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Abstract—The systematic collection of data has become an
intrinsic process of all aspects in modern life. From industrial
to healthcare machines and wearable sensors, an unprecedented
amount of data is becoming available for mining and information
retrieval. In particular, anomaly detection plays a key role in a
wide range of applications, and has been studied extensively.
However, many anomaly detection methods are unsuitable in
practical scenarios, where streaming data of large volume arrive
in nearly real-time at devices with limited resources. Dimension-
ality reduction has been excessively used to enable efficient pro-
cessing for numerous high-level tasks. In this paper, we propose
a computationally efficient, yet highly accurate, framework for
anomaly detection of streaming data in lower-dimensional spaces,
utilizing a modification of the symbolic aggregate approximation
for dimensionality reduction and a statistical hypothesis testing
based on the Kullback-Leibler divergence.

Index Terms—Online anomaly detection, kernel density es-
timator, symbolic representations, mode-bounding Lloyd-Max
quantizer

I. INTRODUCTION

Anomaly detection has a prominent role in monitoring
and predicting critical processes and phenomena. It has been
extensively applied in various distinct application scenarios
employing both non-streaming and streaming data [1], such
as network intrusion detection, fraud detection, detection of
data abnormalities or instrumentation errors in the medical
domain, novelty detection in textual data, etc. Focusing on
the case of streaming data arriving in (near) real time, ne-
cessitates the design of fast anomaly detection algorithms,
whereas anomaly detection in edge processing applications
imposes additional computational constraints due to the lim-
ited power and memory resources available on-board small
sensing devices. To address these issues, this work proposes
an unsupervised, non-parametric method, characterized by low
power and memory demands, for anomaly detection in uni-
dimensional data, whereas guidelines for a generalization to
higher-dimensional data are given in the last section.

More specifically, fast processing of the received streaming
data is enabled by first applying a dimensionality reduction
step. For this, we rely on the framework of symbolic aggregate
approximation (SAX) [2]. SAX is a well-established method
that transforms a given time series into a lower-dimensional
symbolic sequence, and is widely used in a variety of data
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mining applications (ref. [3]–[7]). At the core of our method is
a modification of the conventional SAX, in order to construct
more accurately the symbolic representation by better adapting
to the underlying data-generating process. The design of our
SAX-based anomaly detection method is further motivated
by the fact that symbolic representations can be coupled
efficiently with the Kullback-Leibler Goodness-of-Fit process
(ref. [8]) in order to track the time-evolving distribution of the
generated symbols. The efficiency of our proposed method is
evaluated by employing the Numenta Anomaly Benchmark
(NAB) [9]. NAB consists of a highly comparative scoring
system and provides a wide variety of real-world labeled
datasets from diverse sources.

Other techniques which incorporate dimensionality reduc-
tion for efficient anomaly detection, either run in a supervised
fashion, or make assumptions for the data statistics. For
instance, the method proposed in [10] is supervised, whilst
the method in [11] assumes Gaussian distribution of the data,
which is very often inaccurate.

The rest of the paper is organized as follows: Section II
introduces the core components of our method and discusses
its differences with prior related works. Section III describes
in detail our proposed anomaly detection method for symbolic
time series representations, whilst Section IV evaluates its
performance, whilst also investigating the relation between the
anomaly detection accuracy and the degree of dimensionality
reduction. Finally, Section V summarizes the main outcomes
of this work and gives directions for further extensions.

II. BACKGROUND AND RELATED WORKS

In this section, we briefly introduce the building blocks
of our method, namely, (i) the SAX framework, a modified
version of which is used for dimensionality reduction by
transforming a time series into a sequence of symbols in a
data-adaptive fashion, and (ii) the Kullback-Leibler Goodness-
of-Fit criterion, which is used to define our anomaly detection
rule by tracking the time-varying distribution of the symbolic
sequence.

A. Symbolic Aggregate Approximation

Let U = (u1, u2, . . . , uN ) be a discrete time series of
N data samples, where ui is the ith sample. The first step
of SAX implements a piecewise aggregate approximation
(PAA), which transforms the given time series U into a vector
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Fig. 1: SAX transformation. Each M -sized segment is av-
eraged and assigned a codeword (color-coded) according to
the α-quantiles of the standard Gaussian distribution. Here,
M = 12 and α = 6.

Y = (y1, . . . , yM ), with M < N . For this, U is divided into
M segments of equal size and the average value is calculated
for each segment. The ratio M/N determines the degree of
dimensionality reduction.

In the second step, Y is transformed into a symbolic
sequence S, by mapping the averages into a predefined set
of symbols. More precisely, the original time series U is
typically Z-normalized to mean zero and standard deviation
equal to one, whereas it is assumed to follow a standard
Gaussian distribution. Under this assumption, the M averages
in Y are quantized within α equiprobable intervals under the
standard Gaussian probability density function curve. Each
quantization interval is assigned a codeword from an alphabet
A with cardinality |A| = α. The result is a symbolic sequence
of length M . Fig. 1 illustrates the SAX process. Notably,
the SAX transformation is fast and can be executed in real
time. Moreover, processing the lower-dimensional symbolic
sequence is much more efficient than processing the raw data.

B. Kullback-Leibler Goodness-of-Fit

The online anomaly detection step of our method is moti-
vated by a hypothesis testing approach proposed by [8], which
employs a goodness-of-fit test based on the Kullback-Leibler
divergence. Hereafter, we denote the method introduced in [8]
by “KL GoF”.

Specifically, for two discrete random variables X and Y
defined in the same probability space X , the Kullback-Leibler
divergence of Y from X is defined as follows,

D(X‖Y ) =
∑
x∈X

PX(x) log
PX(x)

PY (x)
. (1)

Let Q and Q̂ be two discrete random variables. If the
probability mass function of Q̂ is the empirical mass function
estimated from N samples of Q, the following result holds,

2N ·D(Q̂‖Q) −→ χ2 uniformly, (2)

where χ2 is the chi-squared distribution with |X | − 1 degrees
of freedom, with |X | being the cardinality of the sample
space X . The convergence rate is controlled by the quantile
function F−1χ2 (γ). Specifically, the empirical random variable
Q̂ is considered to be asymptotically dissimilar from Q, if the
following condition holds,

2N ·D(Q̂‖Q) > F−1χ2 (γ) ,

where γ is typically set equal to 0.05 or 0.01, as noted in [8].
The “KL GoF” method first performs a uniform quantization

of the time series samples, with quantization intervals of equal
size. Then, the empirical distribution of the quantized samples
is estimated in sliding windows of length N . A window is
flagged as “anomalous” if the associated empirical distribution
is not close, according to the above threshold-based rule, to
any of the distributions in the past windows.

III. PROPOSED ONLINE ANOMALY DETECTION METHOD

In this section, the proposed online anomaly detection
method is analyzed. Specifically, a SAX-based dimensionality
reduction step is performed first, followed by a statistical
criterion based on the KL GoF to classify a window as
anomalous or not.

A. Data-driven SAX-based Symbolic Representation

Although SAX yields a high representation accuracy for
data following Gaussian statistics, however, its performance
may degrade dramatically in more generic cases. Indeed, in
practical scenarios, where the underlying probability distribu-
tion of a time series deviates significantly from a Gaussian,
the accuracy of a SAX-based low-dimensional symbolic repre-
sentation diminishes. To address this limitation, an alternative
quantization method is employed, as described below.

1) Data-adaptive SAX quantization: An initial probability
density function (pdf) is estimated for the data source from
the first PAA segments of the associated time series. In a real
streaming data scenario, a set of historical data from the same
source can be employed. The pdf estimation is performed by
means of a kernel density estimator (KDE) [12]. The KDE
depends on two parameters, namely, the kernel function and
the smoothness parameter. In our implementation, we employ
the Epanechnikov kernel [13] and the Silverman’s rule [14,
Sec. 3] for setting the smoothness parameter. Having estimated
the pdf, a set of optimal quantization intervals is derived by
applying the Lloyd-Max algorithm [15].

An illustration of these two steps (KDE and Lloyd-Max) is
shown in the top plot of Fig. 2. Our modified SAX-based step
yields symbolic representations of increased accuracy by better
adapting to the pdf of the streaming data, without relying on
any prior assumption for the statistics of the data source.

Nevertheless, it is important to highlight a problem, which
is inherent to the way Lloyd-Max forms the quantization in-
tervals and clusters the PAA segments in the distinct intervals.
Specifically, the calculated intervals often split the true clusters
(i.e., the intervals around the modes) of the source’s pdf (see
top plot in Fig. 2). This is undesirable, since, although data
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Fig. 2: Data-adaptive SAX via KDE and Lloyd-Max. The
estimated pdf is drawn on the left of each plot. (a) Top: con-
ventional Lloyd-Max, (b) Bottom: proposed mode-bounding
Lloyd-Max. Note that the dominant mode is splitted in two
intervals by the conventional Lloyd-Max, while a more accu-
rate bounding is achieved by the mode-bounding Lloyd-Max.

Algorithm 1 Mode-bounding Lloyd-Max

1: Inputs: α, k
2: Compute B = k · α quantization intervals with bounds

M = [m1, . . . ,mB+1] via Lloyd-Max.
3: while |M| > α do
4: remove mj∗ fromM , with j∗ = argminj(mj−mj−1)
5: end while

falling in the same mode are assumed to be similar, however,
splitting a mode may yield a misinterpretation as of the data
belonging to distinct subclusters being significantly different.
To overcome this drawback, a modification of Lloyd-Max
quantizer is proposed below.

2) Mode-bounding Lloyd-Max: The proposed method is a
simple modification of the conventional Lloyd-Max quantizer,
aiming at better detecting the modes of a probability density
function. Specifically, let α be a predefined number of quan-
tization intervals. The mode-bounding Lloyd-Max quantizer
first estimates a number of quantization intervals k ·α, k ∈ N.
Then, a merging of the smallest intervals with their neighbours

is carried out iteratively until the α largest intervals are left.
This process is summarized in Algorithm 1, and illustrated in
the bottom plot of Fig. 2.

The idea behind the proposed quantizer is that a finer
quantization will fine-slice the peaks of the modes in the pdf,
as the density around the peaks is high. Subsequently, merging
the smallest intervals implicitly merges the intervals around the
peaks, leaving the boundaries of the modes intact.

B. SAX-KL Anomaly Detector

The proposed anomaly detection method is applied in a
lower-dimensional space by incorporating the modified SAX
and Lloyd-Max algorithms described above, in conjunction
with the KL GoF test overviewed in Sec. II-B.

In particular, working in a sliding window fashion, given
the alphabet size α and the dimensionality reduction ratio
M/N , the current window of length N is first transformed
into a symbolic sequence S of length M . The transformation
is carried out by the data-driven SAX-based method described
in Sec. III-A.

Having generated the symbolic sequence of length M for
the current window, the frequency distribution of the α alpha-
bet symbols is calculated next for the M -sized sequence. Then,
the goodness-of-fit test, described in Sec. II-B, is applied to
classify the window as anomalous or not. Here, the cardinality
of the sample space of the symbols in S, which is required
for the definition of the chi-squared distribution (2), is equal
to the alphabet size α.

Note that both α and M/N determine the degree of com-
pressibility achieved by the symbolic sequence, and hence the
computational and memory savings of the overall anomaly
detection system. However, α and M/N affect the detector’s
efficiency in a different way. In the optimal case, the alphabet
size should match the number of “states” in the given time
series. For instance, a binary source with additive noise can
be represented efficiently with a binary alphabet. Likewise,
a CPU activity log may be represented adequately with an
alphabet size equal to the expected number of activity states.
On the other hand, the dimensionality reduction ratio should
preserve the raw data patterns.

We emphasize again that our online anomaly detection
method is distribution-free, by not relying on any prior as-
sumption on the underlying data distribution. Furthermore, it
does not require access to past data, but only to the proba-
bility distributions of the past (symbolic) windows. Memory-
wise, this is more efficient, since a window of length N is
represented by only α numbers, i.e., the probabilities of its
symbols. Also, under high memory constraints, only the latest
probability distributions can be saved in memory and utilized
by the KL GoF test. Hereafter, our proposed anomaly detection
method is denoted by “SAX-KL”.

IV. EXPERIMENTAL EVALUATION

In this section, the anomaly detection accuracy of our
method is evaluated and compared against the results reported
by NAB (ref. Section I). Specifically, the performance of



anomaly detection methods is evaluated in terms of the true
positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN) rates. Standard performance metrics in-
clude the following information retrieval measures,

Precision =
TP

TP + FP
, (3)

Recall =
TP

TP + FN
, (4)

F-score = 2× Precision× Recall

Precision + Recall
. (5)

Precision quantifies the correctness of detected anomalies,
whereas Recall measures the success in detecting them.
F-score is the harmonic mean of Precision and Recall, which
provides an overall measurement of the performance.

The above performance metrics are suitable for anomaly
detection over batches of data or subsequences over a time
window of predefined length (e.g. packets in communication
networks, daily stock market prices, traffic in rush hours,
etc.). On the other hand, the accuracy of anomaly detection in
streaming data, which do not form predefined batches, cannot
be evaluated directly with the above metrics. To alleviate this
issue, the authors in [9] propose a benchmark algorithm (NAB)
to tackle these limitations. The outcome is a scoring system
tailored to streaming anomaly detectors, which contains a total
of 58 synthetic and real-world streaming datasets with labeled
anomalies. Moreover, the algorithm calculates three different
scores by weighing FPs and FNs differently: (i) favoring fewer
FPs, (ii) favoring fewer FNs, and (iii) a “standardized” score,
that balances both FPs and FNs. The scores’ values vary
between 0 and 100 (the higher the better).

A core concept of NAB is the definition of anomalous
windows, i.e., windows centered on anomaly points, with
which a true positive is scored according to how early or
late within the window it is located (the earlier the better).
Naturally, the points that are classified as anomalous within
an anomalous window are jointly accounted for as a single
true positive. The length of the windows is set heuristically
and separately for each dataset. This concept leads to the idea
of splitting the streaming data, following the same heuristics
as NAB does, into equal-sized windows, either anomalous or
anomaly-free, into which the detected anomalies are merged.
Adopting this approach allows us to exploit the commonly
used performance metrics defined by (3)-(5).

In the following, the performance of our method is evaluated
for varying dimensionality reduction ratios, and by employing
both the NAB scores and the metrics in (3)-(5) (which are
calculated according to the methodology described above).
Doing so, we provide a complete quantification of the detec-
tor’s performance. The results are averaged over 100 Monte
Carlo iterations, although the divergence across the iterations
was not significant. Regarding NAB, we also compare the
scores achieved by our method with some of the currently
best performing anomaly detection algorithms, whose scores
are obtained directly from the online repository1 maintained

1https://github.com/numenta/NAB/#scoreboard

by the authors of [9].
Regarding KL GoF and SAX-KL, the following parameters

setting is used for all datasets: window length N = 50, alpha-
bet size α = 8, and intervals multiplier for the mode-bounding
Lloyd-Max (ref. Alg. 1) k = 4 (fixed for all the experiments
hereafter). The statistic threshold is γ = 10−4 in the case of
no dimensionality reduction (i.e., when M/N = 1.0), whilst a
larger γ = 5 · 10−3 is used when M/N < 1.0. We emphasize
that the aforementioned online repository lists the values of the
KL GoF under the name “Relative Entropy”, and with scores
significantly lower than those reported herein. The reason is
that the anomaly detector they employed is executed for α = 5
and γ = 10−2, whereas we found out that our setting achieves
higher scores for both methods.

As it can be seen in Table I, when no dimensionality
reduction is applied, our anomaly detection method improves
the performance of the KL GoF, whilst it clearly competes
most of the currently best performing detectors. More im-
portantly, the proposed method uniquely enables anomaly
detection in a lower-dimensional space, due to the SAX-based
dimensionality reduction method, which is explored next.

The second experiment investigates the effect of the degree
of dimensionality reduction on the performance of our method.
As described above, our proposed SAX-KL method enables
dimensionality reduction of the original time series via the
SAX-based step. Table II presents the anomaly detection
performance of our method by varying the dimensionality
reduction ratio M/N ∈ [1/80, 1/1] (from large to low di-
mensionality reduction), in terms of the NAB scores, as well
as the Precision and Recall. Furthermore, Fig. 3 shows the
respective average F-score as a function of M/N .

Notably, according to the NAB scores in Table II, the
performance of our method in the lower-dimensional space is
still as good as the best performing detectors (Table I), even
for large dimensionality reduction. An interesting observation
is that the performance of the detector does not decrease
monotonically with the dimensionality reduction. A more
thorough study of the effect of the dimensionality reduction
ratio on the detector’s performance is left as a future work.

Notice also that the running time of SAX-KL and KL GoF
method is exactly the same when M/N = 1.0, since the
training phase of the KDE step is carried out only once during
initialization, and thus can be disregarded in the subsequent
application of the method on the streaming data. Practically,
during the initial application of the detector, a better approx-
imation of the true distribution function can be computed as
samples come in and re-initialize the quantization intervals.
Nevertheless, KDE’s convergence speed is fast for smooth
distributions (see for example [16]).

Overall, the method requires small memory and com-
putationally benefits from the dimensionality reduction. As
an example, we ran the top 5 detectors from Table I on
the real-world dataset “machine temperature system failure”
from NAB’s collection, which contains 22695 samples, on an
Intel i7-6700@3.8GHz. The running time was 123.76 seconds
for “Numenta HTM”, 24.48 seconds for “CAD OSE”, 93.05



TABLE I: NAB scores
Detector Standard Low FP Low FN

Numenta HTM 70.1 63.1 74.3
CAD OSE 69.9 67.0 73.2
SAX-KL 67.1 61.6 71.0
KL GoF 63.2 59.0 66.4

earthgecko Skyline 58.2 46.2 63.9
KNN CAD 58.0 43.4 64.8

Random Cut Forest 51.7 38.4 59.7
Twitter ADVec v1.0.0 47.1 33.6 53.5

The proposed SAX-KL method has been set with M/N = 1.0
(i.e., no dimensionality reduction). The parameters of SAX-KL
and KL GoF are the same and optimized for NAB’s datasets:
N = 50, α = 8, γ = 10−4.

TABLE II: Performance of the proposed SAX-KL method vs.
dimensionality reduction ratio (M/N ).

NAB Scores
M/N Standard Low FP Low FN Precision Recall
1/1 67.1 71.0 61.6 0.3995 0.7955
1/2 63.3 67.5 57.3 0.3623 0.7696
1/4 65.0 69.1 59.3 0.3973 0.7832
1/8 59.7 63.7 54.7 0.3932 0.7237
1/16 60.4 64.8 54.7 0.3524 0.7462
1/32 56.8 61.1 51.8 0.3330 0.7042
1/64 53.3 58.1 47.9 0.2975 0.6888
1/80 51.2 55.8 45.2 0.2520 0.6648

seconds for “earthgecko Skyline” and in our MATLAB imple-
mentation of “KL GoF” it was 3.67 seconds. For the proposed
“SAX-KL”, including the KDE and Lloyd-Max steps, the
running times versus M/N are: 5.11 seconds for M/N = 1/1,
2.5 seconds for M/N = 1/2, 0.65 seconds for M/N = 1/8.

V. DISCUSSION AND FUTURE WORK

This work proposes a new anomaly detection method for
symbolic representations of time series, specifically designed
for streaming data. At the core of the method is a data-
driven SAX-based method, coupled with a modified version
of KL GoF [8], which adapts directly to the underlying data
distribution. To this end, a KDE-based estimator is combined
with a Lloyd-Max quantizer, which clusters the data according
to their probability density function. The proposed method
achieves similar performance, or even it outperforms, the
best performing methods available for streaming data. Most
importantly, this is also the case even for large dimensionality
reduction ratios (i.e., highly compressed data).

The application of the proposed method is currently limited
to the uni-dimensional case. As a further extension, we are
interested in generalizing our method for multi-dimensional
data, exploiting the intra-dimensional correlation. To this end,
a SAX-based transformation can be performed independently
for each dimension. Since the data is discretized via the
symbolic sequence, the computation of the Kullback-Leibler
divergence is still efficient and hence the method can be
employed for processing streaming data with low resources.
Another extension concerns the design of a mapping from
the multi-dimensional data points to the uni-dimensional space
via a Hilbert curve [17], due to its strong locality-preserving
property, before their subsequent processing.

1/641/321/161/81/41/21/1

M/N

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

F-
S

co
re

Fig. 3: Average F-score vs. dimensionality reduction ratio.

Lastly, a detector with multiple fidelity settings, determined
by selectable dimensionality reduction ratios from a predefined
set, is left as a future work. To this end, optimal dimensionality
reduction ratios need to be determined, as the detector does
not degrade monotonically with the dimensionality reduction.
A thorough study of the relation between the dimensionality
ratio and the detector’s performance, probably with respect to
the nature of the data source, is a step towards this direction.
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