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Abstract 

Anomalous areas of varying shape and location characterized by low backscatter in 

Synthetic Aperture Radar (SAR) imagery of lake ice on lake Neyto on the Yamal Peninsula in 

Russia have been described qualitatively in the literature for many years. Possible suggested 

causes are the formation of eddies or the release of gas through the lake sediments, which 

could both lead to local thinning of the ice layer and alter radar backscatter. To date, the 

phenomenon, its cause, and its spatial and temporal dynamics are poorly understood, and 

studies from other geographic regions are completely absent. In order to perform first steps 

towards a better understanding of the phenomenon, we developed a workflow to 

quantitatively assess the spatial variability of the anomalies in the years 2015 to 2019 for lake 

Neyto. We introduce a binary image classification algorithm developed with state-of-the-

art open-source image processing tools and employ metrics commonly used for describing 

spatial relationships of vector and raster data. This includes polygon distances, polygon 

intersections and cumulative pixel counts deduced from the classification results in order to 

quantify, for the very first time, the dynamics over a number of years. The geospatial analysis 

reveals large spatial variations, but also some overlap between different years. Locations of 

anomalies do not seem more similar between consecutive years than when they are 

compared over the longer period. Some of the spatial properties of the clusters of low 

backscatter may support the explanation of gas release as the primary cause of the 

observed patterns. 
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1 Introduction  

Arctic lakes are important features of the hydrosphere and the cryosphere. They occupy 
significant parts of the Arctic tundra and play an important role in the carbon cycle (e.g. Walter 
Anthony et al., 2012; Wik et al., 2016). 

In winter, space-borne C-band Synthetic Aperture Radar (SAR) data can be useful for 
monitoring lake ice phenology (e.g. Surdu et al., 2015; Duguay & Pietroniro, 2005), and 
especially the grounding state of lake ice (e.g. Duguay & Lafleur, 2003; Surdu et al., 2014; 
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Grunblatt & Atwood, 2014). Regions of floating lake ice appear bright (high backscatter) in 
SAR images due to the high reflection of the radar signal, which is caused by high dielectric 
contrast at the ice–water boundary (Duguay et al., 2002).  

However, for a range of lakes on the Yamal Peninsula in northwestern Siberia, patterns of low 
backscatter in central parts of lakes where floating lake ice is assumed were identified by 
Bogoyavlensky et al. (2018). Low backscatter is usually observed from shallow shelves of lakes, 
where the ice is grounded (Duguay et al., 2002). The extent of these areas remains fairly 
constant throughout the winter, but the extent of the area with low backscatter patterns 
changes significantly throughout the winter. Most of the zones of low backscatter outside the 
shelves can be identified first in the SAR imagery in mid to late winter (usually March or April), 
when they start to appear mostly as circular or elongated objects. These subsequently widen 
until the onset of snowmelt. Possible explanations for these backscatter anomalies include the 
formation of eddies and the accumulation of methane released through pockmarks in the lake 
sediments migrating upwards in the water column under the ice layer. Both would lead to a 
local thinning of the ice layer and thus to lower backscatter due to increased specular reflection 
from the water surface. 

Understanding the origin and dynamics of these patterns may be important for climate 
research and for understanding sub-lake permafrost dynamics in the case of methane 
emissions, or for hydrological research in the case of eddies. 

To date, the literature has included only visual descriptions of anomalies, in only a few SAR 
images of lake Neyto and lakes in its vicinity. To our knowledge, there are no descriptions of 
similar backscatter anomalies for lakes in other geographic regions. Engram et al. (2013) 
demonstrated a positive statistical relationship between L-band backscatter and bubbles of 
methane trapped in lake ice for a range of lakes in Alaska, but they did not show consistent 
areas of anomalous backscatter and noted that such a relationship could not be deduced for 
C-band data.  

In this study, we perform the first-ever quantitative analysis on these objects of varying 
location and shape on lake Neyto, which will contribute to understanding the phenomenon. 
Understanding the nature of the phenomenon may lead to new applications of Sentinel-1 data 
for the monitoring of gas emissions or eddies in remote Arctic locations. 

An important part of the research to understand the phenomenon is the analysis of changes 
in the locations of anomalies in different years. This study aims to describe the variability of 
patterns from 2015 to 2019 based on Sentinel-1 Extra-Wide Swath (EW) data. First, a method 
needed to be identified which would allow the retrieval of the anomalies. In the second step, 
temporal patterns of object metrics were analysed. Objects of low backscatter intensity were 
extracted, and distance and intersection metrics were used to describe the spatial variability 
between the years. 
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2 Data and Methods 

2.1 Study area selection 

The study site is one of the largest lakes on the Yamal Peninsula, lake Neyto, which is among 
the lakes with the largest clusters of pixels of low backscatter in central parts of the lake in late 
winter. The visual appearance of patterns in different years have already been described by 
Bogoyavlensky et al. (2018), but no quantitative analyses to characterize spatial and temporal 
properties had so far been carried out. Similarities to optical data were also identified (an 
example is shown in Figure 1). Due to these characteristics, we chose this lake as our primary 
study area. Because of its size and large clusters of low backscatter outside the shelf, it can be 
studied using relatively coarse Sentinel-1 Extra-Wide Swath (EW) data at 40-metre pixel 
spacing. This is crucial as data over central Yamal are mostly acquired in this mode by Sentinel-
1. 

 

Figure 1: Example for clusters of low backscatter in SAR imagery and similarities to optical imagery: (a) 

Sentinel-1 EW HH-polarized acquisition from 27 May 2017; (b) Sentinel-2 true-colour composite from 8 

June 2017. 

2.2 Data 

Sentinel-1 SAR Data 

The primary data used in this study come from the two polar-orbiting Sentinel-1 satellites, 
which are part of the EU’s Copernicus programme. Sentinel-1A and Sentinel-1B were 
launched in April 2014 and April 2016, respectively. The main scientific instrument on the two 
satellites is an identical SAR instrument, called ”C-SAR”, which can be operated using different 
spatial resolutions and swath widths (ESA, 2013). Additionally, data can be acquired using 
various polarization modes: single co-polarized acquisitions, or dual co-polarized plus cross-
polarized acquisitions are possible. 
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The default operating mode over land is the Interferometric Wide Swath mode (IW) with 
vertical-vertical (VV) and vertical-horizontal (VH) dual-polarization. However, data over lake 
Neyto are much more frequently acquired in Extra Wide Swath mode (EW) with horizontal-
horizontal (HH) and horizontal-vertical (HV) dual polarization. The number of EW 
acquisitions over lake Neyto is more than seven times greater than the number of IW 
acquisitions, and no IW data are available for 2016. Therefore, we only consider EW data in 
this study. The main differences between the two modes are the larger swath width and coarser 
spatial resolution in EW mode compared to IW mode. Common pixel spacing used after pre-
processing is 40 metres for EW data and 10 metres for IW data. 

Sentinel-1 EW data with both HH and HV polarization channels were used to classify clusters 
of low backscatter in the central part of lake Neyto. The locations of mapped clusters were 
compared to each other between the years 2015 to 2019. 

In order to assess changes in the locations between years, we used two Sentinel-1 EW 
acquisitions per year, hence ten images in total. For a time series analysis of the evolution of 
the area of backscatter anomalies, we used all available later-winter Sentinel-1 EW images, a 
total of 395 images (60 in 2015, 113 in 2016, 111 in 2017, 62 in 2018, 49 in 2019). 

Sentinel-2 Optical Data 

The two Sentinel-2 satellites are also part of the EU’s Copernicus programme and were 
launched in June 2015 and March 2017. Sentinel-2A and Sentinel-2B each carry an identical 
multispectral imager, the ‘MultiSpectral Instrument’ (MSI), which acquires data in the optical 
and near-infrared regions of the electromagnetic spectrum in 12 spectral bands (Drusch et al., 
2012). The spatial resolution depends on the band and ranges from 10 to 60 metres. 

In this study, one Sentinel-2 image was used to visually highlight similarities of patterns 
between SAR and optical imagery for lake Neyto. 

Global Historical Climatology Network (GHCN) – Daily Data 

GHCN-Daily (Menne, Durre, Korzeniewski, et al., 2012) is a database that provides daily 
records of temperature, precipitation and snow over land areas worldwide (Menne, Durre, 
Vose, et al., 2012). In this study, we used daily air temperature records from the Seyaha station, 
the station closest to lake Neyto and located on the east coast of the Yamal Peninsula at a 
distance of approximately 80 kilometres, to assess the influence of weather conditions on ice 
properties in relation to observed backscatter. 

2.3 Pre-processing of Sentinel-1 SAR images 

The pre-processing of Sentinel-1 EW data was conducted with the Sentinel Application 
Platform (SNAP) toolbox provided by the European Space Agency (ESA). The main steps 
applied were sub-setting, radiometric calibration to backscatter coefficient σ0, thermal noise 
removal, terrain correction, conversion to decibels (dB), and incidence angle normalization. 
All these steps were performed on both polarization channels (HH and HV). 

 

 



Pointner et al 

51 
 

2.4 Binary Classification of Sentinel-1 SAR images 

The classification algorithm will be briefly outlined here. We describe the main steps and 
provide visualizations of classification outcomes in the results section of this paper. 

The inputs for the binary classification algorithm are the pre-processed Sentinel-1 images in 
map geometry. All steps described below were applied in identical fashion to both polarization 
channels. The main tool used for the classification was the Python module ‘scikit-image’ (van 
der Walt et al., 2014). 

First, areas outside the lake and its shelf area where ground-fast ice is present needed to be 
masked from the imagery. We deduced lake masks from late-autumn Sentinel-1 EW imagery 
and shelf masks from earlier-winter Sentinel-1 EW imagery through binary classification. The 
images were rescaled to fit the pixel values from -1 to 1 required for the image-processing 
algorithms. The steps for the image processing included bilateral filtering to remove noise 
from the images, auto-levelling to balance out the unevenly distributed backscatter level across 
the lake, and Yen-thresholding (Yen et al., 1995) to automatically classify the images. The 
outputs of these steps are two classified binary images, one for the HH-channel and one for 
the HV-channel. 

To counter the problem of the lack of in-situ data for calibration, we chose a conservative 
approach: for the final classification map, we kept only pixels belonging to low backscatter 
patterns (positive class) in the binary classification outcome of both polarization channels; 
otherwise the pixels were assigned to the negative class (regular floating lake ice). This 
corresponds to a logical AND between the classification on the HH-channel and the 
classification on the HV-channel. 

Because Yen-thresholding determines thresholds automatically, it is only applicable if clusters 
of low backscatter are actually present in the image. We therefore needed to apply a mechanism 
to detect whether these clusters were present. Our approach tests the similarity between binary 
classification outcomes of the two polarization channels using Cohen’s Kappa score κ (Cohen, 
1960). Only if κ was above 0.2, which corresponds to ‘fair agreement’ following Landis & 
Koch (1977), was the final classification map produced as defined above. If κ was below 0.2, 
all pixels in the image were assigned to the negative class. 

2.5 Determination of variations of locations between years 

Clusters of low backscatter emerge primarily from locations of only a few pixels. Over time, 
these clusters widen out significantly. New clusters can form later and merge with the widening 
clusters, but only very rarely do pixels of low backscatter clusters revert to high backscatter 
within a single year. A comparison of Figures 2 and 3 in the Section 3 (Results) provides some 
explanation for these observations. 

The basis of our analysis are two comparisons of five single binary classification results from 
the years 2015, 2016, 2017, 2018 and 2019. The images and their respective acquisition dates 
for the comparisons were chosen according to two criteria based on the observations of 
pattern development over time as described above. The images selected for the first 
comparison are the ones where the classified pattern area first exceeded 20km2. The images 
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for the second comparison were acquired on the last date the patterns were detectable. After 
snowmelt sets in, the clusters of low backscatter can no longer be observed, because very low 
backscatter is observed from the entire lake surface. 

For the two comparisons themselves, we calculated the mean minimum distance and 
percentages of intersecting areas between polygonized classification outcomes of the positive 
class (backscatter anomalies), pairwise for all years. This is the first time that study of the 
phenomenon has focused on single objects and the spatial relationships among them. For the 
most part, the Python packages Shapely (Gillies, 2007) and Fiona (Gillies, 2011), which are 
essential tools for geospatial programming, were used for the calculations. Since the mean 
minimum distance calculated from one polygon set A to another polygon set B is not equal to 
the mean minimum distance of polygon set B to polygon set A, the result of our calculations 
is a square matrix of shape 5x5 (because of 5 distinct years). Similarly, the percentage of 
intersecting areas is also asymmetrical, as it is calculated as the area of intersection between 
images of two years divided by the classified area in one year. Hence, the result is also a 5x5 
matrix. Additionally, we calculated cumulative counts of positively classified pixels for the two 
comparisons, ranging from 0 (no occurrence in any year) to 5 (the pixel was classified positively 
in all five years). Further, we considered a time series of classified pattern areas for our 
interpretations. 

3 Results 

3.1 Classification results 

The classification results of the positive class for the first criterion, where the pattern area first 
exceeded 20 km2 in 2015 to 2019, are shown in Figure 2 (a)–(e). Similarly, the classification 
results of the positive class for the second criterion, the date (2015 to 2019) of the last available 
useful acquisitions in the years concerned are shown in Figure 3 (a)–(e). These images may 
serve for a visual assessment of the binary classification outcome and to aid understanding of 
the other results. The expansion of clusters of low backscatter can seen in part by comparing 
Figure 2 (a)–(e) with Figure 3 (a)–(e). 
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Figure 2: Sentinel-1 EW HH-polarized SAR images where the classified pattern area first exceeded 20 

km2. Red outlines show polygonized results of the positive class from the automatic binary classification. 

(a) 2015, (b) 2016, (c) 2017, (d) 2018, (e) 2019. 
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Figure 3: Last available Sentinel-1 EW HH-polarized SAR images before snowmelt onset in each year from 

2015 to 2019. Red outlines show polygonized results of the positive class from the automatic binary 

classification. (a) 2015, (b) 2016, (c) 2017, (d) 2018, (e) 2019. 
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For an assessment of differences in ice conditions across the years, backscatter levels of regular 
floating lake ice (negative class) may be of interest. For the images in Figures 2 and 3, mean σ0 
of pixels in the negative class of each polarization channel is of similar magnitude across years 
(Table 1). 

Table 1: Mean backscatter coefficient σ0 of pixels in the negative class (regular floating lake ice) for 

the years 2015 to 2019 and the two criteria used for image selection. Images for criterion 1 are those 

where the area of the anomalies first exceeded 20 km²; images for criterion 2 are the last useful 

acquisitions in the year. The HH-channel images for both criteria are shown in Figures 2 and 3, 

respectively. 

Year 
σ0HH criterion 1 

(Figure 2)  

σ0HV criterion 1 σ0HH criterion 2 

(Figure 3) 

σ0HV criterion 2 

2015 -5.9 dB -17.8 dB -5.5 dB -17.2 dB 

2016 -5.8 dB -18.3 dB -6.5 dB -18.5 dB 

2017 -7.1 dB -17.1 dB -6.2 dB -17.4 dB 

2018 -6.8 dB -19.7 dB -7.6 dB -20.3 dB 

2019 -5.4 dB -19.4 dB -5.5 dB -18.8 dB 

In general, a steady increase of pattern area can be observed in late winter in every year from 
2015 to 2019 (Figure 4 (a)–(e)). Alongside this general trend, minor fluctuations in the classified 
area of low backscatter are visible for 2016, 2017, 2018 and 2019. These fluctuations are 
particularly apparent in early 2018. They may be caused partly by noise in the images or by 
imperfections in the classification method. Rare small clusters of low backscatter that revert 
to high backscatter may also contribute. Since no reference data are available, it is impossible 
to state the cause of the fluctuations with confidence, but air temperatures close to or slightly 
above 0°C may play a role. However, for this study, the important aspects are the relatively 
steady increase of pattern area in late winter and the time of the start of this general uptrend. 
Variations in air temperature behave differently among the years, but are of similar magnitude, 
and air temperature rarely exceeds 0°C during the analysis periods of backscatter anomalies. 
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Figure 4: Temporal evolution, January to June, of classified area of clusters of low backscatter (black), 

and minimum (blue) and maximum (green) air temperatures recorded at the Seyaha weather station 

for (a) 2015, (b) 2016, (c) 2017, (d) 2018, (e) 2019. 
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3.2 Mean Minimum Distances 

Table 2 shows the results of mean minimum distance calculations for the first criterion, where 
pattern area first exceeded 20 km2. The mean minimum distances range from 65 metres to 227 
metres, where most lie between 100 and 200 metres. Similarly, mean minimum distances for 
the second criterion, the last available useful acquisitions in the year, can be seen in Table 3. 
The mean minimum distances range from 52 to 227 metres. Of particular note is that mean 
minimum distances in the 2019-column in Table 3 are significantly smaller in comparison with 
Table 2. Smaller distances would be expected, due to the expansion of patterns as described 
above. Distances between consecutive years are of similar magnitude to those found over the 
longer period. 

Table 2: Mean minimum distances between objects pairwise for different years, where pattern area first 

exceeded 20 km2. The figures are for the mean minimum distance between classified objects in the 

year in the row to all classified objects in the year in the column. 

Year 2015 2016 2017 2018 2019 

2015 - 175 m 69 m 118 m 137 m 

2016 139 m - 65 m 97 m 123 m 

2017 137 m 210 m - 117 m 178 m 

2018 156 m 227 m 107 m - 176 m 

2019 173 m 170 m 88 m 91 m - 

Table 3: Mean minimum distances between objects pairwise for different years, for the last useful 

acquisitions in the year in question. The figures are for the mean minimum distance between classified 

objects in the year in the row to all classified objects in the year in the column. 

Year 2015 2016 2017 2018 2019 

2015 - 60 m 63 m 120 m 25 m 

2016 132 m - 94 m 140 m 18 m 

2017 65 m 52 m - 117 m 15 m 

2018 82 m 77 m 77 m - 18 m 

2019 201 m 79 m 108 m 161 m - 

3.3 Intersections 

The intersections deduced from the results for the first criterion, where pattern area first 
exceeded 20 km2, are generally rather low, with 30% being the maximum and most others 
being between 10% and 20% (Table 4). In comparison, the results of the intersection 
calculations for the second criterion, the last available useful acquisitions in a particular year, 
are displayed in Table 5. As could be expected, intersections are generally larger, but they do 
not exceed 50%, except for the percentages of intersections deduced using the polygon set 
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from 2019, which are approximately two thirds (Table 5, 2019-column). As with the mean 
minimum distance calculations, no clear differences between the intersections for consecutive 
years and those between other years can be seen. 

Table 4: Intersections of area of objects classified in one year (row) with area of objects classified in 

another year (column), where pattern area first exceeded 20 km2. The results correspond to the area 

of intersection between the two years, divided by the area in the row-year. 

Year 2015 2016 2017 2018 2019 

2015 - 16 % 18 % 17 % 14 % 

2016 17 % - 23% 25 % 30 % 

2017 15 % 18 % - 18 % 17 % 

2018 14 % 21 % 18 % - 15 % 

2019 15 % 30 % 22 % 19 % - 

Table 5: Intersections of area of objects classified in one year (row) with area of objects classified in 

another year (column) for the last useful acquisitions in the years concerned. The results correspond to 

the area of intersection between the two years, divided by the area in the row-year. 

Year 2015 2016 2017 2018 2019 

2015 - 45 % 28 % 27 % 68 % 

2016 38 % - 29% 27 % 65 % 

2017 37 % 45 % - 27 % 66 % 

2018 36 % 44 % 26 % - 65 % 

2019 35 % 39 % 26 % 25 % - 

3.4 Cumulative counts of occurrences 

Cumulative pixel counts are visualized in Figure 5 (a) for the images where pattern area first 
exceeded 20km2, and in Figure 5 (b) for the last useful acquisitions in the years concerned. The 
colourbar indicates how often a pixel was classified positively in the five images taken in the 
five different years (one image/year). Figure 5 (a) is clearly dominated by cumulative counts 
of 1 and 2, while in Figure 5 (b), where pattern area in the single images is generally larger, 
wider areas of counts higher than 2 can be observed, although counts of 4 and 5 are still 
relatively rare. Both sub-figures clearly show that the occurrence of clusters of low backscatter 
is a lot more frequent in the northern and western parts of the lake. 
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Figure 5: Cumulative pixel counts of backscatter anomalies identified from Sentinel-1 acquisitions from 

2015 to 2019: (a) for images where classified area first exceeded 20 km2, (b) for last useful images in the 

years concerned. 

4 Discussion 

In this study, we base our analyses on the comparison of images from five different years 
selected by applying two criteria. Conventionally, time series analyses refer to day of year 
(DOY). Our results demonstrate (Figure 4) that the time at which the pattern area starts to 
increase steadily varies significantly between years. This fact supports our choice of an 
alternative approach – the spatial extent of the phenomenon. In general, it difficult to find a 
suitable criterion, since some clusters form earlier and some later in the year, and this timing 
may also vary spatially between years. With our approach, we tried to provide an overview of 
similarities and variations of locations from 2015 to 2019. The threshold of 20 km2 was chosen 
for our analysis of the main locations from which large clusters expand. A lower threshold 
may not be useful due to limited spatial resolution (40-metre pixel spacing). 

Binary classification results generally give a good visual impression. In situ data are, however, 
not available due to remoteness and safety reasons. It can be assumed that locations of 
anomalies are characterized by thin ice which cannot be traversed. This assumption is 
supported by reports from reindeer herders, who observed very thin ice on one large lake on 
Yamal, where ice thickness is usually more than one metre (Pointner et al., 2019). The lack of 
direct reference data collected on site also impedes an assessment of ice conditions in relation 
to the weather in different years. We could only compare our results with air temperature data 
recorded at a weather station located 80 km away on the coast. However, these temperatures 
were below 0°C throughout almost the whole of the analysis periods and variations were of 
similar magnitude across years, which suggests similar ice conditions in different years. This 
assumption is also supported by similar backscatter values reported for regular floating lake 
ice (negative class in our classification) across the years. 

Some point-like and elongated objects can be seen, especially in Figures 2 (a), (b) and (c), which 
are characterized by medium contrast with the surrounding high backscatter of floating lake 
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ice and may belong to the class of low backscatter clusters. However, since no in-situ data are 
available, we used a conservative strategy and focused on mapping objects that are 
characterized by higher contrast. 

Some objects, primarily visible in earlier acquisitions, may resemble linear fractures in the 
Sentinel-1 SAR images (especially in Figures 2 (a) and (e)). However, the characteristic 
expansion of the areas over time is the same for these objects (compare Figures 3 (a) and (e)) 
and fractures commonly exhibit high backscatter, which is often obscured by the high 
backscatter of floating lake ice in late winter (Duguay & Pietroniro, 2005). 

Linear features in optical and SAR imagery of ice on the lakes on Yamal may also be attributed 
to leakage of methane and associated geological structures and faults (Bogoyavlensky et al., 
2016, 2018). If the clusters of low backscatter for ice on lake Neyto were indeed caused by 
upwelling gas and accumulation under the ice layer, analysing any changes of locations could 
be interesting to determine the duration of seeping from a particular point source. However, 
the limited spatial resolution may be problematic for that purpose. 

The calculated mean minimum distances may not at first seem large when compared to the 
40-metre pixel spacing, but keep in mind that if two polygons overlap, the minimum distance 
is zero. So, we still consider the calculated distances as signs of large spatial variations of 
occurrences. Although we argue that this metric is the most difficult to interpret, we 
nevertheless think it is useful for highlighting that the variations between consecutive years are 
similar to those between other years. 

Intersection metrics are easier to interpret. Intersections calculated for the images where the 
classified pattern area first exceeded 20 km2 (Table 4) are generally rather low, often below 
20%, which shows that clusters emerge mainly from different regions of the lake in different 
years, although there is always some overlap. Intersections calculated for the last useful 
acquisitions in any one year (Table 5) are significantly higher, which can be explained partly by 
the fact that the classified pattern area is generally larger for the images used here. Intersections 
with the polygon set deduced from the 2019 image range from 65% to 68% (last column on 
the right in Table 5), but the classified area for the 2019 image also covered nearly half of the 
total lake area (compare Figures 3 (e) and 4 (e)). 

Strong spatial variations of cluster locations can also be seen in Figure 5. There is a strong 
spatial difference in the emergence of patterns between the five years (Figure 5 (a)), although 
higher cumulative pixel counts can be seen in Figure 5 (b), where the classified pattern areas 
in the single images were generally higher. Especially interesting is the more frequent 
occurrence in northern and western parts of the lake. Bogoyavlensky et al. (2018) discuss the 
occurrence of patterns in these same parts of lake Neyto in single images. They associate the 
patterns (but without quantitative analyses) with a nearby gas field that stretches under these 
areas of lake Neyto. Our results may support their assumption that the clusters of low 
backscatter are caused by gas emissions. 

The cumulative pixel counts (Figure 5) provide some insight into the spatial variation of 
backscatter anomalies during the five years. However, the analysis of spatial relationships 
between individual objects (mean minimum distances and intersections), as presented here in 
relation to backscatter anomalies of lake ice for the first time, may reveal actual variations 
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between the years. Results suggest that spatial changes between consecutive years are similar 
to changes over the entire time period, which cannot be deduced from cumulative pixel counts. 

5 Conclusions 

The purpose of this study was to examine the interannual variability of clusters of low 
backscatter on Sentinel-1 SAR images of lake ice on lake Neyto in northwestern Siberia. Our 
results show that there are significant spatial variations in occurrences of clusters of low 
backscatter between the years 2015 to 2019, although there is also always some overlap. 
Geospatial analysis reveals that variations are of similar magnitude, whether we look at 
consecutive years or the longer period. Linear structures and the more frequent occurrence of 
backscatter anomalies in the northern and western parts of lake Neyto may point to gas release 
as the primary cause of the anomalies. Methods commonly used for assessing spatial 
relationships of vector data can provide valuable insight into the phenomenon. 
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