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Abstract 30 

The widespread use of High-Throughput Sequencing (HTS) for detection of plant viruses and 31 

sequencing of plant virus genomes has led to the generation of large amounts of data and of 32 

bioinformatics challenges to process them. Many bioinformatics pipelines for virus detection 33 

are available, making the choice of a suitable one difficult. A robust benchmarking is needed 34 

for the unbiased comparison of the pipelines, but there is currently a lack of reference datasets 35 

that could be used for this purpose. We present 7 semi-artificial datasets composed of real 36 

RNA-seq datasets from virus-infected plants spiked with artificial virus reads. Each dataset 37 

addresses challenges that could prevent virus detection. We also present 3 real datasets 38 
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showing a challenging virus composition as well as 8 completely artificial datasets to test 39 

haplotype reconstruction software. 40 

 41 

In the last decade, High-Throughput Sequencing (HTS) has revolutionized plant virus 42 

discovery and diagnosis (Maree et al., 2018; Massart et al., 2014). The main advantage of this 43 

technology is that it allows a complete characterization of the virus populations infecting a 44 

plant, without any a priori knowledge of the infecting viruses. Current HTS platforms can 45 

ascertain the molecular sequences of large quantities of nucleic acid fragments at a very low 46 

base pair price, allowing the simultaneous sequencing of many samples. The increased use 47 

of HTS in the diagnostic field has led to the generation of massive amounts of data and resulted 48 

in computational and bioinformatics challenges to process them (i.e. storage, processing 49 

speed, bioinformatics competence) (Olmos et al., 2018). Many bioinformatics pipelines for 50 

plant virus detection have been developed, from easy-to-use commercial software to 51 

command line tools (Blawid et al., 2017; Jones et al., 2017). Most of them aim to improve virus 52 

detection and/or reduce processing time, but the high number of pipelines available complicate 53 

the choice of the most appropriate for a given goal or environment. Moreover, the sequence 54 

analysis strategy can have a significant influence on the ability to detect viruses from identical 55 

datasets, as shown by a large-scale performance testing involving 21 plant virology 56 

laboratories (Massart et al., 2019). Performing a robust benchmarking is therefore essential 57 

for the unbiased comparison of the pipelines (Escalona et al., 2016; Jones et al., 2017). In 58 

plant disease diagnostics, validation of the bioinformatics pipelines used for the detection of 59 

viruses in HTS datasets is at its infancy and there is currently a lack of reference datasets 60 

generated for benchmarking purposes. The development of such datasets is a key step in the 61 

standardization of bioinformatics protocols, since it allows objective comparison between 62 

pipelines. These observations have led to the creation of the Plant Health Bioinformatics 63 

Network (PHBN), an Euphresco network project aiming to build a community network of 64 

bioinformaticians/computational biologists working on plant health. One of the objectives of 65 

this project is to help researchers to compare and validate their virus detection pipelines by 66 

creating open access reference datasets.  67 

Creation of the datasets 68 

Two main kinds of reference datasets can be used: real and artificial ones. Working with real 69 

datasets offers the benefit of providing real life scenarios which are close to those encountered 70 

by plant pathologists and diagnosticians. However, the use of such purely empirical data has 71 

limitations since it is impossible to know with an absolute certainty the “true” value that should 72 

be used to benchmark the performance of the pipelines (Escalona et al., 2016). Artificial 73 

datasets do not have this drawback since their composition is totally controlled and known. 74 
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However, completely artificial datasets are often unrealistic and too simple, and may thus fail 75 

to represent accurately the complexity of real HTS datasets. In order to overcome the 76 

drawbacks of these two approaches, we have chosen to create semi-artificial datasets 77 

composed each of a real HTS dataset from virus-infected plants spiked with additional in-silico 78 

generated viral reads. The artificial component of these semi-artificial datasets is totally known, 79 

but the datasets are still complex and close to real-life situations. We also developed and 80 

propose some real and some completely artificial datasets, which can be used for specific 81 

purposes as explained bellow. 82 

A total of 8 real RNA-seq datasets from virus/viroid-infected plants obtained using Illumina 83 

technology have been chosen in order to cover as much as possible host plant diversity (fruit 84 

trees, vegetables and biological indicator plants), pathogen diversity (RNA and DNA viruses, 85 

viroids) and sequencing options (reads length from 50 to 301 bp, number of reads per dataset 86 

from 65,177 to 49,052,832 reads, and single-end or paired-end reads). For each real dataset, 87 

the presence of the viruses/viroids identified has been confirmed by PCR and/or ELISA. Five 88 

of these real datasets have been used to create 7 semi-artificial datasets (Datasets 1, 2, 3, 4, 89 

5, 6 and 10) (Table 1), either by adding artificial reads of a virus/viroid (already present or not 90 

in the dataset) or by removing part of the real viral reads. The artificial viral reads were 91 

synthesized using the ART software (Huang et al., 2012) which allows the generation of 92 

artificial next-generation sequencing reads showing the same quality score as the reads from 93 

a real datasets. For each semi-artificial dataset, similar headers have been assigned to the 94 

artificial and real reads, and both types of reads have been mixed in each FASTA file. The 95 

three other real datasets (Datasets 7, 8 and 9) were already showing a challenging viral 96 

composition (presence of a defective variant, presence of a cryptic virus and presence of 97 

several genomic segments showing different concentrations) and have not been modified.  98 

Each dataset has been developed or selected to address one or several challenges that could 99 

prevent virus detection or a correct virus identification from HTS data (i.e. low viral 100 

concentration, new viral species, non-complete genome, etc). In addition, eight fully artificial 101 

datasets (Datasets 11-18), composed only of viral reads have also been created. These 102 

datasets can be used to test haplotype reconstruction software, the goal being to evaluate the 103 

ability to reconstruct all the strains present in a dataset. Each artificial dataset consists of a mix 104 

of several stains from the same viral species showing different frequencies. The virus species 105 

have been selected to be as divergent as possible. Therefore, the selected viruses have (i) a 106 

DNA or RNA genome, (ii) a single or double-stranded genome, (iii) a linear, circular and/or 107 

segmented genome, and (iv) show a genome length ranging from 2.8 to 17.1 kb. For each 108 

strain, artificial viral reads of 150 bp have been synthesized using the ART software (Huang et 109 
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al., 2012) from NCBI reference genomes and no single nucleotide polymorphisms (SNPs) have 110 

been added. 111 

Availability and description of the datasets 112 

A GitLab repository (https://gitlab.com/ilvo/VIROMOCKchallenge) is available and provides a 113 

complete description of the composition of each dataset, the methods used to create them, a 114 

link to download them and their goals. The datasets themselves are stored in Dryad 115 

(datadryad.org). We provide here a quick summary of the composition of the datasets and the 116 

challenges they address (Table 1). 117 

- Dataset 1: The challenge addressed is the detection of several virus strains showing different 118 

concentrations, some being very low. In this case, one or more strains can be missed, 119 

especially if the sample has not been enriched in viral sequences (Barzon et al., 2013; Knierim 120 

et al., 2019). The real dataset is composed of mixed infections of citrus tristeza virus (CTV), 121 

citrus vein enation virus (CVEV), citrus exocortis viroid (CEVd), citrus viroid III (CVd-III) and 122 

hop stunt viroid (HSVd) on citrus. Artificial reads for three CTV strains (JQ911663 – strain T68, 123 

KU883267 – strain S1 and MH323442 – strain T36) have been added to the dataset at different 124 

read depth. 125 

- Dataset 2: The challenge addressed is the identification of different types of mutations at 126 

different frequencies. The viral populations infecting a plant are usually composed of closely 127 

related virus genotypes, differing by a few SNPs (substitution) or indels (insertion or deletion) 128 

and at differing relative concentrations. Some variants can be missed depending on their 129 

frequencies, the bioinformatics strategy or the presence of sequencing errors (Lefterova et al., 130 

2015). The same real data set from a naturally infected citrus as in dataset 1 has been used 131 

with the addition of artificial reads for the CTV MH323442 isolate, using 5 nearly identical 132 

sequences of this isolate, each differing by 1 substitution, 1 base deletion and 1 base insertion. 133 

Artificial reads for the unmutated MH323442 isolate have also been added to the dataset 2. 134 

The reads for the various MH323442 variants have been added at different frequencies. 135 

- Dataset 3: The challenge addressed is the detection of several viral/viroid species showing 136 

different frequencies and incomplete genome coverage. The assembly process can result in 137 

incomplete genome sequences, making virus identification challenging (Boonham et al., 2014), 138 

in particular when the whole genome is not completely covered, or when a genomic segment 139 

is absent or is covered by a low number of reads in the case of a multipartite virus. The real 140 

dataset corresponds to a mixed infection of grapevine rupestris vein feathering virus (GRVFV), 141 

grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine leafroll-associated 142 

virus 2 (GLRaV2), hop stunt viroid (HSVd) and grapevine yellow speckle viroid 1 (GYSVd1) on 143 
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grapevine. Reads assigned to GRSPaV, GRVFV and GLRaV2 have been randomly removed 144 

in order to obtain incomplete genome coverage for these 3 viruses. 145 

- Dataset 4: The challenge addressed is the detection of closely related viroids. Closely related 146 

virus/viroid species within a genus can share high nucleotide identities, leading to taxonomic 147 

assignation problems and complicating the identification of the virus/viroid (Thekke-Veetil et 148 

al., 2018). The real dataset is composed of mixed infections of grapevine red blotch virus 149 

(GRBV), grapevine rupestris stem pitting-associated virus (GRSPaV), hop stunt viroid (HSVd) 150 

and grapevine yellow speckle viroid 1 (GSYVd1) on grapevine (Reynard et al., 2018). Artificial 151 

reads of grapevine yellow speckle viroid 2 (GYSVd2) isolate DQ377131 have been added to 152 

the dataset. This reference shows a pairwise nucleotide identity of 73.9% with the consensus 153 

sequence of the naturally present GYSVd1, a portion of the two genomes being very similar 154 

while the other part show more variability. 155 

- Dataset 5: The challenge addressed is the detection of a recombinant strain and one of its 156 

parents in mixed infection. HTS samples can be infected by genetically close parental and 157 

recombinant strains. During the assembly process, it can sometimes be challenging to 158 

assemble and detect recombinant genomes while avoiding to create artefactual ones, in 159 

particular when using short-sequence reads (Martin et al., 2011). The real dataset contains 160 

reads of two potato virus Y (PVY) isolates belonging to different strains (an isolate belonging 161 

to the NTN recombinant strain and the N605 isolate belonging to the N strain). Artificial reads 162 

to a further two isolates have been added, the parental isolate AY884983 (N strain), and isolate 163 

EF026076, a recombinant between isolates belonging to the N and O strains (Hu et al., 2009). 164 

Both isolates show an overall pairwise nucleotide identity of 88.2% but the 5’ part of their 165 

genomes (first ~2,000 nucleotides) are almost identical. 166 

- Dataset 6: The challenge addressed is the detection of a new PVY strain that does not exist 167 

in the database, within a dataset already involving other PVY strains. Novel viruses can be 168 

detected by homology searches with databases. Nevertheless, viral sequences that are too 169 

divergent from known viruses might not be detected by this such searches. Other approaches 170 

like homology-independent algorithms may be needed to fully characterize such new viruses 171 

(Wu et al., 2015). The real dataset is the same as dataset 5. It has been spiked with artificial 172 

reads from the FJ214726 PVY isolate, which was selected because it is among the most 173 

divergent PVY isolates available in GenBank (maximum 84% nucleotide identity with any other 174 

available PVY isolate). The amino acid sequence of the polyprotein of FJ214726 was obtained 175 

and then reverse translated into a nucleotide sequence using the online EMBOSS Backtranseq 176 

tool (Madeira et al., 2019). Thanks to the degeneracy of the genetic code, the nucleotide 177 

sequence thus obtained was different from the original FJ214726 sequence. Non-synonymous 178 
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substitutions were further manually added to the new artificial sequence, increasing divergence 179 

from any known PVY isolate. The final artificial sequence shows only 71.8% nucleotide identity 180 

and 98.9% amino acid identity with FJ214726 and was used to generate the artificial reads 181 

finally added to the dataset. The artificial genomic sequence is available in the GitLab 182 

repository for comparison purposes. 183 

- Dataset 7: The challenge addressed is the detection of both a defective and a normal length 184 

variant from the same sample. Related viral variants infecting a sample and showing similar 185 

genome portions can be particularly difficult to distinguish. The real dataset is composed of 186 

two variants of tomato spotted wilt virus (TSWV) from tobacco. The genome of TSWV consists 187 

of 3 negative single-stranded RNA segments named S, M and L. The variants diverge only for 188 

the L genomic segment, one being full length (8,913 bp) and the other being a shorter defective 189 

form (2,612 bp) missing the genomic region from genome position 760 to 7,060 bp. The real 190 

dataset shows already a challenging composition, and has therefore not been spiked with 191 

artificial viruses. 192 

- Dataset 8: The challenge addressed is the detection of a low concentration persistent virus. 193 

The real dataset is composed of Pelargonium flower break virus (PFBV) and Chenopodium 194 

quinoa mitovirus 1 (CqMV1), a virus from Chenopodium which is localized in mitochondria and 195 

presents only one ORF that encodes the RNA-dependent RNA polymerase (Nerva et al., 196 

2019). The cryptic virus CqMV1 represents a low proportion of reads (around 0.5%). The real 197 

dataset shows already a challenging composition, and has therefore not been spiked with 198 

artificial viruses. 199 

- Dataset 9:  The challenge addressed is the detection of all the genomic segments of a virus 200 

with each segment having a different concentration. The real dataset is composed of Pistacia 201 

emaravirus B (PiVB), a newly discovered Emaravirus from the pistachio tree (Buzkan et al., 202 

2019). The viral genome is composed of seven distinct negative-sense, single-stranded RNAs, 203 

showing different frequencies in the dataset. The real dataset shows already a challenging 204 

composition, and has therefore not been spiked with artificial viruses. 205 

- Dataset 10: The challenge addressed is the detection of a new viral strain that does not exist 206 

in the database, thus adding a ’virus’ that is not already present in the dataset (in contrast to 207 

the challenge addressed in dataset 6). The real dataset is composed of plum bark necrosis 208 

stem pitting-associated virus (PBNSPaV) from Prunus. A new artificial isolate of plum pox virus 209 

(PPV) has been created as described above for the creation of the artificial PVY isolate in 210 

dataset 6. The new artificial PPV strain has finally been added to the dataset, and its sequence 211 

has been made available as well to be able to compare resulting assemblies with it. 212 
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- Datasets 11 to 18 can be used to test the ability to reconstruct haplotypes from mixed 213 

infections of virus isolates belonging to the same virus species. They are completely artificial 214 

datasets and their composition is summarized in Table 1. 215 

The VIROMOCK challenge 216 

The goal of all these reference datasets is to allow to perform an objective comparison of 217 

bioinformatics pipelines used to detect and analyse viruses. At first, researchers can use these 218 

datasets to check whether their current pipelines are behaving as expected, and how modifying 219 

some parameters can affect their pipeline performance depending on the challenge 220 

investigated. Second, it can be interesting for researchers to compare their results with those 221 

of other labs/pipelines. For this purpose, we propose to organize a “VIROMOCK challenge”. 222 

In the frame of this challenge, researchers are encouraged to provide feedback on the results 223 

they obtained for each dataset they analyse and on the difficulties they may have encountered. 224 

This can simply be done by completing a Google spreadsheet added to each dataset page of 225 

the GitLab repository. Then, the results will be compiled for each dataset, helping to identify 226 

which pipelines perform best in approximating the real composition of the datasets and 227 

providing an idea about the robustness of the parameters used. If researchers agree, the 228 

compiled results will be open access on the GitLab repository for each dataset, allowing an 229 

easy and objective comparison of the results.  230 

Conclusion 231 

The two main bottlenecks slowing down the adoption of HTS in plant health diagnostics are (i) 232 

the lack of consensus on the standardization of the data analysis and (ii) the lack of expertise 233 

of some laboratories. Within the frame of PHBN project, we have generated semi-artificial, real 234 

and artificial reference datasets in order to help to overcome these bottlenecks. Firstly, the 235 

diversity of the challenges addressed by these datasets will allow to benchmark the 236 

bioinformatics pipelines used by different laboratories. Secondly, these datasets can also be 237 

viewed as open source training materials. They could be extremely valuable for laboratories 238 

with little experience, allowing them to improve their skills. Currently, there are many pipelines 239 

available, but many laboratories do not know where to start when it comes to the analysis of 240 

their HTS data in the context of virus detection. This represents a big challenge, especially in 241 

situations where HTS and data analysis are newly established or not part of the routine 242 

activities.  These datasets will help them to either validate their pipelines or choose the most 243 

suitable one for their analyses.  244 
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Table 1: Characteristics of each dataset 245 

Dataset 
Dataset 

type 
Plant 

species 

Virus/Viroids 
already 
present1 

Modification 
Reads 
(bp) 

Total 
number of 

reads2 
Challenge 

Dryad 
DOI 

1 
Semi-

artificial 
Citrus 

CTV, CVEV, 
CEVd, CVd-III, 

HSVd 

Addition of 
CTV 

2 x 
150 

21,703,434 
(R1) 

21,703,434 
(R2) 

Viral 
concentration 
(at the strain 

level) 

10.5061/dr
yad.crjdfn

32c 

2 
Semi-

artificial 
Citrus 

CTV, CVEV, 
CEVd, CVd-III, 

HSVd 

Addition of 
CTV 

2 x 
150 

21,756,961 
(R1) 

21,756,961 
(R2) 

Mutation 
10.5061/dr
yad.ns1rn

8pq9 

3 
Semi-

artificial 
Grapevine 

GRSPaV, 
GLRaV2, 
GRVFV, 
HSVd, 

GYSVd1 

Removing of 
real viral 

reads 

2 x 
150 

24,526,416 
(R1) 

24,526,416 
(R2) 

Viral 
concentration 
(at the species 

level) + Non 
complete 
genome 

10.5061/dr
yad.zs7h4

4j6d 

4 
Semi-

artificial 
Grapevine 

GRBV, 
GRSPaV, 

HSVd, 
GYSVd1 

Addition of 
GYSVd2 

2 x 75 

10,054,658 
(R1) 

10,054,658 
(R2) 

Viroids with 
very similar 
sequence 

10.5061/dr
yad.jsxksn

06w 

5 
Semi-

artificial 
Potato PVY 

Addition of 
PVY 

1 x 50 31,277,475 

Mix of 
recombinant 
and parental 
viral strains 

10.5061/dr
yad.xgxd2

54dw 

6 
Semi-

artificial 
Potato PVY 

Addition of 
PVY 

1 x 50 31,327,327 New strain 
10.5061/dr
yad.tx95x6

9vw 

7 Real Tobacco TSWV - 
2 x 
301 

1,904,369 
(R1) 

1,904,369 
(R2) 

Complete 
genome + 

defective form 

10.5061/dr
yad.c2fqz6

15w 

8 Real 
Chenopodi

um 
PFBV + 
mitovirus 

- 
2 x 
301 

65,177 
(R1) 

65,177 
(R2) 

Cryptic virus + 
low 

concentration 

10.5061/dr
yad.wpzg

msbjj 

9 Real Pistachio PiVB - 

2 x 
151 
(R1) 

2 x 84 
(R2) 

5,259,903 
(R1) 

5,259,903 
(R2) 

Concentration 
of different 
genomic 
segments 

10.5061/dr
yad.p5hqb

zkmx 

10 
Semi-

artificial 
Prunus PBNSPaV 

Addition of 
PPV 

1 x 75 24,573,681 New strain 
10.5061/dr
yad.rr4xgx

d6n 

11 Artificial - PepMV - 
2 x 
150 

48,578 
(R1) 

48,578 
(R2) 

Haplotype 
reconstruction 

of 6 strains 

10.5061/dr
yad.866t1

g1nx 

12 Artificial - 
Cassava 

mosaic virus 
- 

2 x 
150 

48,222 
(R1) 

48,222 
(R2) 

Haplotype 
reconstruction 

of 4 strains 

10.5061/dr
yad.ns1rn

8pqb 

13 Artificial - BSV - 
2 x 
150 

47,240 
(R1) 

47,240 
(R2) 

Haplotype 
reconstruction 

of 6 strains 

10.5061/dr
yad.573n5

tb59 

14 Artificial - PVY - 
2 x 
150 

52,333 
(R1) 

52,333 
(R2) 

Haplotype 
reconstruction 

of 5 strains 

10.5061/dr
yad.pc866

t1m5 
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15 Artificial - EMDV - 
2 x 
150 

48,504 
(R1) 

48,504 
(R2) 

Haplotype 
reconstruction 

of 3 strains 

10.5061/dr
yad.p2ngf

1vnq 

16 Artificial - BPEV - 
2 x 
150 

49,980 
(R1) 

49,980 
(R2) 

Haplotype 
reconstruction 

of 4 strains 

10.5061/dr
yad.xpnvx

0kcn 

17 Artificial - LChV1 - 
2 x 
150 

49,513 
(R1) 

49,513 
(R2) 

Haplotype 
reconstruction 

of 5 strains 

10.5061/dr
yad.9p8cz

8wdh 

18 Artificial - BYDV - 
2 x 
150 

46,917 
(R1) 

46,917 
(R2) 

Haplotype 
reconstruction 

of 6 strains 

10.5061/dr
yad.zkh18

937t 

 246 

1 R1: Forward read, R2: Reverse read. 247 

2 CTV: citrus tristeza virus, CVEV: citrus vein enation virus, CEVd: citrus exocortis viroid, CVd-III: citrus viroid III, HSVd: 248 

hop stunt viroid, GRSPaV: grapevine rupestris stem pitting-associated virus, GLRaV2: grapevine leafroll-associated 249 

virus 2, GRVFV: grapevine rupestris vein feathering virus, GYSVd1: grapevine yellow speckle viroid 1, GRBV: grapevine 250 

red blotch virus, PVY: potato virus Y, TSWV: tomato spotted wilt virus, PFBV: Pelargonium flower break virus, PiVB: 251 

Pistacia emaravirus B, PBNSPaV: plum bark necrosis stem pitting-associated virus, PepMV: pepino mosaic virus, BSV: 252 

banana streak virus, EMDV: eggplant mottled dwarf virus, BPE: bell pepper endornavirus, LChV1: little cherry virus 1, 253 

BYDV: barley yellow dwarf virus 254 

 255 
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