelige Universitet (NMBU), Norway                                                           |  |  |  |  |
|             | SYNYO GmbH (SYNYO), Austria                                                                                             |  |  |  |  |
|             | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.<br>(Fraunhofer), Germany                           |  |  |  |  |

## Deliverable

| Number              | D3.6                                                                  |
|---------------------|-----------------------------------------------------------------------|
| Title               | Energy Efficiency potentials on top of the frozen efficiency scenario |
| Lead beneficiary    | Utrecht University                                                    |
| Work package        | WP3                                                                   |
| Dissemination level | Public                                                                |
| Nature              | Other                                                                 |
|                     |                                                                       |
| Due date            | 30.11.2020                                                            |
| Submission date     | 30.11.2020                                                            |
|                     |                                                                       |
| Authors             | Katerina Kermeli (UU)                                                 |
|                     | Wina Crijns-Graus (UU)                                                |
|                     |                                                                       |
|                     |                                                                       |

| Reviewer | Dirk Saelens (KU Leuven) |
|----------|--------------------------|
|          | Ulrich Reiter (TEP)      |

## **Document history**

| Version | Date       | Comments                    |  |
|---------|------------|-----------------------------|--|
| 1       | 05-11-2020 | Internal draft to reviewers |  |
| 2       | 30-11-2020 | Final report                |  |

| Acknowledgement: This project has received funding | Disclaimer: The content of this publication is the sole |
|----------------------------------------------------|---------------------------------------------------------|
| from the European Union's Horizon 2020 Research    | responsibility of the authors, and in no way            |
| and Innovation Programme under Grant Agreement     | represents the view of the European Commission or       |
| No 846463.                                         | its services.                                           |
|                                                    |                                                         |

## Contents

| 1  | lı   | Introduction                                        | 7  |
|----|------|-----------------------------------------------------|----|
| 2  | V    | WP3 and link to other WPs in sEEnergies             | 8  |
| 3  | C    | Overview of the approach                            | 9  |
|    | 3.1  | 1 The Reference and the Frozen Efficiency scenarios | 9  |
|    | 3.2  | 2 The Mitigation scenarios                          | 17 |
| 4  | R    | Results by scenario                                 |    |
|    | 4.1  | 1 Final energy demand                               |    |
| 5  | S    | Summary and discussion                              |    |
| 6  | R    | References                                          |    |
| Aŗ | pper | endix A                                             | 41 |
| Aŗ | per  | endix B                                             |    |

## **Figures**

| Figure 1 Interlinkages between WP3 and other WPs in sEEnergies                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2 Industrial value added per EU country (European Commission, 2016) 11                                                                                  |
| Figure 3 Industrial value added per industrial sub-sector (European Commission, 2016) 12                                                                       |
| Figure 4 Cement and clinker production in the frozen efficiency and reference scenarios                                                                        |
| Figure 5 Total steel production and steel production with the BOF and EAF route in the frozen efficiency and the reference scenarios                           |
| Figure 6 Final industrial energy demand projections in the reference and the frozen efficiency scenarios                                                       |
| Figure 7 Final industrial energy demand per EU country in the reference and the frozen efficiency scenarios                                                    |
| Figure 8 Final industrial energy demand per main industrial sub-sector in the reference and the frozen efficiency scenarios                                    |
| Figure 9 Final energy demand in the EU28 iron and steel and non-metallic minerals industry in the reference and the frozen efficiency scenarios                |
| Figure 10 Final industrial energy demand per energy carrier                                                                                                    |
| Figure 11 Final energy demand for process heating and cooling and for other purposes (e.g. machine drive) in the reference and the frozen efficiency scenarios |
| Figure 12 Final energy demand for process heating and cooling per temperature level in the reference and the frozen efficiency scenarios                       |
| Figure 13 Development of heating and cooling demand in the EU28 by temperature and country in the reference scenario                                           |

### **Tables**

| Table 1 Summary of main assumptions for projections of industrial activity                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------|
| Table 2 Industrial value added per country and associated growth rates (European Commission, 2016).<br>(unit: billion €′13)             |
| Table 3 Production developments in the EU28 in the Reference scenario (in ktonnes)                                                      |
| Table 4 Specific energy consumption (in GJ/tonne) and energy shares for heating and cooling for mainindustrial products (HRE4; 2017).15 |
| Table 5 Assumptions on the shares of temperature levels for heating and cooling for main industrialproducts (HRE4, 2018)                |
| Table 6 Scenario assumptions for the different industrial sub-sectors.         20                                                       |
| Table 7 Annual autonomous and policy induced energy efficiency improvement compared to the baseyear (2015)                              |
| Table 8 Best Available Technologies (BATs) and their implementation rates as compared to the frozenefficiency scenario in 2030 and 2050 |
| Table 9 Innovative measures and their implementation rates as compared to the frozen efficiencyscenario in 2030 and 2050.43             |
| Table 10 Electrification measures and their implementation rates as compared to the frozen efficiencyscenario in 2030 and 2050.44       |
| Table 11 Hydrogen measures and their implementation rates as compared to the frozen efficiencyscenario for 2030 and 2050                |
| Table 12 Final energy demand in the Frozen Efficiency and the BAT scenarios (Unit: PJ)                                                  |
| Table 13 Final energy demand in the Frozen Efficiency and the BAT high recycling scenario (Unit: PJ).                                   |
| Table 14 Final energy demand in the Electrification scenario for 2030 and 2050 (unit: PJ)                                               |
| Table 15 Final energy demand in the Hydrogen scenario for 2030 and 2050 (unit: PJ)                                                      |

## **Acronyms & Abbreviations**

| Term   | Description                            |  |  |  |
|--------|----------------------------------------|--|--|--|
| BF     | Blast furnace                          |  |  |  |
| BOF    | Basic oxygen furnace                   |  |  |  |
| BF/BOF | Blast furnace/Basic oxygen furnace     |  |  |  |
| EAF    | Electric arc furnace                   |  |  |  |
| EED    | Energy Efficiency Directive            |  |  |  |
| EJ     | Exajoule                               |  |  |  |
| ESD    | Effort Sharing Decision                |  |  |  |
| EU     | European Union                         |  |  |  |
| EU ETS | European Union Emission Trading System |  |  |  |
| GJ     | Gigajoule                              |  |  |  |
| HRE    | Heat Roadmap Europe                    |  |  |  |
| GJ     | Gigajoule                              |  |  |  |
| PJ     | Petajoule                              |  |  |  |
| SEC    | Specific energy consumption            |  |  |  |

### **1** Introduction

In the sEEnergies project, the detailed analysis of the industrial sector is based on the latest EU projections for the development of energy demand up to 2050 (European Commission, 2016 and 2019). The reference scenario in European Commission (2016) includes final energy demand projections per industrial sub-sector and EU country, while capturing current policies and market trends. However, it does not give insights into the extent to which energy efficiency potentials are already implemented. For this reason, this analysis focuses on constructing a frozen efficiency scenario that considers the same structural changes as the reference scenario in European Commission (2016), but with no energy efficiency improvements. The main aim is to understand the impact of structural changes and energy efficiency in the total final energy projections. To assist the comparison, the final energy demand in the reference scenario is decomposed into volumes (tonnes of product) and energy efficiency.

Two scenarios are analysed:

- Reference scenario: The reference scenario is based on the reference scenario from European Commission (2016). It shows the energy demand projections per industrial sub-sector and EU country. The main assumption is that current policies are continued but not tightened.
- Frozen efficiency scenario: The frozen efficiency scenario assumes that no energy efficiency or technological changes take place in the manufacture of industrial products. It allows however for socio-economic changes (i.e. industrial value added and production volumes).

This document summarizes the method and assumptions made to construct the reference and frozen efficiency scenarios. In addition, it compares the final energy demand projections made in these two scenarios with the main purpose to distinguish the impact of socio-economic changes and energy efficiency changes on the energy demand projections.

As a following step, it explores four types of alternative future scenarios, able to substantially decrease the final energy demand and/or deeply reduce industrial greenhouse gas emissions. The developed scenarios have varying degrees of technology diffusion rates and varying types of technological innovations to construct different energy demand pathways for the EU industry. The four mitigation scenarios are:

- BAT scenario: The BAT scenario assumes that Best Available Technologies (BATs) are widely adopted across all industrial sub-sectors.
- BAT (high recycling) scenario: This scenario has the same assumption as the BAT scenario, but it also allows for material recycling improvements in main industries (e.g. increased shares of steel production from scrap).
- Electrification scenario: In this scenario the focus is on the implementation of technologies that can switch the demand for fuel into electricity.
- Hydrogen scenario: In this scenario the focus is the implementation of technologies that can switch the demand for fuel into hydrogen.

Main results:

- Final energy demand for all EU 28 countries per industrial sub-sector in the reference and the frozen efficiency scenarios. Reported energy demand is up to 2050 with 5-year intervals, per fuel type.
- Final energy demand for heating and cooling, for all EU 28 countries per industrial sub-sector. Reported energy demand is up to 2050 with 5-year intervals, per temperature level and per fuel type for two scenarios.
- Autonomous and policy induced energy efficiency improvement included in the reference scenario. These are the energy savings already realized in the reference scenario. Autonomous refers to energy efficiency improvement which occurs due to technological developments. Each new generation of capital goods is likely to be more energy efficient than the one before.
- Final energy demand for all EU 28 countries per industrial sub-sector in four mitigation scenarios. Reported energy demand is for 2030 and 2050 per industrial sub-sector, industrial product and fuel types.
- Energy savings per industrial sub-sector. The energy savings for each industrial sub-sector, and for all main products in the four mitigation scenarios for the EU 28.

Results on the costs of conserving energy and on the overall required investment costs for all four mitigation scenarios will be reported in Deliverable 3.4 of the sEEnergies project.

## 2 WP3 and link to other WPs in sEEnergies

The starting point for WP3 is the construction of the baseline scenarios. Two baseline scenarios are developed i) the Reference scenario and ii) the Frozen Efficiency scenario. As a next step, all technologies/measures that could considerably decrease the energy demand are identified and used to build the Energy Efficiency (named BAT in this analysis) scenarios. In addition, the main electrification and hydrogen technologies are identified and implemented in the Electrification and the Hydrogen scenarios.

For all technologies we identify the 2030 and 2050 energy savings potential (for both fuel and electricity) and the fuel switch potential (i.e. from fossil fuels to electricity and from fossil fuels to H<sub>2</sub>). Along with the implementation rates of each of the technologies we determine the associated investment costs. This allows for the development of cost-supply curves for each of the four scenarios and for all EU countries. Furthermore, the excess heat available from the main industrial processes is calculated by combining excess heat data (in GJ/tonne) from WP5 and activity data from WP3 for two scenarios, the Frozen Efficiency and the BAT scenarios. The dotted lines in Figure 1 represent data exchanges between the different WPs.

The final energy demand, the technology impact on energy use, the cost curves and the excess heat are fed into the IndustryPLAN model, that forms a part of the EnergyPLAN model.

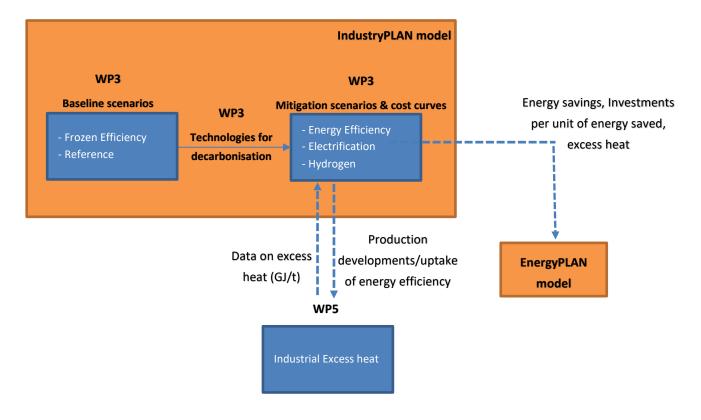



Figure 1 Interlinkages between WP3 and other WPs in sEEnergies.

## **3** Overview of the approach

#### 3.1 The Reference and the Frozen Efficiency scenarios

Three main data sources are used to develop the Reference scenario:

- (1) The EU Reference Scenario 2016 (European Commission, 2016) is used for the final energy development of industries in the period 2015-2050 (data is available for 5-year intervals). It is the most recent scenario for the EU that contains data on a per country and per sector level. Per industrial sub-sector (iron and steel, non-ferrous metal, chemicals, non-metallic minerals, paper and pulp and other) it only includes total final demand. For the industry as a whole, the energy demand is disaggregated into coal, oil, natural gas, electricity and other.
- (2) IEA (2016) is used for the breakdown of final energy demand per source (coal, peat, oil, natural gas, electricity, biomass and waste, geothermal, solar, heat and others) per industrial subsector, for the base year 2015. For future fuel mixes the shares are either kept constant or adapted, depending on the development of different production routes (e.g. more electric steel than integrated steel).
- (3) Heat Roadmap Europe 4 (HRE4) (2017) is used for estimating the share of final energy demand per industrial sub-sector that is used for heating and cooling and at which temperature level.

The resulting final energy demand data for industries includes energy used in blast furnaces and coke ovens but excludes feedstocks (e.g. in the petrochemical industries) and primary energy used to produce purchased electricity. Furthermore, refineries are not included.

The EU Reference 2016 scenario includes policies and measures adopted in the EU in 2014 and Directive amendments made in 2015 (European Commission, 2016). The availability of EU Emissions Trading System (ETS) allowances faces an annual decrease following current Directive provisions and industrial energy efficiency improves reflecting recent policies such as Ecodesign and labelling and the Energy Efficiency Directive (EED). The EU wide greenhouse house gas emission (GHGs) reductions from the Effort Sharing Decision (ESD) are assumed to be achieved in the reference scenario. The industrial GHG emission intensity slightly decreases (by 2%) in 2020 (compared to 2010) to more drastically decrease in 2030 (27%) and 2050 (51%). This is the result of increased energy efficiency, switch to the production of higher value-added industrial products, slow growth of energy intensive industries, and the shift to lower carbon intensive fuels.

Based on the reference scenario a frozen efficiency scenario is developed where the specific energy consumptions (SEC) (in GJ/tonne) remains fixed. The difference between the reference scenario and the frozen efficiency scenario is therefore equal to the (autonomous and policy induced) energy-efficiency improvement in the reference scenario. This provides a good basis for the estimation of the energy efficiency improvement potentials in comparison to the frozen efficiency and reference scenario.

The frozen efficiency scenario is based on:

- Value added assumptions in EU Reference 2016 scenario (European Commission, 2016).
- Estimated production data (based on European Commission (2016), HRE4 (2017) and other sources (see Table 1)).
- SEC data from HRE4 (2017) and other literature.

Table 1 shows the sources used for the activity developments.

| Parameters                          | Sources                                                      | Main assumptions for projection                                                                                                                                                   |
|-------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Industrial value<br>added           | EU Ref 2016 (European<br>Commission, 2016)                   | same as EU Ref.                                                                                                                                                                   |
| Iron and steel                      | POTEnCIA (Mantzos et al,<br>2019); Worldsteel, 2018          | Reference scenario: growth same as POTENCIA; frozen efficiency scenario: total steel growth same a POTENCIA and Electric Arc Furnace (EAF) share remains fixed to the 2015 level. |
| Cement                              | POTEnCIA (Mantzos et al,<br>2019); GCCA, 2020; ECRA,<br>2017 | Reference scenario: cement growth same as in POTENCIA and<br>clinker growth at a slower pace; frozen efficiency scenario:<br>cement and clinker grow at the same pace.            |
| Chemicals                           | EU Ref 2016 (European<br>Commission, 2016)                   | Fertilizers and inorganic chemicals stabilize and slightly decline in later years, methanol and ethylene experience strong growth.                                                |
| All other<br>industrial<br>products | EU Ref 2016 (European<br>Commission, 2016); HRE4<br>(2017)   | No radical changes.                                                                                                                                                               |

The outcome is for the reference and the frozen efficiency scenario for the years 2015, 2020, 2025, 2030, 2035, 2040, 2045 and 2050 per EU country:

-total final energy demand per industrial sub-sector (split into coal, peat, oil, natural gas, electricity, biomass and waste, geothermal, solar, heat and others),

-final energy demand for heating and cooling per industrial sub-sector (per temperature category).

#### Input data per industrial sub-sector

Figure 2 shows how the industrial value-added changes in the 2015-2050 period in the reference scenario in the different EU countries. The data are taken from the EU Reference scenario that reports industrial value-added projections per country and per main industrial sub-sector (European Commission, 2016). The twelve countries in Figure 2 were responsible for 90% of the 2015 industrial value added. Only five countries, Germany, Italy, France, UK and Spain were responsible for 70% of the EU28 value added in 2015, a share that is projected to drop to 65% by 2050. Overall, in the 2015-2050 the industrial value added in the EU is projected to grow by 45%. In most countries, industrial value added grows stronger in the 2015-3030 period<sup>1</sup> (see Table 2).

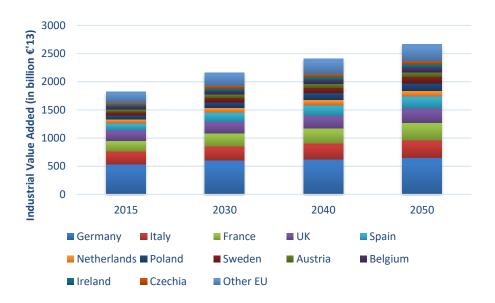



Figure 2 Industrial value added per EU country (European Commission, 2016)

<sup>&</sup>lt;sup>1</sup> The industrial value added projections used in this analysis do not consider the impact that the CoViD pandemic (taking place in 2020) may have on the future growth of the EU industry.

| Countries:  | 2015  | 2030  | % 15-30 | 2040  | % 30-40 | 2050  | % 40-50 |
|-------------|-------|-------|---------|-------|---------|-------|---------|
| Germany     | 535   | 602   | 13%     | 624   | 4%      | 653   | 5%      |
| Italy       | 227   | 254   | 12%     | 280   | 10%     | 313   | 11%     |
| France      | 194   | 230   | 19%     | 266   | 16%     | 310   | 16%     |
| UK          | 180   | 203   | 13%     | 230   | 13%     | 256   | 11%     |
| Spain       | 130   | 165   | 27%     | 187   | 14%     | 207   | 11%     |
| Netherlands | 70    | 83    | 19%     | 92    | 10%     | 104   | 13%     |
| Poland      | 66    | 102   | 54%     | 122   | 19%     | 135   | 11%     |
| Sweden      | 61    | 78    | 30%     | 94    | 19%     | 112   | 19%     |
| Austria     | 52    | 63    | 20%     | 70    | 12%     | 78    | 11%     |
| Belgium     | 46    | 55    | 20%     | 66    | 20%     | 78    | 18%     |
| Ireland     | 36    | 47    | 32%     | 54    | 15%     | 62    | 15%     |
| Czechia     | 34    | 43    | 29%     | 51    | 17%     | 59    | 17%     |
| Other EU    | 189   | 238   | 26%     | 270   | 13%     | 299   | 11%     |
| EU28        | 1,818 | 2,164 | 19%     | 2,405 | 11%     | 2,665 | 11%     |

Table 2 Industrial value added per country and associated growth rates (European Commission, 2016). (unit: billion €'13)

In Figure 3, the industrial value added in the EU28 is broken down per industrial sub-sector. The main contributor both in 2015 and 2050 is Engineering, responsible for 36% and 45% of total value added, respectively. The most energy intensive industries, pulp and paper, non-ferrous metals, non-metallic minerals and iron steel are responsible for 12% of the value added in 2015, much lower than 16% in 1995, and their share is projected to further decrease to 11% by 2050.

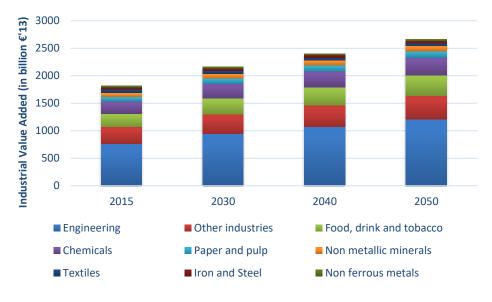



Figure 3 Industrial value added per industrial sub-sector (European Commission, 2016)

Table 3 shows the production developments of important industrial products in the Reference scenario. Most products experience an increase in production in the 2015-2030 period while in the 2030-2050 period the bulk seem to stabilize. A significant part of energy intensive products remains in the EU area (European Commission, 2016), so there is no expected significant decrease in production.

|                           | 2015    | 2030    | % 25-30 | 2040    | % 30-40 | 2050    | % 40-50 |  |  |
|---------------------------|---------|---------|---------|---------|---------|---------|---------|--|--|
| Chemicals                 |         |         |         |         |         |         |         |  |  |
| Carbon black              | 998     | 1,121   | 12.3%   | 1,143   | 2.0%    | 1,166   | 2.0%    |  |  |
| Ethylene                  | 16,810  | 18,091  | 7.6%    | 18,398  | 1.7%    | 18,306  | -0.5%   |  |  |
| Methanol                  | 1,438   | 1,725   | 20.0%   | 1,768   | 2.5%    | 1,812   | 2.5%    |  |  |
| Ammonia                   | 17,394  | 18,146  | 4.3%    | 18,146  | 0.0%    | 18,137  | 0.0%    |  |  |
| Soda ash                  | 6,025   | 6,323   | 4.9%    | 6,350   | 0.4%    | 6,252   | -1.5%   |  |  |
| Iron and steel            |         |         |         |         |         |         |         |  |  |
| BF/BOF steel              | 100,864 | 104,949 | 4.1%    | 104,464 | -0.5%   | 103,989 | -0.5%   |  |  |
| Pig iron                  | 93,596  | 97,396  | 4.1%    | 96,914  | -0.5%   | 96,772  | -0.1%   |  |  |
| Rolled steel              | 150,924 | 143,279 | -5.1%   | 130,222 | -9.1%   | 119,453 | -8.3%   |  |  |
| EAF steel                 | 65,429  | 71,327  | 9.0%    | 74,437  | 4.4%    | 77,575  | 4.2%    |  |  |
| Coke oven                 | 32,586  | 31,981  | -1.9%   | 31,631  | -1.1%   | 31,469  | -0.5%   |  |  |
| Ferrous metals casting    | 10,185  | 10,912  | 7.1%    | 10,938  | 0.2%    | 11,091  | 1.4%    |  |  |
| Nonferrous metals         |         |         |         |         |         |         |         |  |  |
| Aluminium primary         | 2,242   | 2,422   | 8.0%    | 2,396   | -1.0%   | 2,398   | 0.1%    |  |  |
| Aluminium secondary       | 3,300   | 3,488   | 5.7%    | 3,447   | -1.2%   | 3,438   | -0.3%   |  |  |
| Nonferrous metals casting | 3,672   | 3,972   | 8.2%    | 3,972   | 0.0%    | 3,972   | 0.0%    |  |  |
| Non-metallic minerals     |         |         |         |         |         |         |         |  |  |
| Cement                    | 168,170 | 200,917 | 19.5%   | 202,227 | 0.7%    | 204,500 | 1.1%    |  |  |
| Flat glass                | 11,617  | 12,846  | 10.6%   | 13,147  | 2.3%    | 13,387  | 1.8%    |  |  |
| Container glass           | 15,317  | 15,844  | 3.4%    | 14,972  | -5.5%   | 14,149  | -5.5%   |  |  |
| Pulp and paper            |         |         |         |         |         |         |         |  |  |
| Paper                     | 91,505  | 99,226  | 8.4%    | 100,369 | 1.2%    | 101,041 | 0.7%    |  |  |
| Tissue paper              | 7,175   | 7,762   | 8.2%    | 7,851   | 1.1%    | 7,889   | 0.5%    |  |  |
| Graphic paper             | 34,566  | 37,041  | 7.2%    | 37,325  | 0.8%    | 37,609  | 0.8%    |  |  |
| Board and packag. Paper   | 46,114  | 49,512  | 7.4%    | 50,070  | 1.1%    | 50,606  | 1.1%    |  |  |
| Chemical pulp             | 25,582  | 27,000  | 5.5%    | 27,315  | 1.2%    | 27,693  | 1.4%    |  |  |
| Mechanical pulp           | 8,236   | 8,712   | 5.8%    | 8,796   | 1.0%    | 8,939   | 1.6%    |  |  |
| Recovered fibre pulp      | 21,294  | 22,489  | 5.6%    | 22,729  | 1.1%    | 23,247  | 2.3%    |  |  |

Table 3 Production developments in the EU28 in the Reference scenario (in ktonnes).

The production volumes used in the reference and the frozen efficiency scenarios are the same, except in two cases:

- i) the clinker produced in the cement industry. In 2015, the average clinker content in the EU was 76% (GCCA, 2020). In the EU Reference scenario, it is assumed that the potentials of using recycled materials is exhausted (European Commission, 2016). We thereby assume that the clinker content in the reference scenario drops to 66%, which the lowest clinker contents used currently in the EU (ECRA, 2017). In the frozen efficiency scenario, the clinker content remains stable at 74% (current level). Figure 4 shows the projected developments in cement and clinker production in the two scenarios.
- ii) **the share of steel produced with the electric arc furnace route**. In 2015, the share of the more energy efficient steel production route that uses an electric arc furnace (EAF) was

39% (Worldsteel, 2018). In the reference scenario, the share of EAF steel is projected to account for more than 42% of total steel production (Mantzos et al., 2019). In the frozen efficiency scenario, we assume that the EAF share remains stable at 39% in the whole period analysed. Figure 5 shows the steel production with the different routes under the two scenarios.

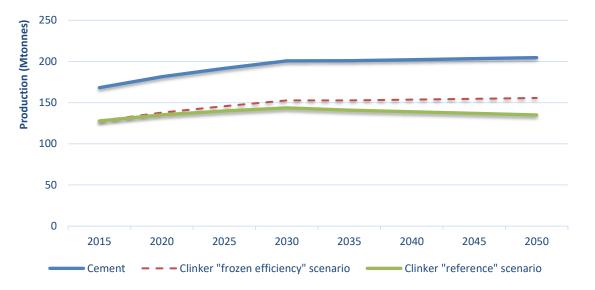



Figure 4 Cement and clinker production in the frozen efficiency and reference scenarios.

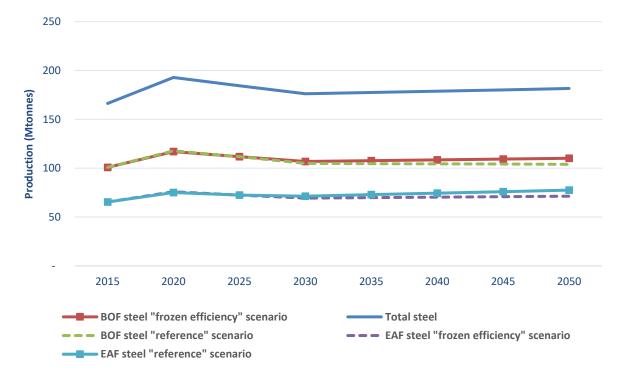



Figure 5 Total steel production and steel production with the BOF and EAF route in the frozen efficiency and the reference scenarios.

Table 4 shows the specific energy consumption for the manufacture of important industrial products and the shares of fuel and electricity used for heating and cooling. The SEC values refer to 2015 and remain constant in the frozen efficiency scenario. Table 5 shows the shares of the energy used either for heating or cooling per different temperature level. In this analysis, and due to the lack of data, we have assumed that the shares for cooling and heating remain fixed in both the reference and the frozen efficiency scenarios.

| Products                       | Specific energy consumption |                  | Share for Heating |             | Share for Cooling |             |
|--------------------------------|-----------------------------|------------------|-------------------|-------------|-------------------|-------------|
|                                | Fuels                       | Electricity      | Fuels             | Electricity | Fuels             | Electricity |
| Chemicals                      |                             |                  |                   |             |                   |             |
| Carbon black                   | 52.7 <sup>1</sup>           | 1.8              | 100%              | 0%          | 0%                | 6%          |
| Ethylene                       | 31.8 <sup>1</sup>           | 0                | 100%              | 0%          | 0%                | 0%          |
| Methanol                       | 15                          | 0.5              | 100%              | 0%          | 0%                | 4%          |
| Ammonia                        | 11.3                        | 0.5              | 100%              | 0%          | 0%                | 6%          |
| Soda ash                       | 11.3                        | 0.3              | 100%              | 0%          | 0%                | 0%          |
| All rest_chemicals             |                             |                  | 100%              | 0%          | 0%                | 3%          |
| Iron and Steel                 |                             |                  |                   |             |                   |             |
| Blast furnace                  | 11.6                        | 0.6              | 100%              | 0%          | 0%                | 0%          |
| Rolled steel                   | 1.8 <sup>2</sup>            | 0.4 <sup>2</sup> | 100%              | 10%         | 0%                | 0%          |
| Electric arc furnace           | 1                           | 2.3              | 100%              | 95%         | 0%                | 0%          |
| Coke oven                      | 3.2                         | 0.1              | 100%              | 0%          | 0%                | 0%          |
| All rest iron and steel        |                             |                  | 100%              | 0%          | 0%                | 0%          |
| Non-ferrous metals             |                             |                  |                   |             |                   |             |
| Aluminium_primary              | 0                           | 55.8             | 100%              | 5%          | 0%                | 0%          |
| All rest non-ferrous metals    |                             |                  | 100%              | 5%          | 0%                | 0%          |
| Non-metallic minerals          |                             |                  |                   |             |                   |             |
| Cement                         | 3.7 <sup>3</sup>            | 0.5 <sup>3</sup> | 100%              | 0%          | 0%                | 0%          |
| Flat glass                     | 10.9                        | 3.3              | 100%              | 0%          | 0%                | 6%          |
| Container glass                | 5.8                         | 1.4              | 100%              | 4%          | 0%                | 6%          |
| All rest non-metallic minerals |                             |                  | 100%              | 0%          | 0%                | 2%          |
| Pulp and paper                 |                             |                  |                   |             |                   |             |
| Paper                          | 5.5                         | 1.9              | 100%              | 1%          | 0%                | 1%          |
| Chemical pulp                  | 12.7                        | 2.3              | 100%              | 1%          | 0%                | 0%          |
| All rest pulp and paper        |                             |                  | 100%              | 1%          | 0%                | 0.5%        |
| Others                         |                             |                  |                   |             |                   |             |
| All rest others                |                             |                  | 100%              | 5%          | 0%                | 15%         |

# Table 4 Specific energy consumption (in GJ/tonne) and energy shares for heating and cooling for main industrial products (HRE4; 2017).

<sup>2</sup> Source: IEA, 2007

<sup>3</sup> Gt/tonne clinker. Source: GCCA, 2020

| (HRE4, 2018)                    |         |         |        |         |           |           |        |  |
|---------------------------------|---------|---------|--------|---------|-----------|-----------|--------|--|
|                                 | Cooling |         |        | Heating |           |           |        |  |
| Products                        | <-30°C  | -30-0°C | 0-15°C | <100°C  | 100-200°C | 200-500°C | >500°C |  |
| Carbon black                    | 20%     | 30%     | 50%    | 0%      | 0%        | 0%        | 100%   |  |
| Ethylene                        | 15%     | 50%     | 35%    | 0%      | 0%        | 0%        | 100%   |  |
| Methanol                        | 0%      | 40%     | 60%    | 0%      | 0%        | 0%        | 100%   |  |
| Ammonia                         | 20%     | 30%     | 50%    | 0%      | 0%        | 0%        | 100%   |  |
| Soda ash                        | 5%      | 45%     | 50%    | 30%     | 40%       | 0%        | 30%    |  |
| All rest chemicals              | 18%     | 34%     | 48%    | 0%      | 30%       | 0%        | 70%    |  |
| Blast furnace                   | 0%      | 0%      | 0%     | 1%      | 1%        | 1%        | 97%    |  |
| Rolled steel                    | 0%      | 0%      | 0%     | 0%      | 0%        | 0%        | 100%   |  |
| Electric arc furnace            | 0%      | 0%      | 0%     | 1%      | 0%        | 0%        | 99%    |  |
| Coke oven                       | 0%      | 0%      | 0%     | 0%      | 0%        | 0%        | 100%   |  |
| All rest iron and steel         | 0%      | 0%      | 0%     | 0%      | 0%        | 4%        | 95%    |  |
| Aluminium, primary              | -       | -       | -      | 0%      | -         | -         | 100%   |  |
| All rest, non-ferrous metals    | 0%      | 0%      | 0%     | 0%      | 0%        | 0%        | 100%   |  |
| Cement                          | -       | -       | -      | 0%      | -         | 10%       | 90%    |  |
| Flat glass                      | -       | -       | 100%   | 2%      | 21%       | 43%       | 34%    |  |
| Container glass                 | -       | -       | 100%   | 2%      | 19%       | 19%       | 60%    |  |
| All rest, non-metallic minerals | 0%      | 0%      | 100%   | 4%      | 15%       | 17%       | 64%    |  |
| Paper                           | -       | -       | 100%   | 5%      | 88%       | 5%        | 2%     |  |
| Chemical pulp                   | -       | -       | -      | 0%      | 100%      | -         | -      |  |
| All rest, pulp and paper        | 0%      | 0%      | 100%   | 3%      | 94%       | 3%        | 1%     |  |
| All rest, others                | 5%      | 25%     | 70%    | 13%     | 28%       | 9%        | 50%    |  |

# Table 5 Assumptions on the shares of temperature levels for heating and cooling for main industrial products (HRE4, 2018)

#### **3.2 The Mitigation scenarios**

The adoption of energy efficiency measures, recycling, material efficiency measures, innovative and other carbon mitigation measures such as fuel switching, are exogenous assumptions. In this chapter, we describe, per industrial sub-sector, all the main assumptions undertaken in the construction of the mitigation scenarios. The summary of all assumptions per scenario and industrial sub-sector is listed in Table 6.

In general, first production decreases based on the assumed recycling or material efficiency rates<sup>2</sup>, then all energy efficiency measures (BATs) are adopted, then all innovative measures and lastly all fuel switching measures. In this way we first quantify the reduction of the industrial energy demand according to the Energy Efficiency First Principle (EEFP) and then we quantify the impact on energy demand from the innovative technologies that allow for fuel switching.

The full list of the energy efficiency and fuel switching measures can be seen in Appendix A (Tables 8, 9, 10 and 11). For the estimation of the energy savings per measure (fuel, electricity and hydrogen) and the implementation rates we relied on existing literature (references appear in Appendix A) and own calculations.

#### Iron and steel

The production developments in the BAT scenario are the same with the Frozen Efficiency scenario. In all other scenarios, the steel produced from scrap with the secondary route (EAF route) increases and the steel produced from iron ore with primary route (BF/BOF steel route) decreases. The share of the steel produced with the EAF route is assumed to increase from 39% in 2015 (Worldsteel, 2018) to 67% in 2050 (Fleiter et al., 2019). In addition, coke and pig iron production also decrease with the same annual rates as BF/BOF steel. The energy efficiency measures available for this sector are many and are applied in all scenarios, except for the Frozen Efficiency. Their implementation rates can be seen in Table 8 in Appendix B. Innovative or emerging technology measures, such as coke dry quenching and top gas recycling are implemented only in the Electrification and the Hydrogen scenarios. In the Electrification scenario, iron ore electrolysis (Ulcowin, Ulcolysis) is considered to only have a small implementation rate in 2030 (10%) while by 2050 it fully replaces the primary steel making route (BF/BOF steel). In the Hydrogen scenario, primary steel making is replaced by direct iron reduction by H<sub>2</sub>.

#### Non-metallic minerals

This analysis only assessed into detail the production of cement, container glass and flat glass. The production developments in the BAT scenario are the same with the Frozen Efficiency scenario. In all other scenarios, it is assumed that cement production relies heavier on clinker substituting materials. The assumption has been made the clinker to cement ratio decreases from 76% in 2015 (GCCA, 2020) to 66% in 2050. A wide range of energy efficiency measures has been identified (see Table 8) that are implemented in all scenarios except for the Frozen Efficiency. Main innovative measures identified is the production of cements with only 25% clinker. It is assumed that this measure has an implementation rate of 11% in 2030 and 100% in 2050. In the glass industry, fast response programmes

<sup>&</sup>lt;sup>2</sup> We have chosen to first implement recycling and then energy efficiency measures. In this way, the wide implementation of energy efficiency measures is easier to implement in terms of required investment costs as the production of energy intensive products lower due to recycling.

are assumed to be widely diffused by 2050. In the electrification scenario, by 2050 all clinker kilns use the thermal plasma technology and all gas-fired glass melting furnaces are replaced by induction furnaces. In the Hydrogen scenario, it is assumed that by 2050 all kilns are fired with hydrogen.

#### **Non-ferrous metals**

The analysis was conducted for the most energy intensive industries such as the production of primary aluminium (excluding alumina refining and anode baking), secondary aluminium and non-ferrous metal castings. For the rest of the non-ferrous metals (e.g. copper) there was limited data on energy efficiency opportunities. The production developments in the BAT scenario are the same with the Frozen Efficiency scenario. It is assumed that under the BAT (high recycling) scenario and all the other mitigations scenarios the share of the secondary aluminium on the total aluminium production increases from 60% in 2015 to 70% by 2050. The efficiency measures identified are implemented in all scenarios except for the Frozen Efficiency. Innovative measures, such as inert anodes and wetted cathodes have only been identified for aluminium smelting. In the electrification scenario, it is assumed that almost all furnaces (90% implementation rate) used in secondary aluminium and metal casting facilities are replaced with induction furnaces. For the Hydrogen scenario we have not included any technologies due to the limited information in literature.

#### Chemicals

The chemicals industry is a complex industry with many different products. This analysis was performed for a few chemical products for which enough information could be gathered on future energy savings and energy switching technologies. These chemicals are ammonia, ethylene, methanol, soda ash and carbon black. The production developments in the Frozen Efficiency scenario (see Table 3) are the same in all scenarios. No material efficiency measures, or recycling are considered for this sector. The energy efficiency measures are widely adopted in all scenarios except for the Frozen Efficiency. Innovative measures were not identified. Improvements in the compression and separation section with the use of selective membranes is included in the BATs. In the Electrification and Hydrogen scenarios, the assumption is made that the conventional processes to produce ammonia, methanol and ethylene are replaced with the low-carbon processes that utilize  $H_2$  as feedstock. The adoption of these processes also switches a part, or all the fuel used (energy purposes) to electricity (Bazzanella and Ausfelder, 2017). The conventional processes are generating excess heat (4.3 GJ/tonne ammonia, 1.3 GJ/tonne ethylene, and 2.0 GJ/tonne methanol) that in the low-carbon process must be provided otherwise (Bazzanella and Ausfelder, 2017). We assume that in the electrification scenario this heat is provided by electric boilers and in the Hydrogen scenario by H<sub>2</sub> boilers. The assumption here made is that this heat is required at a temperature higher than 300°C, the temperature limit for industrial heat pumps. For soda ash production heat pumps are adopted for the share of the heat needed at less than 500°C and the rest using electric or hydrogen boilers. For carbon black, we have not included technologies for fuel switching due to the limited data availability.

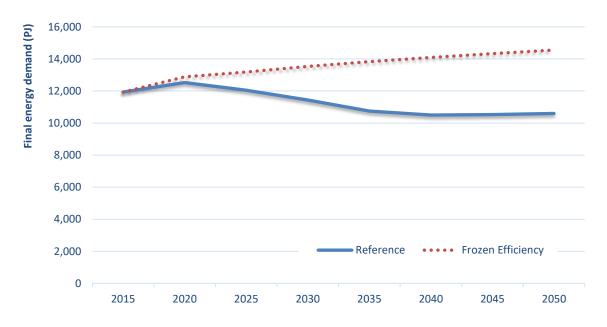
#### Pulp and paper

This analysis was conducted for the production of chemical pulp, mechanical pulp, recovered fibres, and three types of paper (board and packaging, tissue, and graphic). The production developments in the Frozen Efficiency scenario (see Table 3) are the same in all scenarios. A wide range of energy efficiency measures has been identified (see Table 8) that are implemented in all scenarios except for the Frozen Efficiency. There are several innovative measures included (see Table 9 in Appendix A) with

some important being black liquor gasification and enzymatic pre-treatment. In the Electrification scenario high temperature heat pumps are assumed to fully supply by 2050 the heat requirements in the range of 100-200°C in paper and pulp making. Low temperature heat pumps are also assumed to fully cover the heat requirements at a temperature lower than 100°C. In the Hydrogen scenario, heat pumps are not allowed and all heat requirements in this sub-sector are covered by  $H_2$  boilers.

|                                  |                       | Iron & steel                                                                                                                          | Non-metallic<br>minerals                                                      | Nonferrous<br>metals                                               | Chemicals                                                                                                                              | Pulp & paper                                                     |  |  |  |  |  |
|----------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|
| ficant<br>nation                 | Frozen<br>efficiency  | No uptake of en                                                                                                                       | No uptake of energy efficiency. Energy efficiency remains to the 2015 level.  |                                                                    |                                                                                                                                        |                                                                  |  |  |  |  |  |
| No significant<br>transformation | Reference<br>scenario | - BATs;                                                                                                                               | PRIMES assumptions:<br>- BATs;<br>- Incremental material efficiency.          |                                                                    |                                                                                                                                        |                                                                  |  |  |  |  |  |
|                                  | BAT                   |                                                                                                                                       | Wide adoption of energy efficiency measures (BATs);<br>no material efficiency |                                                                    |                                                                                                                                        |                                                                  |  |  |  |  |  |
|                                  | BAT high<br>recycling | Wide adoption of energy efficiency measures (BATs);<br>material efficiency:                                                           |                                                                               |                                                                    |                                                                                                                                        |                                                                  |  |  |  |  |  |
|                                  | , ,                   | Share of EAF<br>steel increase<br>from 39% to<br>67%                                                                                  | Clinker to<br>cement ratio<br>decreases from<br>76% to 66%                    | Share of<br>secondary<br>aluminium<br>increases from<br>60% to 70% | -                                                                                                                                      | Share of paper<br>from recovered<br>fibres increases<br>slightly |  |  |  |  |  |
|                                  | Electrification       | Wide adoption of BATs;<br>Material efficiency same as in BAT high recycling;<br>Innovative measures; and<br>Electrification measures: |                                                                               |                                                                    |                                                                                                                                        |                                                                  |  |  |  |  |  |
| Mitigation scenarios             |                       | DR electrolysis<br>(Ulcowin,<br>Siderwin,<br>Ulcolysis),<br>electric<br>furnaces                                                      | Thermal plasma<br>torches<br>(cement);<br>electric melters<br>(glass)         | Induction<br>furnaces<br>(aluminium)                               | Hydrogen used<br>as feedstock<br>(ammonia,<br>ethylene,<br>methanol); Heat<br>pumps and<br>electric boilers<br>for steam<br>generation | Heat pumps and<br>electric boilers<br>for steam<br>generation    |  |  |  |  |  |
|                                  | Hydrogen              | Wide adoption of<br>Material efficier<br>Innovative meas<br>Hydrogen meas                                                             | ncy same as in BA<br>sures; and                                               | T high recycling;                                                  |                                                                                                                                        |                                                                  |  |  |  |  |  |
|                                  |                       | Hydrogen based<br>direct reduction<br>(H-DR)                                                                                          | -                                                                             | -                                                                  | Hydrogen used<br>as feedstock<br>(ammonia,<br>ethylene,<br>methanol);<br>Hydrogen<br>boilers for<br>steam<br>generation                | Hydrogen<br>boilers for<br>steam<br>generation                   |  |  |  |  |  |

#### Table 6 Scenario assumptions for the different industrial sub-sectors.


## 4 Results by scenario

#### 4.1 Final energy demand

In this section, we present the final energy demand projections in the European industrial sector up to 2050 in the frozen efficiency and the reference scenarios (paragraph 4.1.1) and in the mitigation scenarios (paragraph 4.1.2).

#### 4.1.1 Frozen efficiency and reference scenarios

The total final industrial energy demand decreases in the reference scenario, according to EU (2016), from 11.9 EJ in 2015 to 10.6 EJ in 2050. After a short increase in the first five years, it decreases annually by 1% in the 2020-2035 period and by 0.1% in the 2030-2050 period (see Figure 6 Final industrial energy demand projections in the reference and the frozen efficiency scenarios. ). This is the result of i) energy efficiency improvements and ii) structural changes in the industrial activities which is assumed to move towards less energy intensive and higher value-added products (European Commission, 2016). Without any energy efficiency scenario, the final energy demand would increase to 14.6 EJ by 2050 at an annual growth rate of 0.6%. The increase is more prominent in the 2015-2030 period where the production growth is stronger (see Table 3).



#### Figure 6 Final industrial energy demand projections in the reference and the frozen efficiency scenarios.

Figure 7 shows the total final energy demand per country in the two scenarios. In 2015, five countries, Germany, France, Italy, UK and Spain were responsible for 59% of the total industrial energy demand in the EU. The same countries are still projected to account for most of the industrial energy use in 2050 (share 57%) in the reference scenario while in the frozen efficiency scenario the share is slightly higher (59%).

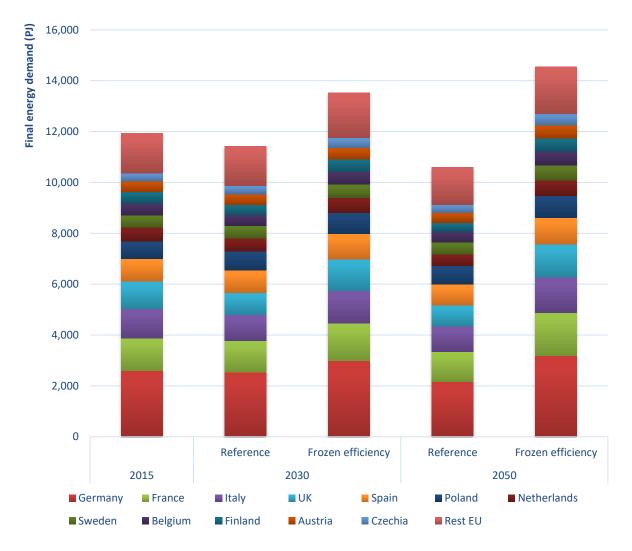



Figure 7 Final industrial energy demand per EU country in the reference and the frozen efficiency scenarios.

Figure 8 shows the developments of main industrial sub-sectors in the EU28 in the period 2015-2050 in the two scenarios. In the reference scenario (0.1% annual decrease in 2015-2050) the sub-sectors that decrease their energy demand are the chemicals (25%), iron and steel (14%), paper and pulp (29%), non-ferrous metals (17%) and non-metallic minerals (15%). The others sector is the only sector increasing its energy demand by about 6%. In the frozen efficiency scenario, where the same structural changes take place as in the reference scenario but no energy efficiency improvements, all sectors increase their final energy demand: chemicals (8%), iron and steel (9%), paper and pulp (10%), non-ferrous metals (8%) and non-metallic minerals (21%) and others (41%).

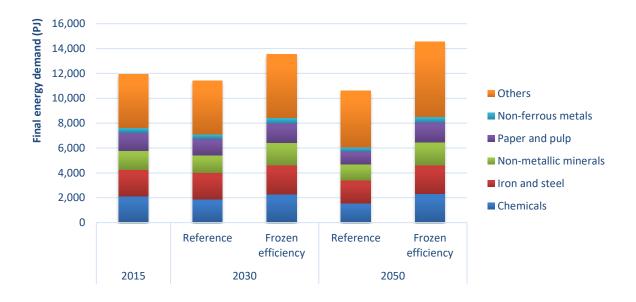
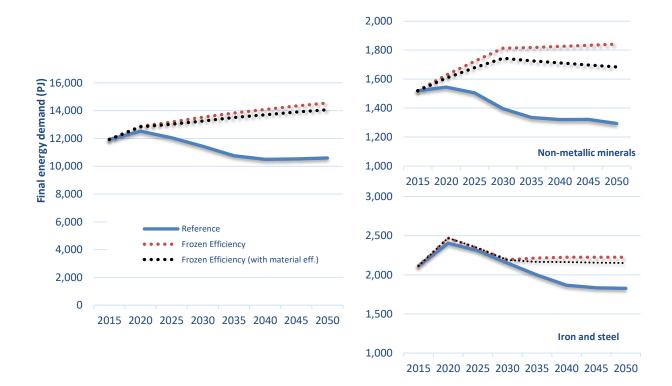




Figure 8 Final industrial energy demand per main industrial sub-sector in the reference and the frozen efficiency scenarios.

The frozen efficiency scenario allows for structural changes (i.e. the switch to higher value added products) but in the iron steel industry it does not allow for i) higher rates of the EAF route than in the base year (2015), and ii) for higher clinker to cement ratios than in the base year. Figure 9 shows the industrial energy demand in the whole industry, and in the iron and steel and the non-metallic minerals industrial sub-sectors when these structural changes are allowed, and they are on the same level with the reference scenario. When these changes are allowed the total final energy demand in the frozen efficiency scenario increases from 11.9 TJ in 2015 to 14.1 TJ in 2050 instead of 14.6 TJ when these changes are not allowed.

Increasing the EAF share from 39% (EU 28 average in 2015) to 43% will reduce the energy demand by approximately 140 PJ in the iron and steel industry. Decreasing the clinker to cement ratio from about 74% (EU 28 average in 2015) to 66% will reduce the 2050 energy demand in the non-metallics minerals sector by about 160 PJ (see Figure 9).



## Figure 9 Final energy demand in the EU28 iron and steel and non-metallic minerals industry in the reference and the frozen efficiency scenarios.

Table 7 shows the annual autonomous and policy induced energy efficiency improvement compared to the base year (2015). It is calculated by annualising the difference in the final energy demand (fuel or electricity) between the reference scenario and the frozen efficiency scenario for each industrial sub-sector for the EU28. The highest fuel efficiency improvements in the 2015-2050 period are observed in the pulp and paper, non-ferrous metals and the chemicals industry. It is also observed that the highest rates of improvement are in the period 2020-2035 ranging from 0.00-2.1%. The improvements are lower in the case of electricity, but still the same is observed, i.e. the improvement is stronger in the 2015-2035 period.

|                          |       |       | (2013)      |       |       |       |       |  |  |
|--------------------------|-------|-------|-------------|-------|-------|-------|-------|--|--|
|                          | 2020  | 2025  | 2030        | 2035  | 2040  | 2045  | 2050  |  |  |
| Fuel use                 |       |       |             |       |       |       |       |  |  |
| Non-metallic<br>minerals | -0.6% | -1.2% | -1.6%       | -1.5% | -1.3% | -1.1% | -1.0% |  |  |
| Iron and steel           | -0.7% | -0.4% | -0.4%       | -0.7% | -0.9% | -0.9% | -0.8% |  |  |
| Non-ferrous metals       | -0.7% | -1.6% | -2.1%       | -1.9% | -1.7% | -1.5% | -1.4% |  |  |
| Chemicals                | 0.0%  | -1.1% | -1.6%       | -2.1% | -1.9% | -1.6% | -1.4% |  |  |
| Paper and pulp           | -0.3% | -1.3% | -1.4%       | -1.8% | -1.9% | -1.8% | -1.6% |  |  |
| Others                   | -0.5% | -1.0% | -1.3%       | -1.6% | -1.5% | -1.3% | -1.2% |  |  |
|                          |       |       | Electricity | use   |       |       |       |  |  |
| Non-metallic<br>minerals | -1.6% | -0.7% | -0.8%       | -0.2% | 0.0%  | 0.1%  | 0.1%  |  |  |
| Iron and steel           | -0.6% | 0.6%  | 0.7%        | 0.7%  | 0.6%  | 0.5%  | 0.5%  |  |  |
| Non-ferrous metals       | -0.5% | -0.7% | -1.0%       | -0.6% | -0.5% | -0.5% | -0.4% |  |  |
| Chemicals                | -0.3% | -0.6% | -0.7%       | -0.9% | -0.7% | -0.5% | -0.4% |  |  |
| Paper and pulp           | -0.3% | -0.3% | -0.3%       | -0.4% | -0.5% | -0.5% | -0.4% |  |  |
| Others                   | -0.6% | -0.4% | -0.5%       | -0.4% | -0.3% | -0.2% | -0.1% |  |  |

 Table 7 Annual autonomous and policy induced energy efficiency improvement compared to the base year

 (2015)

Figure 10 shows how the different energy carriers develop in the two scenarios during the 2015-2050 period. In the reference scenario, the share of coal products on the overall energy use decreases from 15% in 2015 to 9% in 2050, for natural gas from 29% to 22%, and for oil from 10% to 6%. The shares of electricity, biofuels and heat increase in the same period from 30%, 9% and 6% to 39%, 15%, and 9%, respectively. Since in the frozen efficiency scenario the shares of the different energy carriers remain stable per sector throughout the analysed period, the energy mix in 2050 is much different than in the reference scenario. Coal accounts for 14%, natural gas for 30%, oil for 11%, biofuels for 9% and electricity for 30%. The shares of biofuel and heat also remain to the 2015 levels.

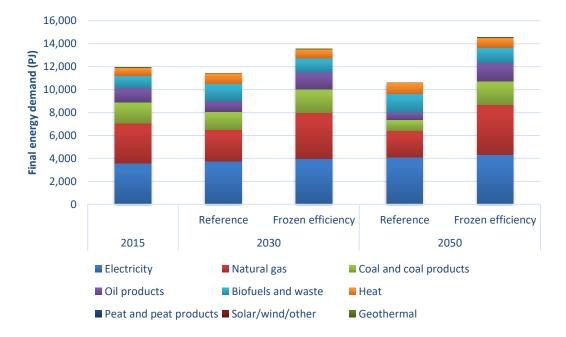
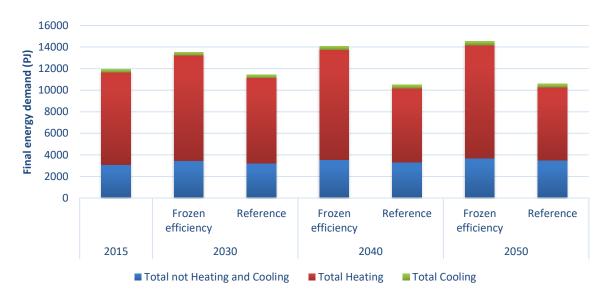




Figure 10 Final industrial energy demand per energy carrier.

#### Demand for process heating and cooling

Compared to 2015, the demand for heating and cooling in the reference scenario decreases from 8.9 EJ to 7.1 PJ. The shares in total energy demand are reduced from 75% in 2015 to 67% in 2050 in the reference scenario with heat demand being dominant (see Figure 11). Within the 2015-2050 period, the demand for cooling increases by 26% and the demand for heating decreases by 21%. In the frozen efficiency scenario, the demand for cooling increases by 33% and the demand for heating by 22%. This is because the most energy intensive processes with low process cooling needs, such as iron and steel making, decrease their share on the overall final energy demand and because the industrial sub-sectors with higher cooling needs, such as engineering and food industries, increase their share (see all rest Others in Table 4).



# Figure 11 Final energy demand for process heating and cooling and for other purposes (e.g. machine drive) in the reference and the frozen efficiency scenarios.

Most of the heat used is higher temperature heat (>500°C), see Figure 12. One shortcoming of the analysis is that the shares of heating and cooling and the temperatures levels at which these are required, because of the limited data available, are assumed to remain fixed<sup>3</sup>. Figure 13 shows the heating and cooling demand for the countries with the highest industrial energy demand in the reference scenario. The demand for heating is shown to decrease in all countries while the demand for cooling increases.

<sup>&</sup>lt;sup>3</sup> Each of the implemented energy efficiency improvement technologies will have an impact on the shares of the heating and/or cooling shares and the temeratures levels. However, because this is difficult to quantify and because no innovative processes are implemented in the reference scenario we make the assumption that the shares remain fixed.

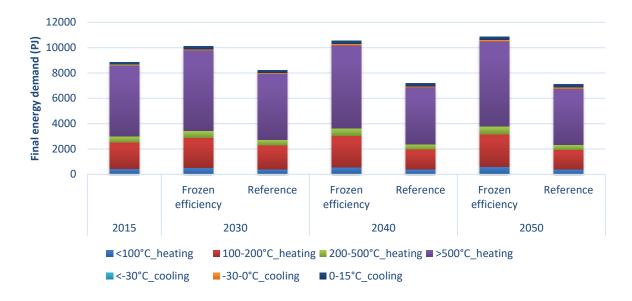
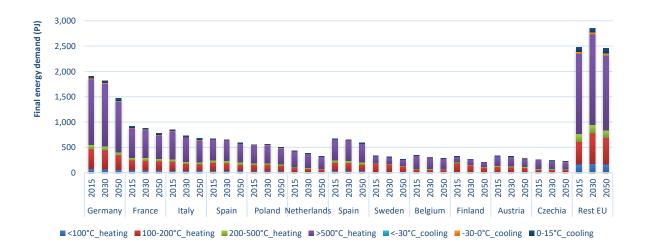




Figure 12 Final energy demand for process heating and cooling per temperature level in the reference and the frozen efficiency scenarios.



## Figure 13 Development of heating and cooling demand in the EU28 by temperature and country in the reference scenario.

#### 4.1.2 Mitigation scenarios

#### **BAT scenario**

The Energy Efficiency scenario, in this report referred to as BAT scenario includes the wide adoption of Best Available Technologies (BATs) across all industries and EU countries. Innovative or emerging technologies are not included. In addition, recycling and material efficiency measures, such as a lower clinker to cement ratio in the cement industry or a higher production of steel from steel scrap are not considered. Recycling levels and clinker to cement ratios in this scenario remain fixed to the same level used in the base year (2015). The production developments in the 2015 to 2050 period remain the same as in the Frozen Efficiency scenario and thereby any changes in energy demand can solely be attributed to the energy efficiency measures.

The BAT scenario results show an increase of the final energy demand by about 6% in 2050 compared to 2015. Without the energy efficiency from the wide implementation of BATs the energy demand in 2050 will be 22% higher compared to 2015. Thereby in 2050, BAT measures can decrease the final energy demand compared to a frozen efficiency scenario by 13.5%. BATs achieve similar savings in fuel and electricity use, calculated at 14% for fuel demand and 13% for electricity demand.

Most savings are achieved in the production of pig iron (163 PJ), cement (133 PJ), rolled steel (67 PJ), EAF steel (42 PJ), ammonia (38 PJ) and ethylene (36 PJ). Detailed energy demand results for the EU28 are listed in Appendix B (Table 12) for each industrial sub-sector and product for 2030 and 2050.

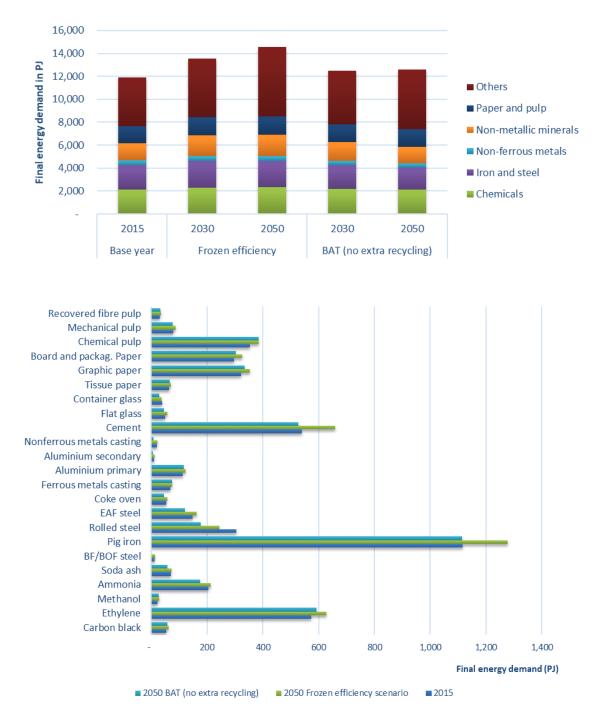



Figure 14 Final energy demand in the BAT (no extra recycling) as compared to the Frozen Efficiency scenario per industrial sub-sector (top Figure) and per industrial product (bottom Figure).

#### **BAT high recycling scenario**

The BAT scenario with increased recycling applies all currently available BATs but it also allows for more ambitious levels of material efficiency. It assumes that by 2050 the share of steel produced from scrap has increased considerably, from 39% in 2015 to 67% in 2050, and that the clinker to cement ratio is further reduced, from 76% in 2015 to 66% in 2050. Even so, additional material efficiency efforts such as using less materials when designing a product and material substitution are not included.

The results for the BAT high recycling scenario show a more substantial decrease in final energy demand compared to the BAT scenario described above. In this scenario, the final energy demand decreases considerably by about 6% in 2050 compared to 2015. The 2050 energy demand is 23% lower compared to the Frozen Efficiency scenario. BATs and increased recycling achieve 27% savings in 2050 final fuel demand while the electricity savings are less substantial calculated at 11%.

Most savings are achieved in the production of pig iron (697 PJ), cement (228 PJ), rolled steel (67 PJ), primary aluminium (39 PJ), ammonia (38 PJ) and ethylene (36 PJ). In certain sub-sectors the energy demand increases driven by increased activity as compared to the BAT scenario and the Frozen Efficiency scenarios due to the higher recycling levels. Such an industry is the steel making from scrap industry (EAF steel) where the energy use is 27% higher compared to the Frozen Efficiency scenario. Detailed energy demand results for the EU28 for each industrial sub-sector and product for 2030 and 2050 are listed in Appendix B (Table 13).

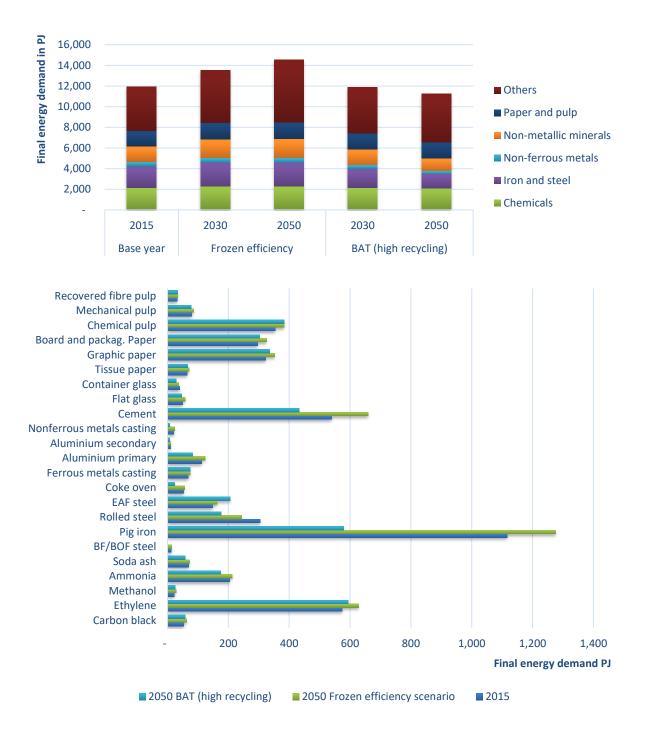
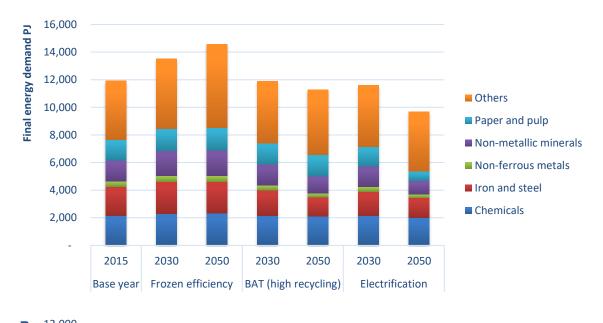



Figure 15 Final energy demand in the BAT (high recycling) as compared to the Frozen Efficiency scenario per industrial sub-sector (top Figure) and per industrial product (bottom Figure).


#### **Electrification scenario**

In this scenario, the assumptions on production developments, adoption of energy efficiency measures/technologies, increased recycling (e.g., increased EAF steel, secondary aluminium) and material efficiency (i.e., lower clinker to cement ratios) are the same as in the BAT high recycling scenario. However, in this scenario innovative measures that can potentially significantly reduce the energy demand are also adopted. We assume that all innovative measures are adopted first and then follow the electrification measures such as Direct Reduced electrolysis in steel manufacture. This assumption means that first the energy demand is lowered and then the fuel switch to electricity is applied.

The steel industry shifts from blast furnaces to DR electrolysis (e.g. Ulcowin), and cupola furnaces are replaced with induction furnaces. In the aluminium industry, already an electrified industry, only innovative measures such as wetted cathodes and inert anodes offer energy reduction in this scenario. In the non-metallics minerals industry, clinker kilns are electrified, and glass is melted using electric furnaces instead of gas-fired furnaces. In the chemical industry, ammonia, ethylene, and methanol are produced by low carbon processes that use H<sub>2</sub> as feedstock. Except for the fossil fuel reduction for non-energy purposes (feedstocks) these three processes rely more on electricity as opposed to the conventional processes. In the pulp and paper industry, gas or biomass-fired boilers are replaced with industrial heat pumps and electric boilers. For heat temperatures below 200°C, a preference is made for heat pumps.

The final energy demand in 2050 decreases by 14% when compared to the BAT (high recycling) scenario and by 34% when compared to the frozen efficiency scenario. Fuel demand in 2050 decreases by 75% compared to the Frozen Efficiency scenario while electricity demand increases by 65%. Detailed energy demand per sub-sector can be found in Appendix B (

Table 14).  $H_2$  demand for use as feedstock also increases, calculated at 4,200 PJ in 2050<sup>4</sup>. The electricity used for the electrolysis in  $H_2$  production is outside the boundaries of this analysis, however it can be estimated at around 5,600 PJ<sup>5</sup>.



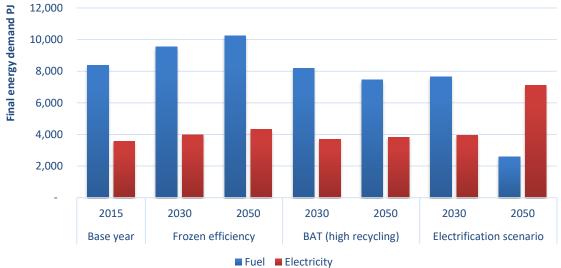



Figure 16 Final energy demand in the Electrification scenario as compared to the other scenarios per industrial sub-sector (top Figure) and per energy carrier (bottom Figure).

 $<sup>^{4}</sup>$  H<sub>2</sub> requirements for feedstock purposes are 178 kg/tonne ammonia, 786 kg/tonne ethylene and 189 kg/tonne methanol (Fleiter et al., 2019). The wide adoption of low carbon processes for these three chemicals will require in 2050 about 18,000 ktonnes of H<sub>2</sub> (energy content of about 4,200 PJ). At the same time, fossil fuel use as feedstock will decrease by about 1,900 PJ.

<sup>&</sup>lt;sup>5</sup> Estimated based on an electricity consumption for H<sub>2</sub> of about 4.3 kWh/m<sup>3</sup> (Bazzanella et al., 2017).

#### Hydrogen scenario

In the Hydrogen scenario, technologies that rely on H<sub>2</sub> enter the market and can be widely adopted by 2050. First the energy demand decreases due to the wide deployment of energy efficiency measures, increased recycling and innovative technologies and then the H<sub>2</sub> measures are adopted. In the chemical industry, the conventional processes used in ammonia, ethylene and methanol production are by 2050 entirely replaced by low carbon processes that use H<sub>2</sub> as feedstock. In the iron and steel industry the primary production route for steel making from pig iron in blast furnaces and basic oxygen furnaces (BOFs) is also replaced by the H<sub>2</sub>-based direct reduction process (DR-RES). By 2050, all clinker kilns use H<sub>2</sub> burners while the steam requirements in the entire industry are covered by H<sub>2</sub> boilers. In this scenario electrification measures, such as heat pumps and electric boilers, are not included.

The final energy demand in 2050 is 20% lower than in the Frozen Efficiency scenario, 4% higher than in the BAT (high recycling) scenario and 21% higher than in the Electrification scenario. The energy losses in electrolysis for H<sub>2</sub> generation are not included.

The H<sub>2</sub> measures included in this scenario result in a net increase in energy use. For the specific sectors analyzed<sup>6</sup> they offer the potential to decrease the fuel use by about 1,900 PJ while at the same time they increase the electricity use by 680 PJ and the H<sub>2</sub> use (excluding non-energy purposes) by about 1,300 PJ<sup>7</sup>. Another reason for the high calculated final energy demand in this scenario is the assumption made for the Others industry and the "Rest of …" industries (e.g. Rest of iron and steel, Rest of non-metallic minerals) where it is assumed that the fuel consumed for steam generation or heat below the 500°C is provided in this scenario with H<sub>2</sub> boilers (efficiency 95%) while in the Electrification scenario by electric boilers (efficiency 99.9%). In addition, the industrial heat pumps that are assumed to operate on 75% waste heat and 25% electricity (Marsidi, 2018a; 2018b) offer significant savings in the Electrification scenario as compared to the H<sub>2</sub> scenario that are assumed to have a zero-diffusion rate.

Detailed energy demand projections for 2030 and 2050 and per industrial product can be found in Appendix B (Table 15).

<sup>&</sup>lt;sup>6</sup> Cement, BF/BOF steel, coke ovens, pig iron, chemical pulp, mechanical pulp, recovered fiber pulp, paper, ammonia, methanol and ethylene.

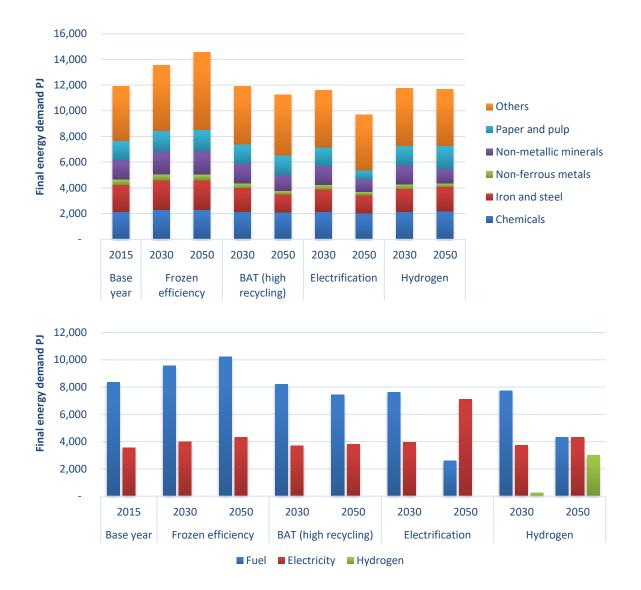



Figure 17 Final energy demand in the Hydrogen scenario as compared to the other scenarios per industrial subsector (top Figure) and per energy carrier (bottom Figure).

## **5** Summary and discussion

#### Summary of frozen efficiency and reference scenario results

The reference scenario presented in this analysis is based on the EU reference scenario from the European Commission (2016). According to the European Commission (2016) analysis, the industrial energy demand in the EU 28 is expected to slowly decrease from 11.9 EJ in 2015 to reach 10.6 EJ by 2050; with an annual decrease rate of about 0.3%. The uptake of energy efficiency improvements in combination with structural changes are found to over-compensate for the increasing energy demand trends from the growing industrial activities.

By comparing the reference scenario to the constructed frozen efficiency scenario, we calculated the energy savings included in the reference scenario. The frozen efficiency scenario is a variation of the reference scenario that although it considers changes in production developments it assumes no energy efficiency improvements. The comparison reveals that the overall energy savings already included in the reference scenario reaches 27%. Disaggregated per industrial sub-sector this amounts to 35% for the pulp and paper industry, 32% for the chemicals industry, 30% for the non-metallics minerals industry, 24% for the non-ferrous metals industry and 20% for the iron and steel industry.

#### Summary of mitigation scenario results

In the BAT scenario, it was found that the wide adoption of energy efficiency improvements can reduce the 2050 final energy demand from 14.6 EJ in the frozen efficiency scenario to 12.6 EJ, an energy savings potential of about 14%. Of which, about 200 PJ can be saved in the chemicals industry, 360 PJ in the iron and steel industry and 380 PJ in the non-metallic minerals industry, 110 PJ in the non-ferrous metals industry, 75 PJ in the pulp and paper industry, and around 800 PJ in the Others industry. When increased recycling or material efficiency for three industries (iron and steel, cement, and aluminium) is also considered, the 2050 final energy demand further reduces to 11.3 EJ. This is an energy saving potential of 23% when compared to the frozen efficiency scenario.

We can conclude, when analysing the above scenarios, that the 27% energy savings included in the reference scenario by the European Commission (2016), where energy demand decreases due to BAT implementation and only incremental recycling, is very optimistic. To reach the 2050 final energy demand in the reference scenario, in addition to the wide adoption of BATs, and high recycling levels, more measures such as increased material efficiency and innovative measures will need to be implemented.

The innovative measures identified in this analysis have the potential to decrease the final energy demand by at least another 500 PJ. In the electrification scenario, the final energy demand was calculated to decrease to about 9.7 EJ, an energy savings potential compared to the BAT (high recycling) scenario of approximately 14%. In this scenario, about 73% of the energy demand is covered by electricity and the rest by fuel consumption. In the H<sub>2</sub> scenario, the final energy demand was found to reach 11.7 EJ, 4% higher than the BAT (high recycling) scenario. This is because the H<sub>2</sub> measures included in this scenario result in a net increase in energy use. Also, the use of industrial heat pumps that operate largely on waste heat are in the H<sub>2</sub> scenario not included. In the H<sub>2</sub> scenario, 37% of the final energy demand is covered by fuel consumption, 37% by electricity and 26% by H<sub>2</sub> consumption.

#### Discussion

The scenarios analysed present possible future developments with industrial activity assumptions on the socio-economic development taken by the European Commission (2016) and as such, they cannot serve as forecasts. In addition to the assumptions made for the future industrial activities, several sets of assumptions have been made with the main ones being:

- For the "Rest of.." sub-sectors, the savings are the average of the sub-sector they belong to and the savings for the Others sector are extrapolated based on the total savings of the sectors for which the detailed analysis was performed. This however might be an underestimation of the BAT savings, since the energy-intensive sectors might already be quite efficient because energy costs are significant. The potential in the Others sector might be higher.
- For these two sectors (Others sector and the "Rest of" sub-sectors), in the electrification and the H<sub>2</sub> scenarios, the savings/energy demand was estimated from the application of electric and electric boilers, respectively, for the share of the energy demand used to provide heat at temperatures below 500°C (see Table 5). The potentials thereby in the Others and the "Rest of ..." industries can be higher as also other technologies (e.g. electric furnaces) can be implemented. Currently we account for electrification and H<sub>2</sub> measures for about 82% of the final energy demand.
- In another main simplification, although the diffusion rates for 2015, 2030 and 2050 differ per measure, due to the lack of data we assumed that they are the same for all countries. The same applies for the average energy intensities of the various products manufactured that were assumed to be the same for EU28 countries. However, since we also investigate the energy demand for the manufacture of intermediate products (e.g. clinker used for cement making, coke used in primary steel making, steel from scrap and steel from pig iron) the specific energy intensities per final product differ for the various countries.

### 6 References

Alsema, E.A. 2000. A database of energy reduction options for the Netherlands, 1995-2020 - Sector study for the non-ferrous metals industry. Department of Science, Technology and Society, Utrecht University.

Bazzanella, A.M. and Ausfelder, F. 2017. Technology Study: Low carbon energy and feedstock for the European chemical industry. DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

Boulamanti, A. and Moya, J.A. 2017. Energy efficiency and GHG emissions: Prospective scenarios for the chemical and petrochemical industry, EUR 28471 EN, doi:10.2760/20486.

Chan, Y., L. Petithuguenin, T. Fleiter, A. Herbst, M. Arens, P. Stevenson. 2019. Industrial Innovation: Pathways to deep decarbonisation of industry. Part 1: Technology analysis. ICF Consulting Services Limited and Fraunhofer Institute for Systems and Innovation Research (ISI).

Cusano, G., M.R. Gonzalo, F. Farrell, R. Remus, S. Roudier, and L.D. Sancho. 2017 Best Available Techniques (BAT) Reference Document for the main Non-Ferrous Metals Industries, EUR 28648, doi:10.2760/8224.

European Cement Research Academy (ECRA), Cement Sustainability Initiative (CSI). 2017. Development of state-of-the-art techniques in cement manufacturing: Trying to look ahead. CSI/ECRA-Technology papers. Dusseldorf, Germany.

European Commission (2016). EU Reference Scenario 2016 Energy, transport and GHG emissions. Trends to 2050.

https://ec.europa.eu/energy/sites/ener/files/documents/20160713%20draft\_publication\_REF2016\_ v13.pd

Fleiter, T., A. Herbst, M. Rehfeldt, and M. Arens. 2019. Industrial Innovation: Pathways to deep decarbonisation of industry. Part 2: Scenario analysis and pathways to deep decarbonisation. ICF Consulting Services Limited and Fraunhofer Institute for Systems and Innovation Research (ISI).

Fleiter, T., B. Schlomann, and W. Eichhammer. 2013. Energieverbrauch und CO<sub>2</sub>-emissionen industrieller prozesstechnologien – Einsparpotenziale, hemmnisse und instrumente. Fraunhofer Institute.

Fleiter, T., D. Fehrenbach, E. Worrell, and W. Eichhammer. 2012. Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials. *Energy*, 40, p. 84-99.

Global Cement and Concrete Association (GCCA). 2020. Getting the Numbers Right (GNR) database. <u>https://gccassociation.org/sustainability-innovation/gnr-gcca-in-numbers/</u>. Last visited 28-03-2020.

Heat Roadmap Europe (HRE). 2017. Baseline scenario of the heating and cooling demand in buildings and industry in the 14 MSs until 2050. WP.3: D3.3 and D3.4. <u>www.heatroadmap.eu</u>

Heat Roadmap Europe (HRE). 2018. Cost-curves for heating and cooling demand reduction in the built environment and industry. D4.2 and D4.3. <u>www.heatroadmap.eu</u>

Holbrook, J.H., and Leighty, W.C. 2009. Renewable fuels: Manufacturing ammonia from hydropower. Hydro review 7 (28). International Energy Agency / Energy Technology Systems Analysis Programme (IEA/ETSAP) 2010. Iron and steel - Technology brief.

Institute for Industrial Productivity (IIP). 2015. Industrial efficiency technology database – Glass. <u>http://www.iipinetwork.org/wp-content/letd/content/glass.html#key-data</u>

Institute for Prospective Technology Studies (IPPC) (IPTS/EC). 2005. Best Available techniques reference document (BREF) in the smitheries and foundries industry. Brussels, Belgium.

International Energy Agency (IEA). 2016. Energy balances 2016 edition. OECD/IEA, Paris, France

International Energy Agency (IEA). 2007. Tracking Industrial Energy Efficiency and CO2 Emissions. OECD/IEA, Paris, France.

Kermeli, K., P-H. ter Weer, W. Crijns-Graus, and E. Worrell. 2015. Energy efficiency improvement and GHG abatement in the global production of primary aluminium, *Energy Efficiency* 8, p. 629-666.

Kermeli, K., O.Y. Edelenbosch, W. Crijns-Graus, B.J. van Ruijven, S. Mima, D.P. van Vuuren, and E. Worrell. 2019. The scope for better industry representation in long-term energy models: Modeling the cement industry. *Applied Energy*, 240, p. 964-985.

Keys, A., M. van Hout, and D. Daniëls. 2019. Decarbonisation options for the Dutch steel industry. PBL Netherlands Environmental Assessment Agency & ECN part of TNO, The Hague.

Mantzos, L., Wiesenthal, T., Neuwahl, F., Rózsai, M., The POTEnCIA Central scenario: An EU energy outlook to 2050, EUR 29881 EN, Publications Office of the European Union, Luxembourg, 2019, ISBN 978-92-76-12010-0, doi:10.2760/32835, JRC118353.

Marsidi, M. 2018a. Industrial high temperature heat pump. Technology Factsheet. TNO Innovation for life <u>https://energy.nl/</u>

Marsidi, M. 2018b. Industrial mechanical vapour recompression (MVR). Technology Factsheet. TNO Innovation for life <u>https://energy.nl/</u>

Marsidi, M. 2019. Electric industrial boiler. Technology Factsheet. TNO Innovation for life <u>https://energy.nl/</u>

Mineral Products Association (MPA). 2019. Options for switching UK cement production sites to near zero  $CO_2$  emission fuel: Technical and financial feasibility. London, UK.

Moosavi, S.A.M. and Tahery, R. 2014. Integrating gas turbines with cracking heaters in ethylene plants. *International Journal of Engineering Research & Technology* (IJERT), 3, p. 820-825.

Moya, R.J.A., A. Boulamanti, S. Slingerland, R. van der Veen, M. Gancheva, K.M. Rademaekers, J.J.P. Kuenen, and A.J.H. Visschedijk. 2015. Energy efficiency and GHG emissions: Prospective scenarios for the aluminium industry. JRC Scientific and Policy reports. European Union. doi:10.2790/263787.

Neelis, M., E. Worrell, and E. Masanet. 2008. Energy efficiency improvement and cost saving opportunities for the petrochemical industry - An ENERGY STAR Guide for Energy and Plant Managers. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), LBNL-964E, doi:10.2172/937505.

Papadogeorgos, I. and Schure, K.M. 2019. Decarbonisation options for the Dutch container and tableware glass industry. PBL Netherlands Environmental Assessment Agency and ECN part of TNO, The Hague.

Ren, T., M. Patel, and K. Blok. 2006. Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes. *Energy*, 31, p. 425-451.

Rutten, C., T. Fleiter, and M. Rehfeldt. 2017. Background report 1: Review of heat saving technologies. Evaluation of techno-economic data for heat savings options from FORECAST. Heat Roadmap Europe project.

Rutten, L. 2020. H<sub>2</sub> industrial boiler. Technology Factsheet. TNO Innovation for life <u>https://energy.nl/</u>

Scalet, B.M., M.G. Munoz, A.Q. Sissa, S. Roudier, and L.D. Sancho. 2013. Best Available Techniques (BAT) Reference Document for the manufacture of glass, EUR 25786, doi:10.2791/69502.

Vogl, V., M. Åhman, and L.J. Nilsson. 2019. Assessment of hydrogen direct reduction for fossil-free steelmaking. *Journal of Cleaner Production*, 201, p. 736-745.

Worldsteel 2018. Steel statistical yearbook 2018. Worldsteel Association. Brussels. Belgium.

Worrell, E., C. Galitsky, E. Masanet, and Wina Crijns-Graus. 2008. Energy efficiency improvement and cost saving opportunities for the glass industry, An ENERGY STAR guide for energy and plant managers. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), LBNL-57335-Revision.

Worrell, E., P. Blinde, M. Neelis, E. Blomen, and E. Masanet. 2010. Energy efficiency improvement and cost saving opportunities for the U.S. iron and steel industry, An ENERGY STAR guide for energy and plant managers. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), LBNL-4779E.

Worrell, E., K. Kermeli, and C. Galitsky. 2013. Energy efficiency improvement and cost saving opportunities for cement making, An ENERGY STAR guide for energy and plant managers. United States Environmental Protection Agency (U.S. EPA).

Worrell, E., D. Phylipsen, D. Einstein, and N. Martin. 2000. Energy use and energy intensity of the U.S. chemical industry. Ernest Orlando Lawrence Berkeley National Laboratory (LBNL), LBNL-44314.

Zhang, S., E. Worrell, W. Crijns-Graus, F. Wagner, and J. Cofala. 2014. Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry. Energy, 78, p. 333-345.

Zhang, S., Y. Xie, R. Sander, H. Yue, and Y. Shu. 2021. Potential of energy efficiency improvement and energy – emission – health nexus in Jing-Jin-Ji's cement industry. *Journal of Cleaner Production*, 278.

### Appendix A

# Table 8 Best Available Technologies (BATs) and their implementation rates as compared to the frozen efficiency scenario in 2030 and 2050.

| Industrial            | Product Measures/Technologies |                                                                  |      | Implementation<br>rates |  |  |
|-----------------------|-------------------------------|------------------------------------------------------------------|------|-------------------------|--|--|
| Sub-sector            | Product                       |                                                                  | 2030 | 2050                    |  |  |
|                       | Cement                        | Improved Raw Mill Blending                                       | 40%  | 70%                     |  |  |
|                       | Cement                        | Use of High-Pressure Roller Presses                              | 40%  | 70%                     |  |  |
|                       | Cement                        | High Efficiency Classifiers                                      | 30%  | 50%                     |  |  |
|                       | Cement                        | Raw Meal Process Control                                         | 30%  | 50%                     |  |  |
|                       | Cement                        | Energy Management and Control Systems                            | 15%  | 20%                     |  |  |
|                       | Cement                        | Kiln Combustion System Improvements                              | 5%   | 5%                      |  |  |
|                       | Cement                        | Indirect Firing                                                  | 5%   | 5%                      |  |  |
|                       | Cement                        | Oxygen Enrichment technology                                     |      | 5%                      |  |  |
|                       | Cement                        | Preheater Shell Heat Loss Reduction                              |      | 5%                      |  |  |
|                       | Cement                        | Conversion to Grate Cooler                                       | 15%  | 20%                     |  |  |
|                       | Cement                        | Optimize Grate Cooler                                            | 30%  | 30%                     |  |  |
|                       | Cement                        | Low-Pressure Drop Suspension Preheaters                          | 20%  | 25%                     |  |  |
|                       | Cement                        | Heat Recovery for Power Generation (ORC)                         | 58%  | 100%                    |  |  |
| S                     | Cement                        | Increase Preheater Stages (from 5 to 6)                          | 8%   | 10%                     |  |  |
| Non-metallic minerals | Cement                        | Addition of Precalciner or Upgrade                               | 17%  | 33%                     |  |  |
| min                   | Cement                        | Conversion of Long Dry Kiln to Preheater Precalciner             | 3%   | 5%                      |  |  |
| llic                  | Cement                        | Use of Fly Ash, Blast Furnace Slag in Clinker (15% substitution) | 2%   | 92%                     |  |  |
| eta                   | Cement                        | Biomass and Waste                                                | 11%  | 22%                     |  |  |
| u-c                   | Cement                        | Energy Management and Process Control                            | 20%  | 20%                     |  |  |
| Nor                   | Cement                        | Replace ball mills with VRMs                                     | 35%  | 68%                     |  |  |
|                       | Cement                        | High-Efficiency Classifiers                                      | 30%  | 30%                     |  |  |
|                       | Cement                        | High efficiency motors                                           | 30%  | 50%                     |  |  |
|                       | Cement                        | Adjustable speed drives                                          | 40%  | 60%                     |  |  |
|                       | Container glass               | Batch preheating                                                 | 20%  | 38%                     |  |  |
|                       | Container glass               | Increase of cullets                                              | 27%  | 30%                     |  |  |
|                       | Container glass               | Low Nox burners                                                  | 21%  | 37%                     |  |  |
|                       | Container glass               | Optimized burning                                                | 39%  | 65%                     |  |  |
|                       | Container glass               | Process Control-Software and Image based control                 | 30%  | 50%                     |  |  |
|                       | Flat glass                    | Waste heat recovery- el. Generation                              | 5%   | 25%                     |  |  |
|                       | Flat glass                    | Batch preheating                                                 | 20%  | 50%                     |  |  |
|                       | Flat glass                    | Low Nox burners                                                  | 21%  | 37%                     |  |  |
|                       | Flat glass                    | Optimized burning flat glass                                     | 41%  | 66%                     |  |  |
|                       | Flat glass                    | Process Control-Software and Image based control                 | 30%  | 50%                     |  |  |
|                       | Coke oven                     | Programmed heating in coke oven                                  | 50%  | 70%                     |  |  |
|                       | Coke oven                     | Variable speed drive on coke oven gas compressors                | 50%  | 70%                     |  |  |
|                       | Coke oven                     | Coal moisture control                                            | 50%  | 70%                     |  |  |
|                       | pig iron                      | Waste heat recovery blast furnace slag                           | 43%  | 80%                     |  |  |
|                       | pig iron                      | Top gas recovery turbine                                         | 21%  | 29%                     |  |  |
|                       | pig iron                      | Moisture Removing Blowing Technique in Blast Furnace             | 65%  | 75%                     |  |  |
| -                     | pig iron                      | Injection of pulverized coal in BF                               | 45%  | 95%                     |  |  |
| Iron and steel        | pig iron                      | Cogeneration (for the use of untapped coke oven gas, blast       | 20%  | 50%                     |  |  |
| p                     | pig iron                      | Recovery of blast furnace gas                                    | 3%   | 5%                      |  |  |
| a<br>L                | pig iron                      | Improved hot blast stove control                                 | 30%  | 45%                     |  |  |
| 2                     | pig iron                      | Improved hot stast stove control                                 | 25%  | 50%                     |  |  |
|                       | BF/BOF steel                  | Recovery of BOF and sensible heat                                | 10%  | 20%                     |  |  |
|                       | EAF steel                     | Scrap preheating                                                 | 25%  | 70%                     |  |  |
|                       | EAF steel                     | Converting the furnace operation to ultra-high power (UHP)       | 45%  | 70%                     |  |  |
|                       | EAF steel                     | Improving process control in EAF                                 | 40%  | 50%                     |  |  |
|                       | Rolled Steel                  | Recuperative or regenerative burner                              | 30%  | 36%                     |  |  |
|                       | Rolled Steel                  | Endless Hot Rolling of Steel Sheets                              | 8%   | 11%                     |  |  |
|                       | Rolled Steel                  | Process control in hot rolling                                   | 30%  | 42%                     |  |  |
|                       | Noneu Steel                   |                                                                  | 50%  | 4270                    |  |  |

© 2020 sEEnergies | Horizon 2020 – LC-SC3-EE-14-2018-2019-2020 | 846463

#### D3.6 Energy Efficiency potentials on top of the frozen efficiency scenario

|                    | pig iron          | Variable speed drives for flue gas control, pumps, fans in         | 15% | 15% |
|--------------------|-------------------|--------------------------------------------------------------------|-----|-----|
|                    | pig iron          | Energy monitoring and management systems                           | 25% | 50% |
|                    | Aluminium primary | PFPB                                                               | 10% | 10% |
| sle                | Aluminium primary | Optimization electrolysis control                                  | 20% | 30% |
| net                | Aluminium primary | Optimization cell design                                           | 20% | 30% |
| ns n               | Aluminium         | Regenerative or recuperative burner                                | 25% | 50% |
| irro               | Aluminium         | New decoating equipment                                            | 15% | 60% |
| Non-ferrous metals | Nonferrous metals | Improved process scheduling                                        | 39% | 40% |
|                    | Nonferrous metals | Regenerative or recuperative burner                                | 5%  | 30% |
|                    | Nonferrous metals | Liquid metal as feedstock                                          | 20% | 45% |
|                    | Mechanical pulp   | Heat recovery (TMP, GW)                                            | 5%  | 5%  |
|                    | Mechanical pulp   | Efficient refiner and pretreatment (TMP)                           | 13% | 65% |
|                    | Recovered fibre   | High consistency pulping                                           | 25% | 40% |
|                    | Recovered fibre   | Efficient screening                                                | 8%  | 30% |
|                    | Recovered fibre   | Heat recovery from bleaching                                       | 8%  | 30% |
|                    | Recovered fibre   | Efficient disperser                                                | 22% | 30% |
|                    | Tissue paper      | Efficient refiners                                                 | 18% | 23% |
|                    | Tissue paper      | Optimization of refining                                           | 50% | 60% |
| ē                  | Tissue paper      | Steambox                                                           | 2%  | 5%  |
| oap                | Tissue paper      | Shoepress                                                          | 6%  | 10% |
| - pu               | Tissue paper      | Heat recovery and integration                                      | 18% | 32% |
| Pulp and paper     | Graphic paper     | Efficient refiners                                                 | 18% | 23% |
| Pul                | Graphic paper     | Optimization of refining                                           | 50% | 60% |
|                    | Graphic paper     | Steambox                                                           | 2%  | 5%  |
|                    | Graphic paper     | Shoepress                                                          | 6%  | 10% |
|                    | Graphic paper     | Heat recovery and integration                                      | 18% | 32% |
|                    | Board and packag. | Efficient refiners                                                 | 18% | 23% |
|                    | Board and packag. | Optimization of refining                                           | 50% | 60% |
|                    | Board and packag. | Steambox                                                           | 2%  | 5%  |
|                    | Board and packag. | Shoepress                                                          | 6%  | 10% |
|                    | Board and packag. | Heat recovery and integration                                      | 18% | 32% |
|                    | Ethylene          | Advanced furnace materials                                         | 30% | 55% |
|                    | Ethylene          | Improving compression and separation section                       | 18% | 28% |
|                    | Ethylene          | Integration of a gas turbine                                       | 12% | 15% |
|                    | Ethylene          | Improved compressors                                               | 8%  | 10% |
|                    | Ethylene          | Utilization of flare gas                                           | 9%  | 10% |
|                    | Ethylene          | Modern control system                                              | 9%  | 10% |
|                    | Soda ash          | Integrated design and operation                                    | 25% | 40% |
|                    | Soda ash          | Vertical shaft kiln for the production of concentrated CO2 gas and | 20% | 30% |
|                    | Soda ash          | Heat integration                                                   | 15% | 19% |
|                    | Soda ash          | Modern control system                                              | 16% | 19% |
| <u>v</u>           | Soda ash          | Usage of CHP                                                       | 27% | 30% |
| Chemicals          | Soda ash          | Efficiency package                                                 | 23% | 29% |
| lem                | Soda ash          | Usage of more pure feed                                            | 27% | 30% |
| 5                  | Carbon black      | Usage of CHP                                                       | 10% | 10% |
|                    | Carbon black      | Modern control system                                              | 8%  | 14% |
|                    | Carbon black      | Optimization of black carbon separation                            | 14% | 23% |
|                    | Methanol          | Efficiency package, synthesis gas section                          | 21% | 30% |
|                    | Methanol          | Efficiency package, methanol synthesis section                     | 27% | 37% |
|                    | Ammonia           | Improved CO2 removal section                                       | 20% | 31% |
|                    | Ammonia           | Indirect cooling of the ammonia synthesis reactor                  | 20% | 31% |
|                    | Ammonia           | Increasing the air preheat with waste heat                         | 20% | 31% |
|                    | Ammonia           | Hydrogen recovery (such as PSA)                                    | 20% | 31% |
|                    | Ammonia           | pre-reforming                                                      | 20% | 31% |
|                    | Ammonia           | Advanced process control                                           | 30% | 55% |

Sources used: Aluminium: Alsema, 2000; Cusano et al., 2017; HRE, 2018; IPPC, 2005; Kermeli et al., 2015; Moya et al., 2015; Rutten et al. 2017. Iron and steel: HRE, 2018; Rutten, et al. 2017; Worrell et al., 2010; Zhang et al., 2014. Glass: IIP, 2015; Fleiter et al., 2013; Fleiter et al., 2019; HRE, 2018; Rutten et al., 2017; Scalet et al., 2013; Worrell et al., 2008. Cement: Worrell et al., 2013; ECRA, 2017; Zhang et al., 2021; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Kermeli et al., 2019. Pulp and paper: Fleiter et al., 2010; Kermeli et al., 2019. Pulp and paper: Fleiter et al

#### © 2020 sEEnergies | Horizon 2020 – LC-SC3-EE-14-2018-2019-2020 | 846463

Rutten, et al. 2017. **Chemicals:** Boulamanti and Moya, 2017; HRE, 2018; Moosavi and Tahery, 2014; Neelis et al., 2008; Ren et al., 2006; Worrell et al., 2000; personal communication with Fraunhofer Institute.

## Table 9 Innovative measures and their implementation rates as compared to the frozen efficiency scenario in2030 and 2050.

|                       | 1                       |                                                              | Implement | Implementation rates |  |  |
|-----------------------|-------------------------|--------------------------------------------------------------|-----------|----------------------|--|--|
| Industrial Sub-sector | Product                 | Measures/Technologies                                        | 2030      | 2050                 |  |  |
|                       | Cement                  | Blended Cement (70% BFS)                                     | 11%       | 100%                 |  |  |
| Non-metallic minerals | Flat glass              | Fast response_container glass                                | 18%       | 48%                  |  |  |
|                       | Container glass         | Fast response_flat glass                                     | 18%       | 48%                  |  |  |
|                       | Aluminium primary       | Inert Anodes                                                 | 5%        | 90%                  |  |  |
| Non-ferrous metals    | Aluminium primary       | Wetted Cathode                                               | 5%        | 90%                  |  |  |
|                       | Aluminium primary       | Lower the electrolysis temperature                           | 5%        | 100%                 |  |  |
|                       | Rolled steel            | Integration of casting and rolling (thin slab strip casting) | 39%       | 45%                  |  |  |
| Iron and steel        | Coke oven               | Coke dry quenching                                           | 3%        | 100%                 |  |  |
|                       | Pig iron                | Top gas recycling                                            | 9%        | 99%                  |  |  |
|                       | Chemical pulp           | Black liquor gasification                                    | 9%        | 79%                  |  |  |
|                       | Mechanical pulp         | Enzymatic pre-treatment                                      | 14%       | 80%                  |  |  |
|                       | Tissue paper            | Chemical modification                                        | 9%        | 80%                  |  |  |
|                       | Graphic paper           | Chemical modification                                        | 9%        | 80%                  |  |  |
| Dula and some         | Board and packag. Paper | Chemical modification                                        | 9%        | 80%                  |  |  |
| Pulp and paper        | Tissue paper            | New drying techniques                                        | 6%        | 96%                  |  |  |
|                       | Graphic paper           | New drying techniques                                        | 6%        | 96%                  |  |  |
|                       | Board and packag. Paper | New drying techniques                                        | 6%        | 96%                  |  |  |
|                       | Mechanical pulp         | High efficiency grinding GW                                  | 46%       | 100%                 |  |  |
|                       | Recovered fibre pulp    | De-Inking flotation optimization                             | 70%       | 100%                 |  |  |

Sources used: Aluminium: Moya et al., 2015; Rutten, et al. 2017. Iron and steel: HRE, 2018; Rutten, et al. 2017; Worrell et al., 2010; Zhang et al., 2014. Glass: Fleiter et al., 2013. Cement: Worrell et al. 2013. Pulp and paper: Fleiter et al., 2012; HRE, 2018; Rutten, et al. 2017

43

## Table 10 Electrification measures and their implementation rates as compared to the frozen efficiency scenario in 2030 and 2050.

| Inductrial Sub-costor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Droduct                                        | Massures/Technologies                             | Implement | ation rates |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------|-----------|-------------|
| industrial sub-sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Product                                        | Measures/Technologies                             | 2030      | 2050        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cement                                         | Thermal plasma torches                            | 0%        | 80%         |
| Non-metallic minerals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flat glass                                     | Electric melters                                  | 9%        | 79%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Container glass                                | Electric melters                                  | 9%        | 79%         |
| Non forrous motols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aluminium secondary                            | Induction furnaces                                | 20%       | 90%         |
| Non-metallic minerals Fi Contemportal State Pulp and paper Pulp and paper Fi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Nonferrous metals casting                      | Induction furnaces                                | 20%       | 90%         |
| ron and stool                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ferrous metals casting                         | Cupola to induction                               | 20%       | 90%         |
| Anon-metallic minerals On-metallic minerals On-ferrous metals On-ferrous metals On and steel  Cement Perrous metals casting Ind On and steel  Perrous metals casting Ind On and steel Ind On and paper Ind | DR electrolysis (Ulcowin, Siderwin, Ulcolysis) | 0%                                                | 100%      |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chemical pulp                                  | Electric boilers                                  | 0%        | 0%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chemical pulp                                  | Industrial mechanical vapour recompression (MVR)  | 0%        | 0%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chemical pulp                                  | High temperature heat pulp                        | 10%       | 100%        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mechanical pulp                                | Electric boilers                                  | 0%        | 0%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mechanical pulp                                | Industrial mechanical vapour recompression (MVR)  | 0%        | 0%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mechanical pulp                                | High temperature heat pump                        | 10%       | 100%        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recovered fibre pulp                           | Electric boilers                                  | 0%        | 0%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Recovered fibre pulp                           | Industrial mechanical vapour recompression (MVR)  | 0%        | 0%          |
| Pulp and paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recovered fibre pulp                           | High temperature heat pump                        | 10%       | 100%        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tissue paper                                   | Electric boiler                                   | 1%        | 7%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tissue paper                                   | Industrial mechanical vapour recompression (MVR)  | 1%        | 5%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tissue paper                                   | High temperature heat pump                        | 9%        | 88%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Board and packag. Paper                        | Electric boilers                                  | 1%        | 7%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Board and packag. Paper                        | Industrial mechanical vapour recompression (MVR)  | 1%        | 5%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Board and packag. Paper                        | High temperature heat pump                        | 9%        | 88%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Graphic paper                                  | Electric boilers                                  | 1%        | 7%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Graphic paper                                  | Industrial mechanical vapour recompression (MVR)  | 1%        | 5%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Graphic paper                                  | High temperature heat pump                        | 9%        | 88%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ammonia                                        | Low carbon ammonia (H <sub>2</sub> as feedstock)  | 10%       | 100%        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ammonia                                        | Electric boilers                                  | 10%       | 100%        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ammonia                                        | High temperature heat pump                        | 0%        | 0%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ethylene                                       | Low carbon ethylene (H <sub>2</sub> as feedstock) | 10%       | 100%        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ethylene                                       | Electric boilers                                  | 10%       | 100%        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                              | High temperature heat pump                        | 0%        | 0%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Methanol                                       | Low carbon methanol (H <sub>2</sub> as feedstock) | 10%       | 100%        |
| Chemicals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Methanol                                       | Electric boilers                                  | 10%       | 100%        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Methanol                                       | High temperature heat pump                        | 0%        | 0%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Soda ash                                       | Electric boilers                                  | 0%        | 0%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Soda ash                                       | Industrial mechanical vapour recompression (MVR)  | 3%        | 30%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Soda ash                                       | High temperature heat pump                        | 4%        | 40%         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbon black                                   | Electric boilers                                  | 0%        | 0%          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Carbon black                                   | High temperature heat pump                        | 0%        | 0%          |

Sources used: Aluminium: Cusano et al., 2017; IPPC, 2005; Moya et al., 2015. Iron and steel: IEA/ETSAP, 2010; Keys et al., 2019; Fleiter et al., 2019. Glass: Chan et al., 2019; IIP, 2015; Papadogeorgos and Schure, 2019; Worrell et al., 2008. Cement: MPA, 2019. Pulp and paper: Marsidi, 2018a; Marsidi, 2018b; Marsidi, 2019. Chemicals: Bazzanella et al., 2017; Fleiter et al., 2019; Holbrook and Leighty, 2009; Marsidi, 2018a; Marsidi, 2018b; Marsidi, 2019

| Industrial Sub-sector | Product                 | Measures/Technologies                             | Implemer | ntation rates |
|-----------------------|-------------------------|---------------------------------------------------|----------|---------------|
| Industrial Sub-sector | Product                 | Measures/Technologies                             | 2030     | 2050          |
| Non-metallic minerals | Cement                  | Hydrogen                                          | 0%       | 80%           |
| Iron and steel        | BF/BOF steel            | DR RES H2+EAF                                     | 0%       | 100%          |
|                       | Chemical pulp           | H <sub>2</sub> boilers                            | 10%      | 100%          |
|                       | Mechanical pulp         | H <sub>2</sub> boilers                            | 10%      | 100%          |
|                       | Recovered fibre pulp    | H <sub>2</sub> boilers                            | 10%      | 100%          |
| Pulp and paper        | Tissue paper            | H <sub>2</sub> boilers                            | 10%      | 100%          |
|                       | Board and packag. Paper | H <sub>2</sub> boilers                            | 10%      | 100%          |
|                       | Graphic paper           | H <sub>2</sub> boilers                            | 10%      | 100%          |
|                       | Ammonia                 | Low carbon ammonia (H <sub>2</sub> as feedstock)  | 10%      | 100%          |
|                       | Ammonia                 | H <sub>2</sub> boilers                            | 10%      | 100%          |
|                       | Ethylene                | Low carbon ethylene (H <sub>2</sub> as feedstock) | 10%      | 100%          |
| Chamierle             | Ethylene                | H <sub>2</sub> boilers                            | 10%      | 100%          |
| Chemicals             | Methanol                | Low carbon methanol (H <sub>2</sub> as feedstock) | 10%      | 100%          |
|                       | Methanol                | H <sub>2</sub> boilers                            | 10%      | 100%          |
|                       | Soda ash                | H <sub>2</sub> boilers                            | 7%       | 70%           |
|                       | Carbon black            | H <sub>2</sub> boilers                            | 0%       | 0%            |

## Table 11 Hydrogen measures and their implementation rates as compared to the frozen efficiency scenario for 2030 and 2050.

Sources used: Iron and steel: Fleiter et al., 2019; IEA/ETSAP, 2010; Keys et al., 2019; Vogl et al., 2018. Cement: MPA, 2019. Pulp and paper: Rutten, 2020. Chemicals: Bazzanella et al., 2017; Fleiter et al., 2019; Holbrook and Leighty, 2009; Rutten, 2020.

### Appendix B

| Industrial sub-sector  | Product                       | Base year | Frozen effi | ciency scenario |        | ВАТ    |
|------------------------|-------------------------------|-----------|-------------|-----------------|--------|--------|
| Industrial sub-sector  | Product                       | 2015      | 2030        | 2050            | 2030   | 2050   |
|                        | Carbon black                  | 54        | 60          | 63              | 58     | 59     |
|                        | Ethylene                      | 575       | 620         | 629             | 596    | 594    |
| Chomicals              | Methanol                      | 22        | 27          | 28              | 26     | 26     |
| Chemicals              | Ammonia                       | 204       | 213         | 213             | 189    | 175    |
|                        | Soda ash                      | 70        | 73          | 73              | 63     | 59     |
|                        | Rest of chemicals             | 1,209     | 1,294       | 1,309           | 1,224  | 1,203  |
|                        | BF/BOF steel                  | 13        | 14          | 14              | 8      | 2      |
|                        | Pig iron                      | 1,117     | 1,253       | 1,277           | 1,165  | 1,114  |
|                        | Rolled steel                  | 305       | 292         | 244             | 230    | 177    |
| Iron and steel         | EAF steel                     | 149       | 158         | 163             | 137    | 121    |
|                        | Coke oven                     | 53        | 57          | 57              | 49     | 46     |
|                        | Ferrous metals casting        | 68        | 73          | 75              | 73     | 75     |
|                        | Rest of iron and steel        | 408       | 468         | 464             | 427    | 396    |
|                        | Aluminium primary             | 113       | 122         | 124             | 116    | 116    |
| Non-ferrous metals     | Aluminium secondary           | 11        | 11          | 11              | 9      | 7      |
| Non-terrous metals     | Nonferrous metals casting     | 21        | 23          | 23              | 16     | 8      |
|                        | Rest of non-ferrous metals    | 269       | 291         | 294             | 251    | 207    |
|                        | Cement                        | 539       | 648         | 661             | 586    | 528    |
| Non-metallic minerals  | Flat glass                    | 51        | 56          | 58              | 50     | 47     |
| Non-metallic millerais | Container glass               | 40        | 42          | 37              | 35     | 28     |
|                        | Rest of non-metallic minerals | 889       | 1,068       | 1,086           | 954    | 855    |
|                        | Tissue paper                  | 65        | 70          | 71              | 68     | 67     |
|                        | Graphic paper                 | 323       | 347         | 353             | 337    | 336    |
|                        | Board and packag. Paper       | 296       | 318         | 326             | 305    | 303    |
| Paper and pulp         | Chemical pulp                 | 354       | 374         | 384             | 374    | 384    |
|                        | Mechanical pulp               | 80        | 85          | 87              | 82     | 77     |
|                        | Recovered fibre pulp          | 31        | 33          | 34              | 33     | 33     |
|                        | Rest of pulp and paper        | 319       | 342         | 356             | 331    | 335    |
| Others                 | Others                        | 4,279     | 5,100       | 6,039           | 4,699  | 5,206  |
| Total Industry         | Total Industry                | 11,929    | 13,533      | 14,552          | 12,492 | 12,585 |

#### Table 12 Final energy demand in the Frozen Efficiency and the BAT scenarios (Unit: PJ).

| Industrial sub-sector | Product                       | Base year | Frozen effic | iency scenario | BAT (hig | h recycling) |
|-----------------------|-------------------------------|-----------|--------------|----------------|----------|--------------|
| Industrial sub-sector | Product                       | 2015      | 2030         | 2050           | 2030     | 2050         |
|                       | Carbon black                  | 54        | 60           | 63             | 58       | 59           |
|                       | Ethylene                      | 575       | 620          | 629            | 596      | 594          |
| Chemicals             | Methanol                      | 22        | 27           | 28             | 26       | 26           |
| Chemicals             | Ammonia                       | 204       | 213          | 213            | 189      | 175          |
|                       | Soda ash                      | 70        | 73           | 73             | 63       | 59           |
|                       | Rest of chemicals             | 1,209     | 1,294        | 1,309          | 1,224    | 1,203        |
|                       | BF/BOF steel                  | 13        | 14           | 14             | 7        | 1            |
|                       | Pig iron                      | 1,117     | 1,253        | 1,277          | 929      | 579          |
|                       | Rolled steel                  | 305       | 292          | 244            | 230      | 177          |
| Iron and steel        | EAF steel                     | 149       | 158          | 163            | 173      | 207          |
|                       | Coke oven                     | 53        | 57           | 57             | 39       | 24           |
|                       | Ferrous metals casting        | 68        | 73           | 75             | 73       | 75           |
|                       | Rest of iron and steel        | 408       | 468          | 464            | 390      | 315          |
|                       | Aluminium primary             | 113       | 122          | 124            | 103      | 83           |
| Non-ferrous metals    | Aluminium secondary           | 11        | 11           | 11             | 10       | 8            |
| Non-terrous metals    | Nonferrous metals casting     | 21        | 23           | 23             | 16       | 8            |
|                       | Rest of non-ferrous metals    | 269       | 291          | 294            | 245      | 191          |
|                       | Cement                        | 539       | 648          | 661            | 537      | 433          |
| Non-metallic minerals | Flat glass                    | 51        | 56           | 58             | 50       | 47           |
| Non-metallic minerals | Container glass               | 40        | 42           | 37             | 35       | 28           |
|                       | Rest of non-metallic minerals | 889       | 1,068        | 1,086          | 884      | 722          |
|                       | Tissue paper                  | 65        | 70           | 71             | 68       | 67           |
|                       | Graphic paper                 | 323       | 347          | 353            | 337      | 336          |
|                       | Board and packag. Paper       | 296       | 318          | 326            | 305      | 303          |
| Paper and pulp        | Chemical pulp                 | 354       | 374          | 384            | 374      | 384          |
|                       | Mechanical pulp               | 80        | 85           | 87             | 82       | 77           |
|                       | Recovered fibre pulp          | 31        | 33           | 34             | 33       | 33           |
|                       | Rest of pulp and paper        | 319       | 342          | 356            | 331      | 335          |
| Others                | Others                        | 4,279     | 5,100        | 6,039          | 4,499    | 4,714        |
| Total Industry        | Total Industry                | 11,929    | 13,533       | 14,552         | 11,904   | 11,263       |

### Table 13 Final energy demand in the Frozen Efficiency and the BAT high recycling scenario (Unit: PJ).

| Industrial sub-sector | Product                       | Base year | Frozen effic | iency scenario | Elect  | rification                                                                                                                                                                                                |
|-----------------------|-------------------------------|-----------|--------------|----------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| industrial sub-sector | Product                       | 2015      | 2030         | 2050           | 2030   | rification<br>2050<br>599<br>596<br>13<br>178<br>27<br>1,134<br>761<br>9<br>118<br>207<br>-0<br>45<br>299<br>58<br>8<br>10<br>186<br>249<br>29<br>25<br>656<br>22<br>121<br>101<br>137<br>34<br>22<br>262 |
|                       | Carbon black                  | 54        | 60           | 63             | 58     | 59                                                                                                                                                                                                        |
|                       | Ethylene                      | 575       | 620          | 629            | 596    | 596                                                                                                                                                                                                       |
|                       | Methanol                      | 22        | 27           | 28             | 24     | 13                                                                                                                                                                                                        |
| Chemicals             | Ammonia                       | 204       | 213          | 213            | 182    | 178                                                                                                                                                                                                       |
|                       | Soda ash                      | 70        | 73           | 73             | 60     | 27                                                                                                                                                                                                        |
|                       | Rest of chemicals             | 1,209     | 1,294        | 1,309          | 1,211  | 1,134                                                                                                                                                                                                     |
|                       | BF/BOF steel                  | 13        | 14           | 14             | 7      | 761                                                                                                                                                                                                       |
|                       | Pig iron                      | 1,117     | 1,253        | 1,277          | 920    | 9                                                                                                                                                                                                         |
|                       | Rolled steel                  | 305       | 292          | 244            | 168    | 118                                                                                                                                                                                                       |
| Iron and steel        | EAF steel                     | 149       | 158          | 163            | 173    | 207                                                                                                                                                                                                       |
|                       | Coke oven                     | 53        | 57           | 57             | 38     | -0                                                                                                                                                                                                        |
|                       | Ferrous metals casting        | 68        | 73           | 75             | 67     | 45                                                                                                                                                                                                        |
|                       | Rest of iron and steel        | 408       | 468          | 464            | 386    | 299                                                                                                                                                                                                       |
|                       | Aluminium primary             | 113       | 122          | 124            | 101    | 58                                                                                                                                                                                                        |
| Non-ferrous metals    | Aluminium secondary           | 11        | 11           | 11             | 10     | 8                                                                                                                                                                                                         |
| Non-terrous metals    | Nonferrous metals casting     | 21        | 23           | 23             | 16     | 10                                                                                                                                                                                                        |
|                       | Rest of non-ferrous metals    | 269       | 291          | 294            | 243    | 186                                                                                                                                                                                                       |
|                       | Cement                        | 539       | 648          | 661            | 510    | 249                                                                                                                                                                                                       |
| Non-metallic minerals | Flat glass                    | 51        | 56           | 58             | 47     | 29                                                                                                                                                                                                        |
| Non-metallic minerals | Container glass               | 40        | 42           | 37             | 33     | 25                                                                                                                                                                                                        |
|                       | Rest of non-metallic minerals | 889       | 1,068        | 1,086          | 870    | 656                                                                                                                                                                                                       |
|                       | Tissue paper                  | 65        | 70           | 71             | 63     | 22                                                                                                                                                                                                        |
|                       | Graphic paper                 | 323       | 347          | 353            | 315    | 121                                                                                                                                                                                                       |
|                       | Board and packag. Paper       | 296       | 318          | 326            | 284    | 101                                                                                                                                                                                                       |
| Paper and pulp        | Chemical pulp                 | 354       | 374          | 384            | 350    | 137                                                                                                                                                                                                       |
|                       | Mechanical pulp               | 80        | 85           | 87             | 70     | 34                                                                                                                                                                                                        |
|                       | Recovered fibre pulp          | 31        | 33           | 34             | 31     | 22                                                                                                                                                                                                        |
|                       | Rest of pulp and paper        | 319       | 342          | 356            | 321    | 262                                                                                                                                                                                                       |
| Others                | Others                        | 4,279     | 5,100        | 6,039          | 4,438  | 4,330                                                                                                                                                                                                     |
| Total Industry        | Total Industry                | 11,929    | 13,533       | 14,552         | 11,588 | 9,695                                                                                                                                                                                                     |

Table 14 Final energy demand in the Electrification scenario for 2030 and 2050 (unit: PJ).

| ted at data da series | Durd at                       | Base year | Frozen effic | iency scenario | Hy     | drogen        |
|-----------------------|-------------------------------|-----------|--------------|----------------|--------|---------------|
| Industrial sub-sector | Product                       | 2015      | 2030         | 2050           | 2030   | 2050          |
|                       | Carbon black                  | 54        | 60           | 63             | 58     | 59            |
|                       | Ethylene                      | 575       | 620          | 629            | 598    | 620           |
| oli a statu           | Methanol                      | 22        | 27           | 28             | 25     | 16            |
| Chemicals             | Ammonia                       | 204       | 213          | 213            | 195    | 251           |
|                       | Soda ash                      | 70        | 73           | 73             | 67     | <b>REF 91</b> |
|                       | Rest of chemicals             | 1,209     | 1,294        | 1,309          | 1,212  | 1,141         |
|                       | BF/BOF steel                  | 13        | 14           | 14             | 7      | 1,215         |
|                       | Pig iron                      | 1,117     | 1,253        | 1,277          | 920    | 9             |
|                       | Rolled steel                  | 305       | 292          | 244            | 168    | 118           |
| Iron and steel        | EAF steel                     | 149       | 158          | 163            | 173    | 207           |
|                       | Coke oven                     | 53        | 57           | 57             | 38     | -0            |
|                       | Ferrous metals casting        | 68        | 73           | 75             | 73     | 75            |
|                       | Rest of iron and steel        | 408       | 468          | 464            | 386    | 300           |
|                       | Aluminium primary             | 113       | 122          | 124            | 101    | 58            |
| Non-ferrous metals    | Aluminium secondary           | 11        | 11           | 11             | 10     | 8             |
| Non-terrous metals    | Nonferrous metals casting     | 21        | 23           | 23             | 16     | 8             |
|                       | Rest of non-ferrous metals    | 269       | 291          | 294            | 243    | 183           |
|                       | Cement                        | 539       | 648          | 661            | 510    | 408           |
| Non-metallic minerals | Flat glass                    | 51        | 56           | 58             | 49     | 45            |
| Non-metallic minerals | Container glass               | 40        | 42           | 37             | 34     | 25            |
|                       | Rest of non-metallic minerals | 889       | 1,068        | 1,086          | 871    | 665           |
|                       | Tissue paper                  | 65        | 70           | 71             | 70     | 92            |
|                       | Graphic paper                 | 323       | 347          | 353            | 350    | 453           |
|                       | Board and packag. Paper       | 296       | 318          | 326            | 315    | 396           |
| Paper and pulp        | Chemical pulp                 | 354       | 374          | 384            | 384    | 492           |
|                       | Mechanical pulp               | 80        | 85           | 87             | 71     | 52            |
|                       | Recovered fibre pulp          | 31        | 33           | 34             | 33     | 39            |
|                       | Rest of pulp and paper        | 319       | 342          | 356            | 322    | 271           |
| Others                | Others                        | 4,279     | 5,100        | 6,039          | 4,444  | 4,387         |
| Total Industry        | Total Industry                | 11,929    | 13,533       | 14,552         | 11,742 | 11,685        |

Table 15 Final energy demand in the Hydrogen scenario for 2030 and 2050 (unit: PJ).