Team Brazil - University of Campinas

Reporter Team

Reporters: Anderson Vulto and Giovanni Campos

UNICAMP

Problem 8

Rippled Water Columns

Team Brazil - University of Campinas

Problem Statement

When a vertical water jet hits a surface, ripples may appear. If certain conditions are met, the ripple structure is pronounced, steady and very reproducible.

Describe the phenomenon. What properties of the fluid and the flow can be deduced from the observations?

Characterizing a flow

The quantity of fluid that passes a point per unit of time.
$F l o w=\frac{\text { Volume }}{\text { Time }}=$ Area \cdot Velocity
Steady and turbulent states \longrightarrow Reynolds Number (Re)

Laminar and Turbulent flows

$$
R e=\frac{\rho \cdot v \cdot l}{\mu} \quad \frac{\text { Inertial Forces }}{\text { Viscous Forces }}
$$

Team Brazil - University of Campinas

Rayleigh-Plateau Instability

Surface tension $\boldsymbol{\sigma}$

leads to
Oscillations
resulting into
Droplets

Perturbations on the jet

Steady State
Perturbed State

Radius equation for a perturbed jet:

$$
R(z, t)=R_{0}+\varepsilon\left(e^{\omega t+i k z}\right)
$$

Its governing equations

Momentum: $\quad \omega R(r)=-\frac{1}{\rho} \frac{d P(r)}{d r}, \omega Z(r)=-\frac{i k}{\rho} P(r)$

Continuity: $\quad \frac{d R(r)}{d r}+\frac{R(r)}{r}+i k Z(r)=0$

Dispersion relation

$$
\begin{aligned}
& \omega^{2}=\frac{\sigma}{\rho} \frac{k}{R_{0}^{2}} \frac{I_{1}\left(k R_{0}\right)}{I_{0}\left(k R_{0}\right)}\left(1-k^{2} R_{0}^{2}\right) \\
& \left\{\begin{array}{l}
k R_{0}<1 \rightarrow e^{i(\omega t+k z)} \\
k R_{0}>1 \rightarrow e^{\omega t+i k z}
\end{array}\right.
\end{aligned}
$$

Team Brazil - University of Campinas Jet and wave velocities

$$
\begin{aligned}
& V^{2} \sim U^{2}=\frac{\omega^{2}}{k^{2}} \\
& \frac{\omega^{2}}{k^{2}}=\frac{\sigma}{\rho} \frac{1}{k R_{0}^{2}} \frac{I_{1}\left(k R_{0}\right)}{I_{0}\left(k R_{0}\right)}\left(1-k^{2} R_{0}^{2}\right)
\end{aligned}
$$

Team Brazil - University of Campinas

Results

UNICAMP

Setup

Glass surface + height adjustaments supports

Team Brazil - University of Campinas

Nozzle to surface height variation

Nozzle to surface height variation

Problem 8
14

Team Brazil - University of Campinas

Nozzle to surface height variation

Team Brazil - University of Campinas

Nozzle to surface height variation

Team Brazil - University of Campinas

0,03M Sugar solution

Team Brazil - University of Campinas

0,2M Salt solution

Problem 8
18

Team Brazil - University of Campinas

Ethanol

Problem 8

Kitchen soy oil

Car oil

19

Team Brazil - University of Campinas

Solving dispersion for $\boldsymbol{\sigma} / \boldsymbol{\rho}$ factor

Water jet at $h=40.34(5) \mathrm{mm}$

Jet Velocity $\mathbf{V}^{\mathbf{2}}\left(\mathbf{m}^{2} / \mathbf{s}^{\mathbf{2}}\right)$	Wavenumber k($\left.\mathbf{m m}^{\mathbf{1}}\right)$	$\boldsymbol{\sigma} / \mathbf{\rho} \mathbf{1 0} \mathbf{1 0}^{\mathbf{- 5}}\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}^{\mathbf{2}}\right)$
$0.5(2)$	$0.80(4)$	$7.2(8)$
$0.4(1)$	$0.79(4)$	$6.4(7)$
$0.3(1)$	$0.78(4)$	$5.4(7)$
$0.3(1)$	$0.98(4)$	$4.5(3)$
$0.2(1)$	$0.75(4)$	$3.5(4)$

$$
\sigma / \rho_{\text {water }}=0.000072 \mathrm{~m}^{3} / \mathrm{s}^{2}
$$

Discussions

- Changing of pressure due to open glass column affecting the flow velocity and ripple reproducibility;
- Effect of changing the surface tension σ;
- Different liquids may have the same σ / ρ ratio.

Conclusions

- A relation between some properties of the fluid can be expressed by the σ / ρ ratio;
- The flow is governed by the jet velocity and the kinectic viscosity;

Team Brazil - University of Campinas
Thank You!

UNICAMP

