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ABSTRACT 

 

 

The High Luminosity Large Hadron Collider (HL-LHC) at CERN will involve a significant increase 
in the complexity and sheer size of data with respect to the current LHC experimental complex. 
Hence, the task of reconstructing the particle trajectories will become more and more complex 
due to the number of simultaneous collisions and the resulting increased detector occupancy.  
Aiming to identify the particle paths, machine learning techniques such as graph neural networks 
are being explored in the HEP.TrkX project and its successor, the Exa.TrkX project. Both show 
promising results and reduce the combinatorial nature of the problem. Previous results of our 
team have demonstrated the successful attempt of including quantum computing concepts 
within graph neural networks that are able to reconstruct the particle track based on the hits of 
the detector. A higher overall accuracy is gained by representing the training data in a 
meaningful way within an embedded space. That has been included in the Exa.TrkX project by 
applying a classical MLP. Consequently, pairs of hits belonging to different trajectories are 
pushed apart while those belonging to the same ones stay close together. We explore the 
applicability of quantum circuits within the task of embedding using hybrid-classical neural 
network architectures and show preliminary results.  
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1. INTRODUCTION 
 

With the start of the High Luminosity LHC (HL-LHC), there will be much more simultaneous collisions 
(pile-ups) leading to ambiguities making the task of reconstructing the particle tracks highly complex [1]. 
To explore how (classical) machine learning techniques can tackle this task, the TrackML challenge has 
been launched on Kaggle [2]. This dataset consists of more than 8k simulated collision events. Since its 
release, the dataset has become important an important benchmark for particle tracking algorithms.  

There are several classical machine learning approaches, such as graph neural networks that show a 
great performance in identifying the trajectories from the simulated detector measurements. They are 
investigated by the HEP.TrkX project [3] and its update, the Exa.TrkX project [4]. In both of these projects, 
the graph neural network has a general structure of iteratively applying a node and an edge network. The 
edge and node information can either take various numbers of nodes into account. Mostly, doublets or 
triplets are taken into account when constructing a graph. Doublets are built up of 2 hits (i.e., a single 
detector measurement within a layer) that correspond to nodes and are connected by an edge. The edge 
can be either part of a real trajectory or not. The same principle holds for triplets, but the focus is on 3 hits 
corresponding to 3 nodes connected with 2 edges that can either be part of a true particle trajectory or 
not.  

 
The Exa.Trkx project uses a more advanced preprocessing compared to the HEP.TrkX project. An 
important part in the new data processing pipeline forms the embedding of the detector measurement 
data. A feed-forward neural network with hidden layers – referred to as multilayer perceptron or MLP –
acts as a non-linear projection onto a higher-dimensional embedding space. Hits belonging to the same 
trajectory are embedded close together, while those belonging to different trajectories are embedded far 
apart. This step improves the performance of upcoming steps, especially in the classification task.  
 
Building up on the HEP.TrkX project, quantum graph neural networks, that use quantum circuits instead of 
classical neural networks to process the edge and node information, have shown promising preliminary 
results in identifying the particle paths [5], [6], [7]. Hence, it is a really interesting part of research to 
examine the behavior of quantum circuits within applications using neural networks.  
 
This work explores hybrid quantum-classical networks for embedding the simulated detector 
measurements of the TrackML dataset, building up on the projects previously mentioned. Several 
quantum circuit configurations have been explored that extend or replace parts of the classical MLP used 
within the Exa.TrkX project. This quantum-classical version utilizes the exponential size of the Hilbert 
space and explores the effects of entanglement on the embedding and inference tasks across different 
sized classical networks and quantum circuits. 
 
This work is structured as follows. First, we introduce the idea of gated quantum circuits which is used in 
quantum machine learning models (Section 2) and the specification of the TrackML dataset (Section 3) 
used for training the different models. In Section 4, we focus on the various implemented quantum circuit 
architectures within the (quantum) neural networks. For each of these architectures, the training results 
are presented in Section 5. We conclude this work with an outlook in the Discussion part (Section 6).  

2. QUANTUM GATES AND CIRCUITS 

This section provides a short overview on how quantum computing can be included within classical neural 
networks. Precisely, the exact use of gate-based quantum circuits that extend a classical neural network 
to a hybrid quantum-classical network.  
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Quantum circuits represent a scheme on how to act on an initially specified number of qubits. They are 
executed from left to right. Each qubit is in a state that can be represented on the Bloch sphere. Initially all 
qubits in a quantum circuit are initialized in the |0⟩ state, point upwards in the Bloch representation. Then 
single-qubit gates such as rotational gates or 2-qubit gates that can entangle different qubits, e.g. the 
CNOT gate can be applied. In this implementation, those rotational gates are used to apply a certain 
rotation by a specified angle and a certain direction. Rotation operators around the 𝑥%-axis act on the |0⟩ 
state as follows [8] : 

Here, 𝑋	represents the respective Pauli matrix. The gates applied on the different qubits in a quantum 
circuit are designed in a reversible way, meaning the output of the gate fully determines its input. There is 
no loss of information in a noiseless quantum circuit. The 2-qubit gates used within this work are 
conditional gates that entangle two qubits within the circuit. The CNOT gate (conditional not operation) 
can be written in matrix form as shown here: 

By encoding information coming from the previous classical layers, the circuit may act as a function. 
Moreover, trainable parameters can be included within the quantum circuit. In this case, gates included in 
the circuit that exhibit a variable parameter are initialized at random and are optimized during the training 
procedure, similarly to the classical weights in a neural network. Moreover, a quantum circuit can include 
hidden dimensions consisting of additional qubits that do not encode input information, i.e., by using 
additional ancilla qubits. They can be entangled (i.e. exhibit strong correlations) with other “non-hidden or 
hidden qubits”. Gates with trainable parameters may be applied on the hidden dimensions to expand the 
number of free parameters in the circuit. 

3. THE DATASET 

The network has been trained on the TrackML dataset that is publicly available [9]. This data consists of 
more than 8k simulated events (collisions of proton bunches) of detector measurements (hits). The task is 
to classify the 3-dimensional hits in order to identify the trajectories of the single particles involved in the 
collision.  

The figure below (Fig. 1) displays how the hits, displayed as dots, are connected by edges and form 
trajectories. True trajectories are displayed in blue and false ones in red.  

 
Figure 1. Illustration of the particle track reconstruction task. The black dots represent the simulated detector hits 

connected to trajectories where true edges are displayed in blue and false edges in red [6]. 

Due to training time restrictions only 20% of the TrackML dataset have been processed to doublets in the 
same way as the Exa.TrkX project. 10k doublets have been generated that are used for training the hybrid 
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quantum-classical network as well as the classical version for comparison (8k for training, 2k for 
validation). This is a relatively small number of chosen samples to have a reasonable training time for 
testing purposes. In further tests, more samples should be used for training. For the train-validation data 
split, the data has been shuffled and thus randomly assigned to one of the datasets to guarantee an 
expressive validation procedure. By observing the behaviour of training and validation loss, overfitting can 
be seen and prevented. Thus, the validation loss is more informative than the actual training loss because 
the performance is evaluated on a separate, independent part of the data that is not involved in the 
optimization procedure. Hence, only the validation loss is shown in the results.  

4. HYBRID ARCHITECTURE 

The architecture follows two different approaches that extend the classical multilayer perceptron (MLP) 
used for embedding by the Exa.TrkX project [4]. Both approaches follow the general structure as 
presented in Fig. 2 with different quantum circuits (QC) and various numbers of hidden layers (𝑛!"#$%&) of 
the MLP.  

In the first approach, the classical MLP is combined with different quantum circuits acting as a function, 
where the output from the previous classical part is encoded using rotational gates, as described above. 
Hence, the output layer of the classical MLP projects onto the number of trainable parameters 𝑛'"%"($)$%& 
of the quantum circuits. Depending on the circuit that is used, conditional rotational gates or CNOT gates 
introduce a certain degree of entanglement between the qubits. Quantum circuits that exhibit different 
behaviors with respect to entanglement, expressibility and varying numbers of parameters [10] have been 
used to explore how the circuit-dependent level of entanglement and expressibility influences the training 
behavior of the MLP. 

 
Figure 2. Illustration of the general structure of the used hybrid quantum-classical MLP. The displayed quantum 

circuit (QC) acts as a placeholder for the quantum circuit architectures presented below.  

The second approach using the quantum feature map follows again the same general structure as 
described in Fig. 2. The output of the classical MLP is encoded using rotational gates. Furthermore, this 
version includes trainable parameters that are optimized during the training procedure. As before, the last 
projection, depicted in yellow, projects the output of the quantum circuit (𝑛($"&*%$($+)&)  onto the preferred 
embedding dimension that is smaller or equal to 𝑛($"&*%$($+)&. 

Input Layer 2 R3 = Din Hidden Layers 2 R512⇥nlayers Quantum CircuitOutput Layer 2 Rnparams Projection onto Dout

input output

|0i

|0i
...

|0i

QC(x̂i) output

Figure 1: Illustration of a hybrid quantum-classical multilayer perceptron
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a. The classical MLP 

The classical MLP used in the Exa.TrkX project [4] has hidden layers of the dimension of 𝑛!"#$%& 	× 	512, 
where 512 is the number of neurons per layer and 𝑛!"#$%&	 = 	10. There are additional input and output 
layers. The input layer projects the 3-dimensional input data onto the size of the first hidden layer and the 
output layer projects onto the output dimension. The Exa.TrkX project uses an embedding or output 
dimension of 8. The classical embedding version performs really well and forms a successful pre-
processing step, that leads to advantages in later steps. The aim is to explore how additional quantum 
circuits change the behaviour and how the replacement of classical layers with quantum circuits performs 
in simulations.  

b. Quantum circuit approach 

The general architecture can be seen in Fig. 2. For this first approach 𝑛!"#$%&	 is set to 10 and the quantum 
circuits from Fig. 3 act as an encoding function. The 3-dimensional input data from the TrackML dataset is 
hereby embedded into a 4-dimensional space. Due to the long training time for the simulation of the 
quantum circuit, in the beginning only 4 and 8 qubit quantum circuits have been used. This limits the 
embedding space dimension for this 4-qubit circuit to 𝐷-*) = 4. The output dimension 𝐷-*) was kept 
constant also for the 8 qubit circuits for better comparison and additionally influence of the down-
projections was investigated (from 8 measurements to 𝐷-*) = 4). The circuits should be later extended to 
ones with more than 8 qubits and give an embedding into a higher dimensional space comparable to the 
8-dimensional space used in the Exa.TrkX project.  

 

 

Figure 3. The 4-qubit quantum circuits [10] that have been used within the general architecture (Fig.2). 

The different quantum circuits displayed in Fig. 3 have been used as QC in the hybrid MLP architecture 
displayed in Fig. 2. Those three circuits have been chosen due to their differences with respect to 
entanglement and expressibility as depicted in [10]. Entanglement is measured using the Meyer-Wallach 
entanglement measure and expressibility as the Kullback-Leibler-divergence (KL-divergence) between the 
estimated probability distribution of the fidelities of the respective quantum circuit and the distribution of 
Haar random states. The rotational gates (RX and RY gates) and conditional rotations exhibit variable 
parameters (angle of the rotation). In this approach, they are used as an encoding function meaning that 
the output of the previous classical MLP layers acts as an input to those parameter-gates. Thus, the 
quantum circuit acts as a function:  
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and projects the input down to the number of measurements in the circuit. There is a further down-
projection into a lower-dimensional embedding space applied if the number of measurements is higher 
when using more qubits (i.e. using the 8-qubit circuit and an embedding dimension of 4).  

c. Quantum feature map approach 

The second approach uses a quantum circuit that includes trainable parameters. The initial architecture of 
the quantum circuit was adapted from [11]. The overall structure of the hybrid network follows again Fig. 2. 
In this version, the output of the classical MLP is encoded repeatedly using rotational gates. In between, 
entangling gates are applied that include parameters that can be optimized. Various numbers of hidden 
dimensions can be included. To keep the size of the circuit as small as possible, only one hidden 
dimension was used for testing purposes here. The hidden dimension here is a single qubit that is not 
used for encoding or decoding but is entangled with other non-hidden dimensions and includes trainable 
parameters in form of variable angles of rotational gates. Furthermore, this approach can be extended to 
more qubits and hence encode more input parameters as well as include more trainable parameters, i.e. 
within the hidden dimensions.  

 

 

Figure 4. Quantum circuit of the quantum feature map approach used within the general architecture in Fig. 2. 
Adapted from [11]. 

The quantum circuit of the quantum feature map approach is displayed in Fig. 4 and exhibits 75 
parameters. The RX gates encode the input coming from 4-dimensonal previous layers and the remaining 
parameters are variable and hence randomly initialized and trainable. Those values are optimized during 
training. Just like before, each qubit is initialized in the |0⟩ state in the beginning. The first 4 qubits are the 
ones that are measured at the end of the quantum circuit, the 5th one forms the hidden dimension of the 
circuit. It is entangled with the other qubits and exhibits variable parameters.  

 

 

Figure 5. (a) Simple schematics of the circuit displayed above. IQC is the quantum circuit encoding the input 
parameters and PQC the parametric quantum circuit that exhibits trainable parameters. (b) Encoding structure using 

rotational gates that builds up the IQC. 

Fig. 5a presents the complex quantum circuit from Fig. 4 in a simplified way. It is visible how the input 
(IQC) is repeatedly applied in every iteration. This encoding is done via rotational gates as shown in Fig. 
5b.  
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5. RESULTS AND IMPLEMENTATION DETAILS 

The different architectures for the hybrid quantum-classical neural network described above have been 
tested and the results are shown in detail below. The simulations of the hybrid quantum-classical network 
structure have been done in Python using PyTorch [12] and quantum computing libraries such as 
Pennylane [13] and Qiskit [14]. This is a supervised training procedure, i.e. there is an output given and 
with respect to that the loss function is evaluated and the parameters changed in a way such that the loss 
decreases.  

The dataset consists of doublets, which are two 3-dimensional points (hits) in a Euclidean space that form 
nodes connected with an edge. Each of these doublets have a label that defines whether they are true 
edges, i.e., belong to the same trajectory, or not. The aim of the non-linear transformation that is applied 
on this doublet input data aims to represent those doublets, i.e. the hits in a feature space where the true 
doublets are close together and the false ones are further apart. This is done by using the hinge 
embedding loss that was also used in the Exa.TrkX project. For the n-th sample consisting of the two 
points in 3-dimensional space forming a doublet and their label using the hinge embedding loss, available 
in PyTorch [12], this is: 

 

 

The n-th sample is described by two points in the original space, denoted as 0𝑥. , 𝑥/2. To each of these 
doublet point pairs belongs a label 𝑦.,/ ∈ {−1,  1} that indicates if the two points belong to the same 
trajectory 𝑦.,/ = 1 or not 𝑦.,/ = −1. The hinge embedding loss function favors in case where two points 
belonging to the same trajectory are embedded close together. Other loss functions, like the cosine 
embedding loss have been tested. 

a. Training the quantum circuit construction  

The quantum circuit architecture (displayed in Fig. 2 and 3) was trained using Adamax optimizer [15], a 
learning rate of 0.001, batch size of N = 100. The classical MLP has  𝑛!"#$%& = 10 where each of the layers 
consist of 512 neurons.  

Circuit 
number 

Number of 
parameters 
𝒏𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 

Number of gates 
(1+2 qubit gates) 

Entanglement (the 
higher the better) [16] 

Expressibility (the 
lower the better) 

[16] 

Average training 
time per batch 

5 28 28 0.29 0.05 37 s ±	8 s 
7 19 19 0.21 0.10 20 s ±	4 s 

11 12 15 0.54 0.13 14 s ±	4 s 
14 16 16 0.49 0.02 16 ±	4s 

Figure 6. Comparison between the different 4-qubit circuit parameters. Circuits from [10]. 

In Fig. 6, a comparison between the quantum circuits that have been trained is displayed. The training 
time increases with increasing number of gates in the 4-qubit circuits. Computationally expensive are also 
the quantum gates applied on 2 qubits. The difference in number of gates and number of parameters 
occurs because some of the gates (e.g. the CNOT gate) do not have a variable parameter. The listed 
quantum circuits have been chosen due to their different values regarding the metrics of entanglement 
and expressiblity. The presented values have been reproduced and the metrics are described in more 
detail in [10]. As a higher value with respect to the entanglement metric and a lower expressibility value 
are preferred, we expect a good performance of circuit 14. Indeed, this is the case as seen from the 
validation loss displayed in the figure below.  

samplen = [(xi, xj), yi,j ]

loss(samplen) =

(
max{0, 1� k�(xi, ✓)� �(xj , ✓)k2}, if (xi, xj) belong to the same trajectory

1, if (xi, xj) do not belong to the same trajectory
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Figure 7. Validation loss (a) and score (b) of the hybrid network with the respective quantum circuit within the 
general architecture. The training parameters are displayed on top of the figure.  

In Fig. 7, the mean values of 3 independent runs with different random states and the respective standard 
deviation as errorbars are shown. We observe a strong initialization dependence for circuit 5 that also 
exhibits the most parameters of the tested circuits, in detail discussed below. Circuit 14 performs the best 
converging to the lowest validation loss. While circuit 7 is converging to a similarly low value, the 
validation loss function exhibits higher and lower spikes. This could be explained by the training strategy 
using mini-batches of size 100. Circuit 11 converges to a comparable value of validation loss but seems to 
be converging more slowly until epoch 40. An unfortunate random initialization might explain the initially 
slow convergence rate of circuit 7 and especially 5. The corresponding score was computed as for [4].  
The training results can be improved, by repeatedly applying the respective quantum circuit [10]. By doing 
this, the entanglement value increases as the KL-divergence decreases, i.e., the expressibility of the 
circuit increases. The expressibility is defined as the KL-divergence between the uniform distribution of 
states (ensemble of Haar random states) and the estimated fidelity distribution of the quantum circuit [10]. 
Hence, the flexibility of the circuits increases as the KL-divergence decreases and the expressibility rises 
as the quantum circuits are able to represent more states. This improvement over the number of 
repetitions of the circuit can be seen in Fig. 8.  

 

Figure 8. Change in entanglement (a) and expressibility (b) value for quantum circuit (QC) 14 which is repeated for 
𝑛!"#$%"!&'(. Reproduced values from [4]. 

Hence, repeating the best performing circuit 14 from before can improve the validation loss and score 
displayed above. But such a repetition increases the number of gates in the circuit which leads to longer 
training times.  

i. Barren plateaus 

Even though the hybrid quantum-classical neural network version uses shallow quantum circuits including 
only up to 8 qubits and the number of parameters is of 𝑂(10), the training performance is highly 
dependent on the initialization of the circuit parameters. In some cases, the training and validation loss 
does not converge at all within the 100 epochs that have been used for training.  

(a) (b) 
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Figure 9. Validation loss of 3 independent runs of hybrid network using circuit 5 with 4 qubits.  

It is visible in Fig. 9 how much the training success depends on the initialization of the parameters, i.e. 
convergence of the loss function within the first 100 epochs. The loss function shows the behaviour of 3 
independent runs with different random state for initialization of the parameters in the classical MLP. 
Those random parameters act at the same time as the input to the quantum circuit and thus lead in case 
of run 3 to an unfavourable convergence behaviour, while for run 2 the initialization seems to only slow 
down the convergence in comparison to run 1. Several approaches exist to avoid such barren plateaus 
[17]. The spikes could be explained by the mini-batch optimization procedure when using Adamax 
optimizer. Run 3 was omitted in Fig. 7 for better visualization.  

ii. Expanding the number of qubits 

The initial circuits are all constructed using 4 qubits corresponding to 4 qubits in the quantum circuit. If all 
qubits are measured, the output is also 4-dimensional, and the input dataset is embedded into a 4-
dimensional space. Thus, enlarging the quantum circuit allows to embed into higher dimensional spaces, 
since the Exa.TrkX version embeds into an 8-dimensional space. To compare the different performance in 
validation loss and running time, for the version including the 8-qubit quantum circuit, the last layer 
projects the output of the quantum circuit (𝑛($"&*%$($+)& 	= 	8) onto the same 4-dimensional embedding 
space.  

 

 

 

 

Figure 10. Validation loss of the hybrid architecture including circuit 14 using 4 and 8 qubits (a) and the respective 
running times per batch (b). The training parameters are displayed on top of figure (a).  

Fig. 10 shows the validation loss of the two versions of circuit 14 with 4 and 8 qubits. They exhibit a similar 
training performance while the 8-qubit circuit converges slightly slower than the 4 qubit one. The plot 
shows the mean value of 3 independent runs of one batch per epoch and the error bars display the 
respective standard deviation regarding the 3 runs. Due to the difference in number of qubits and number 
of parameters, the training time per batch for the 8-qubit circuit is much longer. In this case, the 
performance difference doesn’t justify increasing the qubit number when projecting onto a 4-dimensional 
embedding space due to the difference in simulation times. But the 8-qubit version becomes important 
because of the higher number of measurements. With this circuit, it is possible to embed onto an 8-
dimensional space in comparison to only 4 dimensions in the 4-qubit version. 

𝑸𝑪 𝒏𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 𝒕𝒃𝒂𝒕𝒄𝒉(𝒊𝒏	𝒎𝒊𝒏. ) 
Circuit 
14, 4 
qubits 

16 0.28 ± 0.07		 

Circuit 
14, 8 
qubits 

32 1.44 ± 0.49		 

(a) (b) 
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b. Training the quantum feature map approach  

The quantum feature map network was trained using the same specifications as before. Again, Adamax 
was used as optimizer, a learning rate of 0.001 and the batch size of N = 100. The embedding dimension 
here is also 4, limited due to the number of measurements within the quantum circuit and training time 
constraints.  

i. Comparison of different sizes of the classical MLP 
 

As the quantum feature map exhibits trainable parameters, it is an interesting question, how the 
performance changes when the network replaces classical layers of the MLP. Hence, a small range of 
combinations of layers in comparison to the classic 10-layer case have been tested. The parameter and 
values with respect to the entanglement and expressibility metrics are shown in Fig. 12b). Due to the long 
training times, this approach was only trained until epoch 25, hence adding more epochs could change 
the results drastically.  

 

Figure 11.  Validation loss and training times of the quantum feature map approach with variable number of classical 
layers within the MLP. The training parameters are displayed on top of the figure.  

As displayed in Fig. 11, the 8-layer version seems to perform better or at least is comparable to the 10-
layer version in these early epochs. The 4-layer version seems to converge to a very high validation loss 
value and thus could reach its expressiveness quite early. The 0-layer variant proves that there is an 
optimization over the variables in the quantum circuit and hence a non-zero gradient. The expressiveness 
in this case is also limited due to the low number of parameters in the classical and quantum circuit. 
Moreover, both variants (0- and 4-layer) depend on the right random initialization for training success. 
Hence, the circuit does not train at all for some random initializations. They seem to converge early to a 
local minimum.  

 

Figure 12. Comparison of the validation loss (a) and relevant parameters (b) of the quantum feature map approach 
(8 and 10 classical MLP layers), as well as circuit 14 with 10 layers.  

Quantum 
circuit 

Number of 
parameters 
𝒏𝒑𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓𝒔 

Entanglement 
(the higher 
the better)  

Expressibility 
(the lower the 
better)  

Average 
training 
time per 
batch (= 
100 
samples) 

QFM 
(𝒏𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏	= 5) 

74 0.79 0.003 5 min 38 s 
± 8 s 

14 
(𝒏𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏	= 1) 

16 0.50 0.02 16 s ±	4 s (a) (b) 
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When comparing the validation loss of the 8 and 10-layer version using the quantum feature map 
approach to the quantum circuit 14 (10 classical layers) from before within the first 20 epochs, they 
perform quite similar. Even though the quantum feature map version exhibits favourable parameters 
regarding entanglement and expressibility, within the epochs displayed in Fig. 12a) they perform similar 
and circuit 14 seems to perform even a bit better. However, this behaviour could change when training for 
more epochs. Regarding the training time per batch, shown in Fig. 12b) it can be seen that circuit 14 trains 
much faster and completes 100 epochs within 𝒪(𝑑𝑎𝑦𝑠). The quantum feature map version, in comparison, 
needs 𝒪(𝑤𝑒𝑒𝑘𝑠) due to the high number of gates and thus parameters to optimize.  

 

Figure 13. Change in entanglement (a) and expressibility (b) value for quantum feature map QC for different 
𝑛!"#$%"!&'(. Calculated as in [10]. 

Also, for the quantum feature map approach, the entanglement and expressibility of the circuit increases 
as the number of 𝑛.)$%").-+& increases, as shown in Fig. 13. This is accompanied by an increased training 
time.  

6. DISCUSSION 

Combining quantum circuits and artificial neural networks to hybrid quantum-classical neural networks is a 
promising and interesting field of study with possible applications using noisy intermediate-scale quantum 
technologies. Due to the long simulation times of quantum circuits using quantum gates, the number of 
qubits currently used is quite limited. This leads to a reduced expressiveness of the circuits with a low 
number of parameters. The entanglement and expressibility values of the different tested quantum circuits 
can be improved by repeating their main structure and thus increase the number of parameters within the 
network. To test more complex circuits efficiently, it is important to speed-up the simulation process using 
GPUs and parallelisation techniques and hence be able to use more qubits and more training data. This 
would open future possibilities to replace larger parts of classical neural networks with expressive 
quantum circuits for embedding and classification tasks. It would also allow to increase the size of the 
training data sets.  
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