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Summary for publication 
 
Many European countries have designed weather early warning systems of heat stress indicators. This              

process was especially evident after the summer 2003 heatwave, which had an unprecedented impact              

on mortality across the continent, causing more than 70,000 premature deaths in western countries              

alone. Implementing adequate health preventing measures, which have a positive impact on reducing             

temperature-attributable mortality (TAM), is essential in public health decision making, particularly in a             

context of climate change and rising temperatures. 

Yet, these systems have room for improvement. We identified some of the key aspects that could be                 

refined after consulting several stakeholders and end-users from a wide-range of professional fields.             

They emphasised the need of a unified Pan-European service that provides relevant and comparable              

information. At the same time, the service should be flexible enough to adapt to the different climatic                 

and socio-economic structures of the European societies. Since most of the current systems are solely               

based on climate data, they also highlighted the need to include mortality data to model the real impact                  

of weather and climate. Lastly, end-users demanded that the system was able to produce warnings for                

multiple lead times beyond the traditionally used 1 to 2 days. Hence, to design prototypes of European                 

weather early warning systems that address these needs, our objective was to study the predictability of                

temperature-attributable mortality in Europe at the regional scale using weather forecasts with lead             

times of up to 15 days. 

Here we present the results of our study. Our main finding is that temperature predictability can be                 

transformed into TAM predictability. Due to the differences in the temperature-mortality associations,            

significant differences in the TAM predictability are found across the regions. These differences would              

not be identified if only temperature forecasts were considered. We have seen better predictability in               

summer for regions associated with a high risk of mortality for summer temperatures, such as the                

Mediterranean and the northern regions of Germany and the Netherlands. While for winter, better skill               

is found in regions with a different temperature-mortality association; for example in France, Poland and               

the United Kingdom. Although it depends on the region and season, in general TAM can be predicted on                  

weather time scales, as lead times with useful skill are comparable after the transformation of               

temperature into TAM. In addition, there is a relationship between temperature predictability and TAM              

predictability, so we presume that future improvement in the weather forecasting will directly lead to               

improvements in TAM forecasting. 
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Work carried out  
 
The first step of our analysis was to homogenise the weather and health data. For health, we used our                   

own database of mortality, which contains information about daily counts of all-cause mortality for the               

period 1998-2012 in 147 NUTS2 regions in 16 European countries, representing more than 400 million               

people. These countries, mapped in Figure 1, are Austria (acronym AT, with data for nine regions),                

Belgium (BE, 11), Croatia (HR, 2), the Czech Republic (CZ, 8), Denmark (DK, 1), France (FR, 22), Germany                  

(DE, 16), Italy (IT, 21), Luxembourg (LU, 1), the Netherlands (NL, 1), Poland (PL, 16), Portugal (PT, 5),                  

Slovenia (SI, 1), Spain (ES, 16), Switzerland (CH, 7) and the United Kingdom (England and Wales only; UK,                  

10). 

 
Figure 1: Region classification of the 147 NUTS2 regions considered in the study. 

 
 
The weather forecasts were accessed through the European Centre for Medium-Range Weather            

Forecasts (ECMWF) web portal (​https://apps.ecmwf.int/datasets/data/tigge/levtype=sfc/type=pf/​).     

Provided are 4 daily runs of ensemble weather forecasts covering lead-times of up to 15 days. We                 

obtained gridded data from ECMWF of 2 metre temperature forecasts at 12 UTC from +0 hours to +360                  

hours in intervals of 24 hours (i.e., temperature forecasts at 12 UTC for the corresponding day and the                  

following 15 days). These forecasts are available from December 2006 till present, and we processed the                

data for the period 2007 to 2012 to have 6 full years of daily temperature and mortality data. 

 

Also from ECMWF, we used the ERA5 dataset, which provides hourly estimates of a large number of                 

atmospheric, land and oceanic climate variables. Similarly, we downloaded 2 meter temperature at 12              

UTC for the period 1998-2012. 
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The next step was to homogenise the two datasets by transforming the gridded temperature data into                

administrative units (the 147 NUTS regions of mortality data and their corresponding countries), thus              

obtaining a unique dataset with daily time series of counts of death, temperatures from ERA5 and                

temperature forecasts for the corresponding day (lead time 0) and the 15 previous days (lead time 1 to                  

15). 

 
The statistical analysis that we performed consisted of two main parts: first, the fitting of the                
temperature-mortality relationship by means of epidemiological models, and second, the generation of            
health forecasts. We then compared the skill of the temperature and TAM forecasts. 
 
Fitting the temperature-mortality relationship 
 
For the first part of the statistical analysis, we followed the Distributed Lag-Non Linear (DLNM)               
framework, used in many studies for modelling the delayed short-term association between            
temperature and mortality. This first part of the statistical analysis can be divided into two stages. The                 
starting point was to apply in each region a standard time-series quasi-Poisson regression model              
allowing for overdispersion to derive estimates of region-specific temperature-mortality associations          
(with the ERA5 daily temperature at 12 UTC), reported as Relative Risks (RR) in the study period                 
(1998-2012, excluding the outlier month of August 2003), as follows: 
 
og(E(Y )) intercept S(time, 8 df  per year) dow cbl =  +   +  +   

 

where ​Y denotes the daily time series of mortality counts; ​S is a natural cubic B-spline of time with 8                    

degrees of freedom (df) per year to adjust for the seasonal and long-term trends; ​dow corresponds to a                  

categorical variable to control for the day of the week; and ​cb is the cross-basis function that combines                  

the exposure-response and lag-response associations. The former association was modelled with a            

quadratic B-spline, with three internal knots placed at the 10th, 75th and 90th percentiles of the                

historical daily temperature distribution. The latter association was modelled with three internal knots             

placed at equally spaced intervals in the log scale, with a maximum lag of 21 days to account for the                    

long-delayed effects of cold temperatures and short-term harvesting. 

 

In the second part, we performed a multivariate random-effects meta-analysis, controlling for the             

whole-period temperature average and range, as well as the country of the regions, to estimate the                

mean RR values associated with the temperature-mortality curve across regions, and to derive the best               

linear unbiased prediction (BLUP) of the reduced coefficients in each location. Country associations were              

predicted with the estimated coefficients of the specific values of the controlling variables included in               

the meta-analysis. A parallel multivariate random-effect meta-analysis was performed without          

controlling for the country of the regions to obtain the temperature-mortality association for the whole               

of Europe. We then extracted the minimum mortality temperature (MMT) from the continental,             

national and regional associations.  

 

Considering that each daily temperature generates different risks of mortality on the corresponding and              

the following days (for example, summer temperatures have a more immediate effect than winter              

temperatures), and the cumulative risk is calculated as the sum of the contributions to the risk of the                  

6 
 



Blue-Action Deliverable D5.9 

 

temperature in the lag dimension, the attributable fraction (AF) and the attributable number (AN) of               

deaths attributable to non-optimal temperatures is calculated as: 

,F  , AN  AF  A x, t =  RRx,t

RR −1x,t  x,t =  x,t · ∑
L

l = l0

nt+l
L−l +10

 

where ​x is the exposure, ​t the day when the exposure occurred, ​RR​x,t is the overall cumulative risk for the                    

exposure ​x ​on day ​t​, and the summation in the ​AN​x,t formula represents the mean of the total deaths                   

that occurred between day ​t and the following ​L days (​l​0 is the minimum lag, ​L the maximum lag, and n​t+l                     

is the total mortality on the day ​t+l​). 
 

In this way, we generate the health forecasts applying the following procedure: temperature forecasts at               

lead times from 0 to 15 are transformed into RR by means of the curves that describe the                  

temperature-mortality relationship in each region; these into AF, and by adding the mortality, they are               

finally converted into health forecasts. The final outcome is the attributable number of deaths              

forecasted for the different lead times, expressed in daily deaths per million inhabitants. 

 

Temperature and TAM forecast skill 
 
As the next step, we wanted to evaluate how well temperature and TAM are predicted. To accomplish                 
this, we used the Anomaly Correlation Coefficient (ACC), which is “frequently used to verify the output                
from numerical weather predictions models”     
(​https://www.cawcr.gov.au/projects/verification/#Methods_for_foreasts_of_continuous_variables​). 
The formula for the ACC is the following: 
 

,CC  A =  
(F−C)(O−C)∑

 

 

√ (F−C)∑
 

 

 2√ (O− C)∑
 

 

 2
 

where ​F is the series of forecast values (in our case, temperature and TAM at lead times from 1 to 15), ​O                      

the series of observed values (temperature and TAM at lead time 0) and ​C is usually defined as the                   

climatological mean of temperature. To adapt the formula for the health forecasts, we use as ​C the                 

smoothed function of the mean annual cycle of temperature and TAM at lead time 0. To do so, we                   

averaged the values by day of the year (leap days were not considered for the calculation of the mean                   

annual cycle) and we smoothed them with a natural spline with 6 df in a Gaussian model for                  

temperature, and 12 df in a quasi-Poisson model for TAM. The result is a measure of the temperature                  

and TAM forecast skill for each region along the 15 lead times. To measure for how long the useful skill                    

lasts and make the comparison between regions more comprehensible, we have defined the concept of               

“predictability lead time” as the shortest lead time in which ACC < 0.6 (Krishnamurti et al., 2003, Jung                  

and Matsueda, 2016). In addition, we calculated the skill by season to account for the possible seasonal                 

differences; we considered December-February as winter months, March-May as spring, June-August as            

summer and September-November as autumn. 

  

Commonly, health plans and early-warning systems are targeted at the extreme summer and winter              

days in terms of temperature. Consequently, we also wanted to quantify how well extreme days can be                 

predicted both for temperature and TAM. We identified the days in the period 2007-2012 with higher                
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TAM in (i) winter and (ii) summer as those in which the attributable number at lead time 0 was higher                    

than 90th percentile of the distribution of daily attributable numbers in (i) July and August and in (ii)                  

December and January, respectively. Then we calculated the Receiver Operating Characteristic (ROC)            

curves and the Area Under Curve (AUC) of the ROC curves, to see if temperature and TAM forecasts at                   

lead times between 0 and 15 could classify correctly these extreme days. In this case, the predictability                 

lead time is the shortest lead time with AUC < 0.9. 

 
 

Main results achieved  
The dataset we analysed included nearly 60 million counts of deaths over a population of more than 400                  
million people (Table 1).  
 

Table 1: Descriptive statistics of the dataset analysed divided by countries. ​Population is the average of the daily                  

populations in all the period, and the temperature represents the average, minimum and maximum mean               

temperature of the regions in each country for the ERA5 dataset. 
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Country Nº of regions Total deaths Population Temperature 

(ºC) 

Austria 9 1.141.272 8.202.653 10.7 (6.6-14.2) 

Belgium 11 1.583.164 10.556.782 12.9 (11.4-13.5) 

Switzerland 7 925.582 7.485.455 9.4 (6.2-12.6) 

Czech Republic 8 1.608.397 10.313.111 11.7 (11.1-12.6) 

Germany 16 12.587.890 81.939.102 12.2 (11.4-12.7) 

Denmark 1 845.778 5.435.979 11.0 (11.0-11.0) 

Spain 16 5.425.785 41.604.654 17.3 (13.5-21.3) 

France 22 7.943.058 61.058.653 14.3 (12.9-17.1) 

Croatia 2 767.907 4.297.560 15.6 (15.3-15.9) 

Italy 21 8.519.719 58.031.633 15.4 (4.2-20.3) 

Luxembourg 1 54.505 469.919 12.1 (12.1-12.1) 

Netherlands 1 2.058.694 16.282.222 12.9 (12.9-12.9) 

Poland 16 5.576.630 38.203.631 11.9 (10.8-12.7) 

Portugal 5 1.495.532 9.948.620 19.1 (16.3-20.9) 

Slovenia 1 278.794 2.011.259 13.8 (13.8-13.8) 

United Kingdom 10 7.731.538 53.816.908 12.1 (10.7-13.1) 

EUROPE 147 58.544.245 409.658.141 13.6 (4.2-21.3) 
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The association between temperature and mortality is usually described as an asymmetric U-, J- or               

V-shaped curve. These shapes are mainly determined by the existence of a temperature of minimum               

mortality from which the risk for the colder and hotter temperatures (the cool and hot tails) can be                  

flatter or more pronounced. In Figure 2 it can be observed how temperatures affect differently the                

European regions and countries. There are countries with higher risk for summer temperatures (e.g.              

Spain, Portugal, Italy), and others with higher risk for cooler temperatures (e.g. United Kingdom, France,               

Croatia). The MMT can be found in different percentiles of the temperature distributions generating              

these different shapes. For example, Spain's association curve is more U-shaped, with a wide range of                

temperatures close to the MMT. Others have steeper tails as Croatia, the Netherlands or the United                

Kingdom, where the risk increases more rapidly when temperatures differ from the MMT. 

 
Figure 2. Temperature-mortality relationships for the period 1998-2012.​ The thick black line represents the 

relationship for the countries, and the grey dashed lines the relationship for the corresponding regions. Dark blue, 
cyan, orange and red dots indicate the RR at percentiles 1, 5, 95 and 99 of the distribution of daily temperatures 

for the countries. 
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Figure 3 shows the temperature and TAM forecast skills for the early 2012 European cold wave                

[​https://en.wikipedia.org/wiki/Early_2012_European_cold_wave​]. Daily temperature and AN anomaly      

for the period January 27 - February 17, 2012 are calculated from the respective mean annual cycles. For                  

these days, a decrease of the expected temperature can be seen in the observed anomaly for the whole                  

of Europe, especially in eastern and northern Europe as compared to western and southern Europe.               

However, the spatial distribution of the observed mortality anomaly changes, with higher AN anomalies              

(measured in deaths per millions inhabitants) in France and north of Italy, and lower AN anomalies for                 

the regions of Germany, the Czech Republic and Poland. Visually studying the maps, it can be detected                 

that the negative temperature anomaly could be predicted one week in advance. Even some hints of the                 

future cold wave could be observed 10 days before. No anomalies are however predicted 15 days in                 

advance. Similar results are observed for TAM, with also good predictions one week ahead of the event,                 

and a decay of the predictability for longer lead times, with no anomaly in mortality predicted 15 days                  

ahead. In conclusion, TAM associated with this cold spell is predictable at the time scale of temperature                 

predictability. 

 

 
Figure 3: Temperature and TAM forecast skill for the 2012 European cold wave 

(from January 27, 2012 to February 17, 2012). 

 
To give an overall view of the predictive skill, Table 2 shows the temperature and TAM skills for Europe                   

considering the pooled temperatures and the overall temperature-mortality association. In general,           
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similar values are observed in every season for the day in which we consider that the predictive skill is                   

lost (i.e. for the lead time at which ACC becomes less than 0.6) and for the decay in ACC over the lead                      

times (other columns). We obtain better predictive skills in the winter months as compared with the                

summer months. In all cases we observe useful predictability one week in advance, up to almost 11 days                  

in the best case. Values for Europe shown in Table 2 are better than values for any of the individual                    

regions we will see next. The reason may be that generally large-scale circulation weather patterns are                

easier to predict than smaller scale regional patterns (Ferranti et al., 2018). This behaviour results in the                 

best temperature forecasts for the whole continent and, consequently, the best TAM forecasts.             

Nonetheless, we focused our analysis on the individual regions for two reasons; in order to address the                 

regional differences that exist in the temperature-mortality associations, and because early warning            

systems are principally targeted at these (or smaller) scales. 

 

Table 2: Temperature and TAM predictive skill for Europe in the period 2007-2012. 

 
In Figure 4 it can be seen how the predictive skills for temperature and TAM decay over lead times 0 to                     

15. We consider ACC at lead time 0 in each region as the reference. A slower decay can be seen in the                      

first 4-5 days of both temperature and TAM skills, and from this point on, there occurs a clear change of                    

slope and skills start to decrease faster. Comparing temperature and TAM predictive skills, the curves               

have similar behaviours, with comparable values across the lead times. One of the principal differences               

is the major spread in the regional curves for the TAM predictive skill. For the temperature skill, all                  

regions fall in the 6.9-8.2 predictability lead time range, with a similar mean value for central (7.5 days),                  

southern (7.5) and western Europe (7.4). However, for the TAM predictive skill, a wider variability can be                 

observed between regions than for temperature, with a range of 5.7 to 8.8 days the best skill is clearly                   

found for western (7.8 days), compared with central (7.2) and southern Europe (7.0). 
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Season Measure Lead time 

ACC < 0.6 

ACC 

lead time 1 

ACC 

lead time 3 

ACC 

lead time 7 

ACC 

lead time 

10 

ACC 

lead time 

15 

Annual 

(all 

months) 

Temperature 8.8 0.96 0.94 0.76 0.49 0.16 

TAM 9.6 0.97 0.96 0.80 0.57 0.27 

Winter 

(Dec-Feb) 

Temperature 10.5 0.99 0.99 0.86 0.64 0.31 

TAM 10.8 0.99 0.99 0.88 0.67 0.37 

Spring 

(Mar-May) 

Temperature 8.8 0.95 0.94 0.77 0.46 0.06 

TAM 9.6 0.96 0.94 0.81 0.56 0.18 

Summer 

(Jun-Aug) 

Temperature 7.3 0.91 0.87 0.62 0.36 0.10 

TAM 7.6 0.93 0.89 0.62 0.38 0.00 

Autumn 

(Sep-Nov) 

Temperature 8.5 0.95 0.94 0.75 0.41 0.08 

TAM 9.5 0.97 0.96 0.79 0.55 0.25 
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Figure 4: Decay of temperature and TAM forecast skill through lead times 0 to 15 days for the period 2007-2012. 

 

Up to this point we considered the predictive skill for the whole year, but we expect seasonal                 

differences for both temperature and TAM. So, in Figure 5 we map the lead time up to which we can                    

find useful skill in each region by season. Both for temperature and TAM, the best predictive skill is                  

obtained in the cold season. For 95.2% and 93.2% of the regions, the better temperature and TAM                 

predictive skills are found in the winter months, respectively. While the worst skill is found in the                 

summer months; when 83.7% and 85.7% of the regions have the worst temperature and TAM predictive                

skills. 
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Figure 5: Lead time for which the temperature and TAM predictive skills are lost shown by season in the 147 

European regions. ​We set 0.6 as a threshold value of ACC and we consider that the skill is lost for smaller values. 
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In summer there is a considerable loss of skill in the TAM forecasts as compared to temperature. In                  

92.5% of the regions the predictive skill is worse for TAM, with approximately 1 day less of predictability                  

skill. The spatial pattern of the temperature predictive skill is quite homogeneous for all Europe around                

a mean value of 6.6 days. However more differences are seen in the TAM skill. Countries like France and                   

the United Kingdom lose their skill faster, being the predictability lead time 1.3 and 1.8 days smaller,                 

respectively. Due to particularities in the temperature-mortality associations in these regions, errors in             

the forecast of summer temperatures implies more substantial variation in the TAM, and therefore              

worse summer TAM predictability. These particularities can be seen at Figure 2, the regions in these                

countries are characterized by a MMT that is close to the hotter temperatures, with a short hot tail. Also                   

they do not have a mortality peak in the summer months as some other regions such as the                  

Mediterranean. On the other hand, the best predictability is found in the Mediterranean, Northern              

Germany and the Netherlands, which are characterized by a high mortality risk in the summer months. 

 

However, winter temperatures tend to be much colder than the MMT in all regions. In addition, the                 

winter tail in the temperature-mortality relationship is not as pronounced as the slope of the summer                

tail (see Figure 2 again). This makes the transformation of temperature into TAM quite straightforward,               

therefore the predictive skill for TAM is comparable or even better than for temperature. In the maps,                 

we see a gradual loss of temperature skill that goes from a median loss of 7.2 days in the Portuguese                    

regions to 10.1 days in the Polish regions. As mentioned above, similar values are observed for the TAM                  

predictive skill in the winter months as for temperature, with some differences (e.g. improvement in               

France and Northern Germany, and worsening in Poland). The worst mean TAM skill is observed in                

Portugal (7.5 days) and Spain (7.9), where the predictability lead time is smaller than 8 days, while for                  

regions in Croatia (9.8), Germany (9.9), Denmark (10.3) and the Czech Republic (10.3) we find the                

highest TAM predictability lead time in winter.  

 

Although the highest risk of mortality is found in the most extreme conditions, there exists a risk                 

attributable to non-optimal temperature in the whole range of temperatures. So we should consider              

TAM in periods with milder temperatures too. In fact, similar predictive skills are found for spring and                 

autumn. To sum up, the predictability lead time for temperature in spring is 7.2 days with a range that                   

goes from a minimum of 6.4 days to a maximum of 8.3 days, while in autumn it is 7.4 days with a 6.9 and                        

8.0 days range. For TAM, the mean values are similar, only the ranges are wider, i.e. 7.2 days (5.5-8.4                   

days) in spring and 7.2 days (5.2-9.2 days) in autumn. 

 

In Figure 6 we compare the predictability lead time for temperature and TAM in all regions and seasons.                  

Although we found different behaviors in the mortality forecasts depending on the season, partly due to                

the peculiar shapes of the temperature-mortality associations, it is also true that better temperature              

predictive skill is transformed into better mortality predictive skill in all regions and time periods. This                

means that an improvement of weather forecasts will lead to a similar improvement in the TAM                

forecasts. 
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Figure 6: Comparison between temperature and TAM predictive skill by season. ​Each point represents the day in 

which the predictive skill is lost (ACC < 0.6) for each of the 147 European regions and seasons. 

 

Finally, we evaluated how well the temperature and TAM forecasts identify extreme days in terms of                

TAM. We considered extreme days as those with AN higher than the 90th percentile of the daily AN                  

distribution for the summer (July and August) and winter (December and January) months. Then, we               

calculated the ROC curves and the AUC, considering the skill threshold of 0.9. In Figure 7, we see that                   

the predictability lead time in summer extreme days is lower for TAM than for temperature in 85.0% of                  

the regions, while in winter it is better in 85.6% of the regions. We observe similar temperature                 

predictability skills for summer and winter extreme days. In summer, the predictability lead time is 5.7                

days, with a range of 3.7 to 7.5 days, and for winter, 6.0 days with a range of 2.8 to 8.0 days. The spatial                        

distributions are alike as well. But for TAM the situation is different. Summer extreme days can be                 

predicted in the regions of the Mediterranean coast, the Netherlands and Northern Germany, with              

predictability lead time between 5.5 days to around 7 days. Summer skill is worst in regions where the                  

TAM mortality in summer is not significant, i.e. England & Wales, the rest of France, Poland, the Czech                  

Republic. The highest TAM skill for winter extreme days is found in England & Wales (predictability lead                 

time up to 7.8 days), Poland (7.8) and Croatia (7.8). Moreover, some regions in France, Germany and the                  

north of Italy have values over 7 days. The lowest values are in Portugal (5.5) and Spain (6.2), regions in                    

the south of Italy, and other countries such as Switzerland (6.3) and the Czech Republic (6.3). 
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Figure 7: Lead time for which the temperature and TAM predictive skills are lost for extreme days in summer 

and winter in the 147 European regions.​ We set the threshold  of AUC = 0.9 as the point where skill is lost.  

 

 
 

Impact 
The results presented in this deliverable assess the predictability of temperature-attributable mortality            

in a very large ensemble of European regions by using weather forecasts at lead times of up to 15 days.  

These results could be used to design climate-related health early warning systems, and contribute to               

the following Blue-Action impacts: 
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● To improve stakeholders’s capacity to adapt to climate change​. The use of health data in the                

design of climate-related health early warning systems will lead to more accurate models             

describing the real impact of climate variability. We interacted with international institutions            

such as the ECMWF, with the objective to explore potential partners in the private sector to                

make the heat health early warning system operational. Other stakeholders and possible            

collaborators could be contacted in order to build future collaborations that can go beyond our               

prototype to an operational weather health early warning system. Given the theoretical work             

done here, similar early warning systems can be developed by using other health data, such as                

occupational accidents or hospital admissions. 

● Improvement of the capacity to respond to the impact of climatic change on the environment               

and human activities in Europe. We have been working closely with the City Council of Almada,                

in Portugal, partner in Blue-Action, and other relevant national and international health            

agencies. In addition, the system has been built based on the experiences of existing operational               

schemes.  

● Contribution to better servicing the economic sectors that rely on improved forecasting            

capacity through the collaboration between selected stakeholders and scientists. The          

interaction with business stakeholders in the beginning of the project has outlined the final              

results of the product. In terms of the private sector, the system can be applied for a wide range                   

of activities, including health insurances and occupational health and safety. 

● In the short-term, this system can be adapted to d​evelop risk-based forecasts of extreme              

weather phenomena at subseasonal-to-seasonal (s2s) time scales through an innovative,          

process-oriented description of the weather systems in which extremes are likely to form. 

 

The development of a prototype of European health early warning system is relevant for the public and                 

private sectors​, as it will have several potential applications. The Societal Readiness Level (SRL​1​) scale is                

a way of assessing the level of societal adaptation of, for instance, a particular product/service for                

integrating it society. Within the Blue-Action project, we scaled up the prototype of our product from  

● Stages SRL 1-3: reflecting early work in the research project, including suggesting and testing on               

a preliminary basis a technical and/or social solution to a technical or a societal problem,               

including identifying relevant stakeholders and how to include them; to 

● Stages SRL 4-6 to represent the actual solution(s), the research hypothesis, and testing it/them              

in the relevant context in co-operation with relevant stakeholders (Almada and other relevant             

national and international health agencies), while keeping a focus on impact and society’s             

readiness for the product.  

In these past months, we have reached the Stages SRL 7-9 with the evaluation of the solution, its                  

refinement, and adequate dissemination. 

 
 

1 ​https://newhorrizon.eu/societal-readiness-level-thinking-tool/​ and  

https://innovationsfonden.dk/sites/default/files/2019-03/societal_readiness_levels_-_srl.pdf  
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Lessons learned and Links built 
The key message is that temperature predictability can be transformed into temperature-attributable            

mortality (TAM) predictability. TAM can be predicted on weather timescales, for lead time periods              

beyond 1 or 2 days, which are the lead times nowadays considered in many weather heat stress early                  

warning systems. The different temperature-mortality associations in each region makes TAM           

predictability more variable than temperature forecasts, generating different spatial patterns and           

changes depending on the season.  

However, a clear, nearly-linear relationship between the predictability of temperature and TAM can be              

observed. Moreover, depending on the season and region, there is little or virtually no reduction in                

predictive skill due to the climate-health epidemiological transformation, so future improvements in the             

predictability of temperature could lead to improvements in the predictability of TAM. We have been               

using real time forecast data, and these results can be adapted to create operational systems of TAM                 

addressing the real burden of non-optimal temperatures in each region.  

 
 

Contribution to the top level objectives of Blue-Action 
This deliverable contributes to the achievement of the following objectives indicated in the Description 
of the Action. 
 

● Objective 6 Reducing and evaluating the uncertainty in prediction systems, ​by evaluating            

temperature and health forecasts for different regions with a unified but yet flexible             

methodology that provides relevant and comparable information adapting to the different           

climatic and socio-economic structures. 

● Objective 7 Fostering the capacity of key stakeholders to adapt and respond to climate change               

and boosting their economic growth, ​by giving new inputs that should be considered for the               

implementation of weather health early warning systems, considering not only temperature           

data but also mortality to better measure the impact of weather. 

● Objective 8 Transferring knowledge to a wide range of interested key stakeholders​, by             

considering the weaknesses of the current schemes and the needs of the stakeholders in the               

design and development of the weather health early warning systems. 
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Dissemination and exploitation of Blue-Action results  
 
Targeted dissemination activity for sharing knowledge and transferring it have been described in the              
deliverable “D5.10 CS2 Dissemination of the temperature-related human mortality product” and will not             
be repeated in this document. 
 
As indicated in the Description of the Action, the audience for this deliverable is the ​general public (PU).                  

The deliverable is made available to the world via ​CORDIS​ and ​OpenAIRE​.  
The results of this case study have been made available in the ​Horizon Results Platform​. 
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