

3. Paper Tube

Juan Carvajal

UNIVERSIDAD DE ANTIOQUIA 1 8 0 3

Roll a long paper strip into a tight tube and put it vertically on a table. Why does it often unwind in jerks? What determines the period of the jerks?

What effects are present?

Team UdeA

- Restitution forces of the paper.
- Friction:
 - With the surface.
 - Between paper sides.

Experiments

Jerks are a simple phenomenon!

The origin of the phenomenon

Experiments

Team UdeA

In general:

$$\ddot{x} = g\mu + \frac{k}{m}(x_1 - x)$$

For the dynamic friction domain:

Model

$$\ddot{x} + \frac{k}{m}x = \frac{k}{m}v_1t + g(\mu_s - \mu_d)$$

Conclusions

4

Evolution of the stripe.

Accumulating tension on the tube

Modeling our problem

Team UdeA

surface friction

Experiments

7

Some considerations on the model...

Team UdeA

$$L = \int ds :$$

Experiments

n

$$r = a\theta$$
$$\alpha \ge \theta \ge 0$$

Parametrization of the roll.

Considering $\alpha \gg 1$:

$$L = \frac{a}{2}\alpha^2$$

Conclusions

Then is obtained by integrating:

$$L = \frac{a}{2} \{ \sqrt{\alpha^2 + 1}\alpha + \sinh^{-1}\alpha \}$$

And considering also $lpha \gg 1$, then, expanding in a Laurent series and approximating:

with this relation, the complete form of the roll can be determined with just one number, previously defined as 'x', and the lenght, 'L'.

Model scalable from 1D to 2D. Even 3D.

Team UdeA

In conclusion, for this part:

$$r = \frac{2L}{\alpha^2} \theta \qquad \alpha \ge \theta \ge 0$$

 $\alpha = \frac{2L}{x}$

A relation between a 2D model and a 1D model has been obtained.

The 1D model of the paper tube

Experiments

Team UdeA

surface friction

: Force associated with pure bending

: Force associated with tension along the height of the paper tube.

12

Describing the bending force

Team UdeA

Considering the force in the end of the tube, while pure bended, equal to the force of a flat torsion coil, that is: $F_h = k\Delta\alpha$

And applying the delta operator to the function that relates alpha and x, with an additional approximation, considering that x0 is much greater than the variation of x:

Experiments

Model

Equations of motion of the system

Team UdeA

surface friction

In general, the equations of motion will be given by the following system:

$$\begin{cases} \ddot{x} = -k_b(x - x_0) - k_\tau(x - x_s) + F_{fr} \\ \ddot{x}_s = k_\tau(x - x_s) - k_b(x_s - x_0) - \Gamma \dot{x}_s \end{cases}$$

Analyzing periodicity: solution for $\dot{x} = 0$

Team UdeA

Solving the system for the motionless block (static friction):

$$x_{s} = \frac{k_{\tau}x + k_{b}x_{0}}{\omega_{0}^{2}} (1 - \exp\{-\omega_{0}t\}) \qquad \qquad \text{where} \\ \omega_{0}^{2} = k_{\tau} + k_{b}$$

Evaluating initial and final conditions for this part of the movement:

$$C_1 = k_b \left\{ \frac{1}{\omega_0^2} + \frac{1}{k_t} \right\}$$

$$T = -\frac{1}{\omega_0} \log\{-C_1 x + C_1 x_0 - \frac{g\mu_s}{k_\tau} + 1\}$$

Model

-1

Solution for the jerk motion

Team UdeA

Differential equations of the jerk motion:

$$\begin{cases} \ddot{x} = -k_b(x - x_0) - k_\tau(x - x_s) - g\mu_s \\ \ddot{x}_s = k_\tau(x - x_s) - k_b(x_s - x_0) - \Gamma \dot{x}_s \end{cases}$$

The velocity dependance difficulties an analytical solution.

Solution for the periodicity

Team UdeA

$T = -\frac{1}{\omega_0} \log(-C_1 x + C_1 x_0')$

A good description of the movement

Team UdeA

Causes

Experiments.

- Variation of the height keeping the other parameters fixed.
- Similar measures variating the length of the tube.

Height variation.

Periodicity parameters vs Height

22

Periodicity parameters vs length

Conclusions

- The jerks produce due to a combined effect associated with friction properties and an accumulation of tension on the tube.
- The period of a jerk depends on the variable width of the tube:

$$T = -\frac{1}{\omega_0} \log(-C_1 x + C_1 x_0')$$

Conclusions

Causes

- Geometrical properties such as length and height also influence periodicity.
- The elastic properties of the paper take importance in the model.

Juan.carvajal12@udea.edu.co

Conclusions

- The difference between dynamic and static friction determines the periodicity.
- Geometrical properties also influence the periodicity
- Pro

Periodicities superposed

Then is obtained by integrating:

$$L = \frac{a}{2} \{ \sqrt{\alpha^2 + 1}\alpha + \sinh^{-1}\alpha \}$$

Model

And considering also $lpha \gg 1$, then, expanding in a Laurent series and approximating:

Causes

with this relation, the complete form of the roll can be determined with just one number, previously defined as 'x', and the lenght, 'L'.

Describing the bending force

Team UdeA

Considering the force in the end of the tube, while pure bended, equal to the force of a flat torsion coil, that is: $F_h = k\Delta\alpha$

And applying the delta operator to the function that relates alpha and x, with an additional approximation, considering that x0 is much greater than the variation of x:

Experiments

Model

Analyzing periodicity: solution for $\dot{x} = 0$

Team UdeA

Solving the system for the motionless block (static friction):

$$x_{s} = \frac{k_{\tau}x + k_{b}x_{0}}{\omega_{0}^{2}} (1 - \exp\{-\omega_{0}t\}) \qquad \qquad \text{where} \\ \omega_{0}^{2} = k_{\tau} + k_{b}$$

Experiments

Evaluating initial and final conditions for this part of the movement:

$$C_1 = k_b \left\{ \frac{1}{\omega_0^2} + \frac{1}{k_t} \right\}$$

$$T = -\frac{1}{\omega_0} \log\{-C_1 x + C_1 x_0 - \frac{g\mu_s}{k_\tau} + 1\}$$

Model

-1

Solution for the jerk motion

Team UdeA

Differential equations of the jerk motion:

$$\begin{cases} \ddot{x} = -k_b(x - x_0) - k_\tau(x - x_s) - g\mu_s \\ \ddot{x}_s = k_\tau(x - x_s) - k_b(x_s - x_0) - \Gamma \dot{x}_s \end{cases}$$

The velocity dependance difficulties an analytical solution.

