Team Brazil - University of Campinas

Problem 9 - Optical Compass

Maria Carolina Volpato and Denise Christovam

UNICAMP

Problem Statement

Bees locate themselves in space using their eyes' sensitivity to light polarization. Design an inexpensive optical compass using polarization effects to obtain the best accuracy. How would the presence of clouds in the sky change this accuracy?

Team Brazil - University of Campinas

Visualization of the phenomenon

Light Scattering

$\lambda=500 \mathrm{~nm}$

Conditions to Rayleigh scattering are satisfied!

$$
\begin{gathered}
\text { Particle }<\frac{1}{10} \lambda \\
\text { Particle }<50 \mathrm{~nm}
\end{gathered}
$$

$$
\frac{1}{10} \lambda<\text { Particle }<\lambda
$$

Particle $\approx 50-500 \mathrm{~nm}$

—_ Team Brazil - University of Campinas Linear Polarization

\rightarrow For the observer at PMP polarization plane collapses into a line
$\rightarrow 90^{\circ}$ from the source of light

Mapping the sky

\rightarrow Rayleigh sky model describes how the maximally polarized light stripe varies with rotation

https://en.wikipedia.org/wiki/Rayleigh sky model

Materials and design

\rightarrow Polarizing sheets
\rightarrow Guillotine Paper Cutting Machine
\rightarrow Adhesive tape
~ R\$ 30.00 (\$6.00)
\rightarrow Cardboard A4 $\left(120 \mathrm{~g} / \mathrm{m}^{2}\right)$

12 petals - 30°

18 petals -20°

72 petals -5°

Team Brazil - University of Campinas

Setup- Vertical and Horizontal Mapping

—— Team Brazil - University of Campinas

Vertical Angle

0°

40°

80°

120°
—— Team Brazil - University of Campinas

Horizontal Angle

Temporal evolution of the shadow

\rightarrow Angle in relation to the ground $\Theta=25 \pm 1^{\circ}$

\rightarrow Approximate geographical position:

- Latitude: $23^{\circ} 00^{\prime} 21^{\prime \prime} \mathrm{S}$
- Longitude: $46^{\circ} 50^{\prime} 20^{\prime \prime}$ W
\rightarrow Window facing SSW (276° form north)
\rightarrow Total time of acquisition 266 min (from 12 PM to sunset)
\rightarrow Performed at 09/24/2019

Temporal evolution of the shadow

Time lapse data

Presence of clouds

Conclusions

\rightarrow It is possible to build a cheap device

$$
\text { R\$ } 30.00-\$ 6.00
$$

\rightarrow It indicates N-S direction Rayleigh Scattering
\rightarrow Clouds reduces the accuracy Mie Scattering

Team Brazil - University of Campinas

Thank You!

UNICAMP

How do bees locate themselves?

https://www.beeculture.com/bees-see-matters/

A model for radiation

The electric fields propagate radially
Electrc dipole, |S|
Time-averaged Poynting vector:

$$
\langle\mathbf{S}\rangle=\left(\frac{\mu_{0} p_{0}^{2} \omega^{4}}{32 \pi^{2} c}\right) \frac{\sin ^{2}(\theta)}{r^{2}} \hat{\mathbf{r}} \quad \text { "p" wave }
$$

Total time-averaged power radiated:

$$
P=\frac{\mu \delta \omega^{4} p_{0}^{2}}{12 \pi c}
$$

David J. Griffiths, Introduction to Electrodynamics, Prentice Hall, 1999

Rayleigh x Mie

If $a \ll \lambda$: Rayleigh

If a is close to λ : Mie
Distortion of the radiation in one direction

Rayleigh x Mie

Recovering the toroidal profile of dipole radiation:

Light scatters at $x y$ plane - polarization depends on our position in relation to the Sun

Atmospheric Conditions

Linear polarization

At PMP, the polarization Plane:

Observer's view

Plane of polarization

Plane the observer sees

At B, the observer sees E_{\perp} :

Problem 9- Optical Compass

Degree of polarization

At B, the observer sees E_{\perp} :

As sunlight is unpolarized at first

$$
I_{\|}(\gamma)=I_{0} \quad I_{\perp}(\gamma)=I_{0} \cos ^{2} \gamma
$$

We can define the degree of polarization $\mathrm{P}(\mathrm{Y})$:

$$
P(\gamma)=\frac{I_{\max }(\gamma)-I_{\min }(\gamma)}{I_{\max }(\gamma)+I_{\min }(\gamma)} \quad \Longrightarrow \quad P=P_{\max } \frac{\sin ^{2} \gamma}{1+\cos ^{2} \gamma}
$$

Team Brazil - University of Campinas

Navigation

Scattering Angle
$\cos \gamma=\cos \Theta \cos \theta \cos (\Phi-\varphi)$ $+\sin \Theta \sin \theta$

We always need some other info, like the time of the day (or measure for extended periods of time)

Analyse the data

\rightarrow ImageJ

Problem 9- Optical Compass

Defining angular resolution

Angular resolution - Malus Law

Temporal evolution of the shadow

\rightarrow Angle in relation to the ground $\Theta=$ $25 \pm 1^{\circ}$
\rightarrow Approximate geographical position:

- Latitude: $23^{\circ} 00^{\prime} 21^{\prime \prime} \mathrm{S}$
- Longitude: $46^{\circ} 50^{\prime} 20^{\prime \prime}$ W
\rightarrow Window facing SSW (276° form north)
\rightarrow Total time of acquisition 266 min (from 12 PM to sunset)
\rightarrow Performed at 09/24/2019

Setup

Gaussian - Calibration

Deviation from Malus Law due to small

Intrinsic width
of shadow:
-20° in 180°
("efficiency" of

Timelapse $-\mathrm{T}_{0}=1 \mathrm{PM}$

- $\quad \Theta: 64^{\circ}$
- Ф: 321°
- Predicted angle of PMP: 154° or 26° to the ground
- $\frac{P\left(82^{\circ}\right)}{P_{\max }}=0.96$

Timelapse $-\mathrm{T}_{0}=5: 26 \mathrm{PM}$

- $\quad \Theta: 8^{\circ}$
- \quad : 273°
- Predicted angle of PMP: 98° or 82° to the ground
- $\frac{P\left(29^{\circ}\right)}{P_{\max }}=0.13$

Temporal evolution of the shadow

- Shadow sharpens
- Strip rotates indicating solar position

Team Brazil - University of Campinas

Error Analysis - Position

Team Brazil - University of Campinas

Error Analysis - Position

Team Brazil - University of Campinas

Atmospheric conditions - Cloudy weather

$$
\begin{aligned}
& \text { Typical radus of the } \sim \lambda \\
& \text { droplets } \sim 10^{2} \mathrm{~nm}
\end{aligned}
$$

Conditions to Rayleigh scattering are not satisfied

Mie Scattering dominates

No pattern formed

Team Brazil - University of Campinas References

Wehner, R.D., 1976. Polarized-light navigation by insects. Scientific American, 235(1), pp.106-115.

Rossel, S., 1993. Navigation by bees using polarized skylight. Comparative Biochemistry and Physiology Part A: Physiology, 104(4), pp.695-708.

